JPS63124250A - Optical magnetic recording disk - Google Patents

Optical magnetic recording disk

Info

Publication number
JPS63124250A
JPS63124250A JP27027986A JP27027986A JPS63124250A JP S63124250 A JPS63124250 A JP S63124250A JP 27027986 A JP27027986 A JP 27027986A JP 27027986 A JP27027986 A JP 27027986A JP S63124250 A JPS63124250 A JP S63124250A
Authority
JP
Japan
Prior art keywords
film
recording
disk
peripheral part
magneto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27027986A
Other languages
Japanese (ja)
Inventor
Masahiro Orukawa
正博 尾留川
Norio Miyatake
範夫 宮武
Masako Tamaki
玉木 昌子
Yoji Sasagawa
笹川 陽司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP27027986A priority Critical patent/JPS63124250A/en
Publication of JPS63124250A publication Critical patent/JPS63124250A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve a S/N in an inner peripheral part and to increase a storage capacity without deteriorating a recording sensitivity in an outer peripheral part by laminating in order of a protective film, a magnetic body film and a thermal diffusion film on a substrate, and reducing the film thickness of the thermal diffusion film from the inner peripheral part to the outer peripheral part. CONSTITUTION:A magnetic thin film 3 is laminated on the substrate 1 formed by plastic through a protective layer 2, and furthermore, the thermal diffusion film 5 whose film thickness decreases from the inner part to the outer part of the disk is formed through a dielectric 4. The optical magnetic disk has a diameter of 130mmphi, and a radius from 30mm to 60mm is used for recording and reproduction. The film thickness of the thermal diffusion film 5 in the inmost peripheral part is 500Angstrom , and below 50Angstrom in an outermost peripheral part. Thus, the S/N in the inner peripheral part can be improved by about 2dB over, and a shortest domain length can be shortened from mum to 0.8mum, whereby the storage capacity per disk can be increased by 25%.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は情報の記録に用いられる光磁気ディスクの薄膜
構成を改良した光磁気記録円盤に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a magneto-optical recording disk used for recording information, which has an improved thin film structure.

従来の技術 近年、情報化社会の進展と共に書き換え可能な大容量光
磁気ディスクの実用化が強く望まれている。その中で特
に注目を集めている光磁気メモリは、ディジタル・メモ
リとして優れた特性を有していることが最近になって確
められて来た。
BACKGROUND OF THE INVENTION In recent years, as the information society has progressed, there has been a strong desire to put rewritable large-capacity magneto-optical disks into practical use. Among these, magneto-optical memory, which has attracted particular attention, has recently been confirmed to have excellent characteristics as a digital memory.

ところで、光磁気薄膜材料は、記録感度を決定する主要
因であるキエリー温度、再生信号の品質を決定するカー
回転角、及び低温での膜作製等の制約から、希土類遷移
金属非晶質磁性体が用いられる。この希土類遷移金属は
、Fe、Go、Niのいずれか1種以上と、G(1,T
b、 Dyを中心とする希土類元素のいずれか1種以上
の合金で構成される。
By the way, magneto-optical thin film materials are limited to rare earth transition metal amorphous magnetic materials due to constraints such as the Chierly temperature, which is the main factor that determines recording sensitivity, the Kerr rotation angle, which determines the quality of reproduced signals, and film production at low temperatures. is used. This rare earth transition metal contains at least one of Fe, Go, and Ni, and G(1,T
b. It is composed of an alloy of one or more rare earth elements, mainly Dy.

具体的には、TbFe、G4TbFe、TbFeCoな
どである。
Specifically, TbFe, G4TbFe, TbFeCo, etc. are used.

