JPS6320744A - Magneto-optical disk - Google Patents

Magneto-optical disk

Info

Publication number
JPS6320744A
JPS6320744A JP16410686A JP16410686A JPS6320744A JP S6320744 A JPS6320744 A JP S6320744A JP 16410686 A JP16410686 A JP 16410686A JP 16410686 A JP16410686 A JP 16410686A JP S6320744 A JPS6320744 A JP S6320744A
Authority
JP
Japan
Prior art