しかしながら、これら磁性体薄膜は、他の磁性体材料に
比ベカー回転角が大きいものの、その角度は0.3〜0
.6度であり、十分な信号対雑音比が得られない。具体
的には、光磁気ディスクをディジタルメモリとして使用
する場合、次のような問題が生じる0つまり、ディスク
上に記録されたドメインの長さが、記録・再生に用いる
光ビームスポット径より十分大きい場合には十分な信号
対雑音比が得られる反面、記録されたドメイン長が光ビ
ームスポット径と同程度になると急激に信号対雑音比が
劣化する。したがって、信号対雑音比が高密度記録の限
界を与え、さらに大きな信号対雑音比を得ることが望ま
れている。
However, although these magnetic thin films have a large Bekar rotation angle compared to other magnetic materials, the angle is 0.3 to 0.
.. 6 degrees, and a sufficient signal-to-noise ratio cannot be obtained. Specifically, when using a magneto-optical disk as a digital memory, the following problem arises: In other words, the length of the domain recorded on the disk is sufficiently larger than the optical beam spot diameter used for recording and reproduction. On the other hand, when the recorded domain length becomes approximately the same as the optical beam spot diameter, the signal-to-noise ratio deteriorates rapidly. Therefore, the signal-to-noise ratio limits high-density recording, and it is desired to obtain an even larger signal-to-noise ratio.

このような欠点を除くために、従来から光磁気ディスク
の構成に於いて、基板と磁性体薄膜の間に3io、zn
s、5isNasムIN  などの高屈折率誘電体薄膜
を用いる方式が考案されている。これは誘電体薄膜によ
る多重反射を利用しカー回転角の増加を図るものである
。したがって、誘電体薄膜の膜厚は、その屈折率をn、
記録・再生に′用いるレーザ波長をλとするとき、λ/
4nに設定される0ところで、これら誘電体膜を用いた
構造の光磁気ディスクは、反射率の減少及び光エネルギ
吸収率の増加を招く。したがって、記録感度の向上が望
める反面、再生時にも同様のエネルギ吸収を生じる。し
かしながら磁性体薄膜は高温化によるカー回転角の劣化
を生じるため、再生時に於ける光強度を小さくする必要
がある。再生時に於けるレーザ投入パワーをIo、光磁
気ディスクの反射率をR,カー回転角をθにとするとき
、シロットノイズに対する信号対雑音比S/Nは S/N cx:55in2θk・・・・・・・・・(1
)で表わされる。前述の誘電体膜を用いた構造の光磁気
ディスクでは、カー回転角Okの増加と共に、工。、R
の低下を招き、大きな効果は得られなかった0 発明が解決しようとする問題点 光磁気ディスクでは、前述の如く信号対雑音比によシ高
密度記録の限界が与えられる。したがって光のエネルギ
吸収量を低減することにより、再生時の光強度を増加さ
せ大きな信号対雑音比を得ることは容易に考えられる(
例えば特開昭56−74844号公報)。ところで、デ
ィスクの回転方式には角速度一定方式と線速度−定方式
がある。
In order to eliminate such drawbacks, in the structure of magneto-optical disks, 3io, zn are conventionally used between the substrate and the magnetic thin film.
A method using a high refractive index dielectric thin film such as s, 5isNasmuIN, etc. has been devised. This is intended to increase the Kerr rotation angle by utilizing multiple reflections caused by a dielectric thin film. Therefore, the thickness of the dielectric thin film is such that its refractive index is n,
When the laser wavelength used for recording and reproduction is λ, λ/
At 0, which is set to 4n, magneto-optical disks structured using these dielectric films suffer from a decrease in reflectance and an increase in optical energy absorption rate. Therefore, although an improvement in recording sensitivity can be expected, similar energy absorption occurs during reproduction as well. However, since the Kerr rotation angle of magnetic thin films deteriorates due to high temperatures, it is necessary to reduce the light intensity during reproduction. When the laser input power during reproduction is Io, the reflectance of the magneto-optical disk is R, and the Kerr rotation angle is θ, the signal-to-noise ratio S/N with respect to sirot noise is S/N cx:55in2θk...・・・・・・(1
). In the magneto-optical disk having the structure using the dielectric film described above, as the Kerr rotation angle Ok increases, so does the process. ,R
Problems to be Solved by the Invention In magneto-optical disks, the limit of high-density recording is determined by the signal-to-noise ratio as described above. Therefore, it is easy to think that by reducing the amount of optical energy absorption, it is possible to increase the optical intensity during reproduction and obtain a large signal-to-noise ratio (
For example, Japanese Patent Application Laid-Open No. 56-74844). By the way, disk rotation methods include a constant angular velocity method and a constant linear velocity method.

一般にデータファイル用ディスクドライブでは、高速ア
クセスの必要性から、角速度一定方式が用いられる。し
たがって大きな信号対雑音比を得るために光エネルギ吸
収量を低減させた場合、同時に記録感度の低下をも招き
、次のような問題が生じる。つまり角速度一定方式では
、線速度が太きくなるディスク外周部に於いて、記録に
大パワーのレーザが必要となる。ところがドライブの装
置規模、コスト面からは半導体レーザを用いることが不
可欠でアシ、その結果ディスク回転数が著しく制約され
、必要なデータ転送速度が得られないという問題点を有
していた。
Generally, data file disk drives use a constant angular velocity method due to the need for high-speed access. Therefore, if the amount of optical energy absorbed is reduced in order to obtain a large signal-to-noise ratio, the recording sensitivity will also be reduced at the same time, resulting in the following problems. In other words, in the constant angular velocity method, a high power laser is required for recording at the outer periphery of the disk where the linear velocity increases. However, the use of a semiconductor laser is indispensable in terms of the device size and cost of the drive, and as a result, the number of rotations of the disk is severely restricted, resulting in the problem that the required data transfer rate cannot be obtained.

本発明は上記問題点に鑑み、従来のものよりもデータ転
送速度を損うことなく、大きな信号対雑音比を得る優れ
た光磁気記録円盤を提供するものである。
In view of the above-mentioned problems, the present invention provides an excellent magneto-optical recording disk that provides a higher signal-to-noise ratio than conventional disks without impairing the data transfer rate.

問題点を解決するための手段 この目的を達成するため、本発明の光磁気ディスクは、
磁性膜に対し、レーザ光投入面と逆の側に設けた熱拡散
層を設け、その膜厚が内周部から外周部に向かい減少す
る構成となっている0熱拡散層は、真空蒸着またはスパ
ッタリングなど公知の方法により形成されるが、所望の
膜厚分布は、蒸発源またはターゲットと基板との間に設
けた膜厚補正板により得ることができる。また、別の手
段として、蒸発源の位置またはターゲット上の放電領域
を適切に設定することによっても所望の膜厚分布を得る
ことができる。
Means for Solving the Problems To achieve this objective, the magneto-optical disk of the present invention includes:
A heat diffusion layer is provided on the opposite side of the magnetic film from the laser beam input surface, and the thickness of the layer decreases from the inner circumference toward the outer circumference.The heat diffusion layer is formed by vacuum evaporation or Although the film is formed by a known method such as sputtering, a desired film thickness distribution can be obtained by using a film thickness correction plate provided between the evaporation source or the target and the substrate. Alternatively, the desired film thickness distribution can be obtained by appropriately setting the position of the evaporation source or the discharge area on the target.

作用 一般に光磁気ディスクは、記録ドメインの長さが短かく
なるに従って、再生信号は小さくなる。
Function Generally, in a magneto-optical disk, as the length of the recording domain becomes shorter, the reproduced signal becomes smaller.

角速度一定でディスクを回転させなから記録を行う場合
、内周部はど記録ドメイン長は短かくなシ、外周部はど
長くなる。最短記録ドメイン長は最短パルス幅を最内周
部に記録したとき充分な信号対雑音比が得られることか
ら決定される。一方、外周部はど媒体移動速度が大きく
なるため、記録時。
When recording is performed without rotating the disk at a constant angular velocity, the recording domain length is not short at the inner periphery, but becomes longer at the outer periphery. The shortest recording domain length is determined because a sufficient signal-to-noise ratio can be obtained when the shortest pulse width is recorded at the innermost circumference. On the other hand, the media movement speed increases at the outer periphery during recording.

消去時の光投入パワーを大きくする必要がある。It is necessary to increase the optical input power during erasing.

つまり半導体レーザを用いることのできる最大限の投入
パワーで十分記録できるという記録感度の制約からディ
スクの回転数が決定される。
In other words, the number of rotations of the disk is determined based on the recording sensitivity constraint that sufficient recording can be performed with the maximum input power that can be used with a semiconductor laser.

したがって、ディスクの内周部では信号出力の大きさが
装置設計の限界を与えておシ、ディスクの外周部では記
録感度が装置設計の限界を与える。
Therefore, at the inner circumference of the disk, the magnitude of the signal output limits the device design, and at the outer circumference of the disk, the recording sensitivity limits the device design.

そこで、本発明は、内周部の熱拡散層の膜厚を外周部よ
り厚くすることにより熱拡散を利用して再生時の温度上
昇を抑え、大きな再生パワーによる信号再生を可能とし
、装置設計の限界を与える信号出力を最大限得るもので
ある。
Therefore, the present invention utilizes thermal diffusion to suppress the temperature rise during reproduction by making the thickness of the heat diffusion layer in the inner circumference thicker than that in the outer circumference, thereby making it possible to reproduce signals with large reproduction power, and to improve device design. This is to obtain the maximum signal output that gives the limit.

それと共に、外周部の熱拡散層の膜厚を薄くすることに
よシ熱拡散を防止し、記録感度の低下を防ぎ、ディスク
の高速回転を維持するものである。
At the same time, by reducing the thickness of the heat diffusion layer at the outer periphery, heat diffusion is prevented, recording sensitivity is prevented from decreasing, and high speed rotation of the disk is maintained.

この構成により、従来の光磁気記録円盤と比較し、デー
タの転送速度の低下を招くことなく、記録密度を向上し
、ディスク1枚当たりの記憶容量を増加させるものであ
る。
With this configuration, compared to conventional magneto-optical recording disks, the recording density is improved and the storage capacity per disk is increased without causing a decrease in data transfer speed.

実施例 以下、本発明の一実施例について図面を用いて詳述する
。第1図は、本発明の一実施例による光磁気記録円盤の
構造とその熱拡散層の膜厚分布との対応を示す対応図で
ある。第1図において、円盤状のプラスチックで形成さ
れた基板1上に保護膜2を介して磁性薄膜3が積層され
ている。さらに誘電体膜4を介して円盤の内周部から外
周部に向かって膜厚が減少している熱拡散膜6が形成さ
れている。なお、光磁気ディスクの構成には光磁気薄膜
の酸化防止のため、さらに別の保護層が必要であるが、
本発明の主たる構成要素ではないのでここでは省略する
EXAMPLE Hereinafter, an example of the present invention will be described in detail with reference to the drawings. FIG. 1 is a correspondence diagram showing the correspondence between the structure of a magneto-optical recording disk according to an embodiment of the present invention and the thickness distribution of its heat diffusion layer. In FIG. 1, a magnetic thin film 3 is laminated on a disk-shaped substrate 1 made of plastic with a protective film 2 in between. Further, a thermal diffusion film 6 is formed with the dielectric film 4 interposed therebetween, the thickness of which decreases from the inner circumference to the outer circumference of the disk. Note that the structure of a magneto-optical disk requires an additional protective layer to prevent oxidation of the magneto-optical thin film.
Since it is not a main component of the present invention, it will be omitted here.

、本実施例の光磁気ディスクは、直径130++mφで
あり、半径30mIから半径60■までが記録再生に使
用される。使用領域の最内周部での熱拡散膜の膜厚は5
00人であり、さらに最外周部での膜厚は5o八以下に
なっている。また、使用領域の最内周部から最外周部に
かけて膜厚は連続的に変化している。
The magneto-optical disk of this embodiment has a diameter of 130++ mφ, and the radius from 30 mI to 60 mm is used for recording and reproduction. The thickness of the heat diffusion film at the innermost part of the usage area is 5.
00 people, and the film thickness at the outermost periphery is less than 5.08. Further, the film thickness continuously changes from the innermost circumferential portion to the outermost circumferential portion of the usage area.

次に本実施例の光磁気ディスクの作製方法について述べ
る。
Next, a method for manufacturing the magneto-optical disk of this example will be described.

まず、溝が形成された基板12上に通常の真空蒸着法に
よりSiOを1o00゛入形成した後、通常のRFスパ
ッタリングによりGdTbFeを8o。
First, 1000° of SiO was deposited on the substrate 12 in which the grooves were formed by ordinary vacuum evaporation, and then 80° of GdTbFe was deposited by ordinary RF sputtering.

入形成させた。次に誘電体薄膜として2MgSiO2を
200人形成した後熱拡散層としてパラジワムを形成さ
せた。第2図にパラジウム層作製装置の構成を示す。
I formed it. Next, 200 layers of 2MgSiO2 were formed as a dielectric thin film, and then palladium was formed as a heat diffusion layer. FIG. 2 shows the configuration of the palladium layer manufacturing apparatus.

熱拡散層形成には電子ビーム蒸発源を装備した蒸着装置
を用いている。まず、2X10  Torrまで排気し
た後、基板ホルダ11に装着された直径1sotmφの
プラスチック製の基板12を6゜rpm にて回転させ
ながら蒸発源13からPdを蒸着する。このとき、所望
の膜厚分布を得るために、膜厚補正板14を蒸発源と基
板との間に配する0 これらの構成から成る製膜装置により、Pliを製膜し
た結果、第1図に示す如くの膜厚分布を有する誘電体膜
が得られる。なお、膜成製速度は、膜厚補正板14の効
果で、内周部5人/ s a a 、外周部O,S入/
 s e c 以下となっている。
A vapor deposition apparatus equipped with an electron beam evaporation source is used to form the thermal diffusion layer. First, after evacuation to 2×10 Torr, Pd is evaporated from the evaporation source 13 while rotating the plastic substrate 12 with a diameter of 1 sotmφ mounted on the substrate holder 11 at 6° rpm. At this time, in order to obtain a desired film thickness distribution, a film thickness correction plate 14 is disposed between the evaporation source and the substrate. A dielectric film having a film thickness distribution as shown in FIG. Furthermore, due to the effect of the film thickness correction plate 14, the film formation speed is 5 persons/s a a on the inner circumference and O, S on/s on the outer circumference.
It is below sec.

次に本発明により構成された光磁気ディスクの記録再生
特性を第3図に示す。なお、比較のため、従来構造によ
る光磁気ディスクについても併せて示した。第3図龜は
本実施例の特性、第3図すは従来の特性を示す。記録は
3000rpm  でディスクを回転させながら、4.
5MHz の信号を記録した。したがって記録ドメイン
長は最内周部1.0μm、最外周部2.0μmとなって
いる。
Next, FIG. 3 shows the recording and reproducing characteristics of the magneto-optical disk constructed according to the present invention. For comparison, a magneto-optical disk with a conventional structure is also shown. Figure 3 shows the characteristics of this embodiment, and Figure 3 shows the conventional characteristics. Recording was performed while rotating the disc at 3000 rpm.4.
A 5 MHz signal was recorded. Therefore, the recording domain length is 1.0 μm at the innermost circumference and 2.0 μm at the outermost circumference.

従来構造では最内周部の信号対雑音比(C/N )は5
0.0(IBであったが、本実施例では外周部の記録感
度低下を招くことなく信号対雑音比(C/N )f52
.odBを得ることができる。
In the conventional structure, the signal-to-noise ratio (C/N) at the innermost circumference is 5.
0.0 (IB), but in this example, the signal-to-noise ratio (C/N) f52 was achieved without causing a decrease in recording sensitivity in the outer peripheral area.
.. odB can be obtained.

尚、第3図において実線人は記録パワーを、点線Bは信
号対雑音比を示すもので、以下各図においても同様であ
る。
In FIG. 3, the solid line indicates the recording power, and the dotted line B indicates the signal-to-noise ratio, and the same applies to the following figures.

次に本発明による第2の実施例について述べる。Next, a second embodiment of the present invention will be described.

熱拡散層の材質をCuに変えたことを除いて第1の実施
例と同様の光磁気ディスクを作成し、記録レーザパワー
及び再生信号対雑音比を測定した。
A magneto-optical disk similar to that of the first example was prepared except that the material of the heat diffusion layer was changed to Cu, and the recording laser power and reproduction signal-to-noise ratio were measured.

第4図はその特性図である。記録再生条件は第1の実施
例と同様、ディスク回転数3oo’orpm。
FIG. 4 is a characteristic diagram thereof. The recording and reproducing conditions were the same as in the first embodiment, with a disk rotation speed of 3 oo'orpm.

記録再生周波数4.5MHz にて行った。The recording and reproducing frequency was 4.5 MHz.

従来構造では最内周部の信号対雑音比(C/N ’)は
50.0(IBであったが、本発明による第2の実施例
では、外周部の記録感度低下を招くことなく、信号対雑
音比(C/N) ts 2.5 a+aを得ることがで
きる。
In the conventional structure, the signal-to-noise ratio (C/N') at the innermost circumference was 50.0 (IB), but in the second embodiment of the present invention, the signal-to-noise ratio (C/N') at the innermost circumference was 50.0 (IB). A signal-to-noise ratio (C/N) ts 2.5 a+a can be obtained.

次に本発明による第3の実施例について述べる。Next, a third embodiment of the present invention will be described.

本実施例では、保護膜の材質をZnS に変えたことを
除いて、第2の実施例と同様の光磁気ディスクを作製し
、記録レーザパワー及び再生信号対雑音比を測定した。
In this example, a magneto-optical disk similar to that of the second example was prepared except that the material of the protective film was changed to ZnS, and the recording laser power and reproduction signal-to-noise ratio were measured.

第5図はその特性図である。FIG. 5 is a characteristic diagram thereof.

記録再生条件は第1図の実施例と同様、ディスク回転数
sooorpm、  記録再生周波数4.5 MHzに
て行った。
The recording and reproducing conditions were the same as in the embodiment shown in FIG. 1, with a disk rotation speed of sooorpm and a recording and reproducing frequency of 4.5 MHz.

従来構造では最内周部の信号対雑音比(C/N)は50
.0(IBであったが、本発明による第3の実施例では
、外周部の記録感度低下を招くことなく、信号対雑音比
(07N ) 52.0 dB を得ることができる。
In the conventional structure, the signal-to-noise ratio (C/N) at the innermost circumference is 50.
.. 0 (IB), but in the third embodiment according to the present invention, a signal-to-noise ratio (07N) of 52.0 dB can be obtained without causing a decrease in recording sensitivity in the outer peripheral area.

次に本発明による第4の実施例について述べる。Next, a fourth embodiment of the present invention will be described.

本実施例では、磁性薄膜と熱拡散層との間に、誘電体膜
を設けず、直接積層し、且つ熱拡散層の膜厚を内周部2
000人、外周部20Å以下にしたことを除いて、第1
の実施例と同様の光磁気ディスクを作製し、記録レーザ
ーパワー及び再生信号対雑音比を測定した。第6図はそ
の特性図である。記録再生条件は第1の実施例と同様、
ディスク回転数300Orpm、  記録再生周波数4
.5MHzにて行った。
In this example, a dielectric film is not provided between the magnetic thin film and the heat diffusion layer, and the film thickness of the heat diffusion layer is set to 2.
000 people, except that the outer circumference was less than 20 Å.
A magneto-optical disk similar to that in Example was prepared, and the recording laser power and reproduction signal-to-noise ratio were measured. FIG. 6 is a characteristic diagram thereof. The recording and reproducing conditions are the same as in the first embodiment.
Disk rotation speed 300 rpm, recording/playback frequency 4
.. It was performed at 5MHz.

従来構造では最内周部の信号対雑音比(C/N )は5
0.0 dBであったが、本発明による第4の実施例で
は、外周部の記録感度低下を招くことなく、信号対雑音
比(C/N ) 62.0 dBを得ることができる。
In the conventional structure, the signal-to-noise ratio (C/N) at the innermost circumference is 5.
However, in the fourth example according to the present invention, a signal-to-noise ratio (C/N) of 62.0 dB can be obtained without causing a decrease in recording sensitivity in the outer peripheral area.

以上のように本発明の各実施例によれば、熱拡散膜の膜
厚を内周部から外周部に向かうに従って減少させること
によシ、外周部における記録感度の低下を招くことなく
、内周部の信号対雑音比を約2dB以上向上させ、最短
ドメイン長を1μmから0.8μmに短くすることがで
きる。このため、ディスク1枚当りの記憶容量を26%
増加させることができる。
As described above, according to each embodiment of the present invention, by decreasing the film thickness of the heat diffusion film from the inner circumferential portion toward the outer circumferential portion, it is possible to prevent the recording sensitivity from decreasing in the outer circumferential portion. The signal-to-noise ratio at the periphery can be improved by about 2 dB or more, and the shortest domain length can be shortened from 1 μm to 0.8 μm. This reduces the storage capacity per disk by 26%.
can be increased.

なお、本実施例では、基板にプラスチックを用いたが、
ガラス、金属など何カなる基板に対しても有効である。
Although plastic was used for the substrate in this example,
It is effective for any substrate such as glass and metal.

なお、本実施例では、誘電体膜にsio、ZnS。In this example, the dielectric film is made of sio and ZnS.

SiNxを用いた。しかしながら誘電体膜は、光学的に
透明であることは当然要求されるものの、高屈折率、高
熱伝導率であるほどその効果は大きい0したがって、T
io、ムロN、BIG!LH,G63N4゜Goo  
などの誘電体膜を用いても本発明によれば大きな効果が
得られる。
SiNx was used. However, although the dielectric film is naturally required to be optically transparent, the higher the refractive index and the higher the thermal conductivity, the greater the effect.
io, Muro N, BIG! LH, G63N4゜Goo
According to the present invention, great effects can be obtained even if dielectric films such as the following are used.

発明の効果 本発明は、基板上に保護膜、磁性体膜、熱拡散膜の項に
積層させ、熱拡散膜の膜厚を内周部から外周部に向かう
に従って減少させることにより、外周部に於ける記録感
度の低下を招くことなく、内周部の信号対雑音比を向上
させ、その結果最短ドメイン長を短かくすることが可能
となる。したがって、結果としてディスク1枚当りの記
憶容量を増加させることができる。
Effects of the Invention The present invention has a protective film, a magnetic film, and a heat diffusion film laminated on a substrate, and the thickness of the heat diffusion film decreases from the inner periphery toward the outer periphery. It is possible to improve the signal-to-noise ratio in the inner circumference without causing a decrease in recording sensitivity, and as a result, it is possible to shorten the shortest domain length. Therefore, as a result, the storage capacity per disk can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例における光磁気ディスク
の構造と膜厚分布との対応図、第2図は本発明を実現す
るための光磁気ディスク熱拡散層作製装置の構成を示す
略側面図、第3図は本発明の第1の実施例における光磁
気ディスクの特性図、第4図は本発明の第2の実施例に
おける特性図、第6図は第3の実施例における特性図、
第6図は第4の実施例における特性図である。 1.12・・・・・・基板、2・・・・・・保護膜、3
・・・・・・磁性体膜、4・・・・・・誘電体膜、6・
・・・・・熱拡散膜、11・・・・・・基板ホルダ、1
3・・・・・・P(1蒸発源、14・・・・・・膜厚補
正板。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名7−
一一基 板 ?−保護膜 3− 磁牲体牒 4−誘電体膜 S−u拡取膿 第1図 @筏中友からの距離 R(渭m〕 外III都   内周部       内周環   外
肩部11−−基裸ホルダ゛ I2−  基  板 13−Pd蕉全発 源4− 膜R,補正仮 第 2 口 第3図 (σ) 円盤中〜からの距離 (b) 第4図 第5図 円盤中にからの距鵡 (mm)
FIG. 1 is a diagram showing the correspondence between the structure and film thickness distribution of a magneto-optical disk in the first embodiment of the present invention, and FIG. 2 shows the configuration of a magneto-optical disk thermal diffusion layer manufacturing apparatus for realizing the present invention. A schematic side view, FIG. 3 is a characteristic diagram of the magneto-optical disk in the first embodiment of the present invention, FIG. 4 is a characteristic diagram in the second embodiment of the present invention, and FIG. 6 is a characteristic diagram in the third embodiment. Characteristic diagram,
FIG. 6 is a characteristic diagram in the fourth embodiment. 1.12...Substrate, 2...Protective film, 3
...Magnetic film, 4...Dielectric film, 6.
...Thermal diffusion film, 11...Substrate holder, 1
3...P (1 evaporation source, 14... film thickness correction plate. Name of agent: Patent attorney Toshio Nakao and 1 other person 7-
Eleven boards? - Protective film 3 - Magnetic film 4 - Dielectric film S - Expansion Figure 1 @ Distance from Raft Nakayu R (Way m) Outer III Inner circumference Inner circumference Outer shoulder 11 - - Base bare holder I2- Substrate 13- Pd total source 4- Membrane R, corrected provisional 2nd mouth Figure 3 (σ) Distance from the middle of the disk (b) Figure 4 Figure 5 From inside the disk distance (mm)

Claims (1)

【特許請求の範囲】[Claims] 光磁気薄膜に対し、記録再生時に於ける光投入面とは逆
の面に直接あるいは誘電体層を介して熱拡散層を設け、
上記熱拡散層が、記録再生に使用される領域内で内周部
から外周部に向かって連続的に膜厚が減少するように構
成したことを特徴とする光磁気記録円盤。
A heat diffusion layer is provided on the magneto-optical thin film directly or via a dielectric layer on the opposite surface of the light input surface during recording and reproduction.
A magneto-optical recording disk, characterized in that the heat diffusion layer is configured such that the film thickness decreases continuously from the inner circumference toward the outer circumference within the region used for recording and reproduction.
JP27027986A 1986-11-13 1986-11-13 Optical magnetic recording disk Pending JPS63124250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27027986A JPS63124250A (en) 1986-11-13 1986-11-13 Optical magnetic recording disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27027986A JPS63124250A (en) 1986-11-13 1986-11-13 Optical magnetic recording disk

Publications (1)

Publication Number Publication Date
JPS63124250A true JPS63124250A (en) 1988-05-27

Family

ID=17484041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27027986A Pending JPS63124250A (en) 1986-11-13 1986-11-13 Optical magnetic recording disk

Country Status (1)

Country Link
JP (1) JPS63124250A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0224044A (en) * 1988-05-21 1990-01-26 Yamazaki Mazak Corp Detection device for knife edge position in machine tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0224044A (en) * 1988-05-21 1990-01-26 Yamazaki Mazak Corp Detection device for knife edge position in machine tool

Similar Documents

Publication Publication Date Title
JP2547768B2 (en) Optical magnetic recording medium
JPH10320859A (en) Magneto-optical recording medium
JPS63124250A (en) Optical magnetic recording disk
JPS6124042A (en) Magnetooptic storage element
JPH0766577B2 (en) Magneto-optical recording medium
JPS6316447A (en) Magneto-optical disk
JPH0479076B2 (en)
JPH0442452A (en) Magneto-optical disk and production thereof
JPS63124249A (en) Magneto-optical disk
JPS62298045A (en) Magneto-optical disk
JPS6122454A (en) Photomagnetic recording medium
JPS6320744A (en) Magneto-optical disk
JP2801984B2 (en) Magneto-optical storage element
JPS5956241A (en) Photomagnetic recording medium
JPS63146256A (en) Magneto-optical disk
JPS61272190A (en) Optical recording medium
JPS60209946A (en) Optomagnetic recording medium
JPH0383239A (en) Magneto-optical disk
JPH0689474A (en) Production of magneto-optical recording medium
JP2000228033A (en) Optical recording medium, its production and optical recorder
JPH04337543A (en) Magneto-optical recording medium
JPH0476834A (en) Optical memory disk
JPH02246034A (en) Magneto-optical disk medium
JPH04205938A (en) Optical recording method
JPH06124488A (en) Manufacture of magneto-optical recording medium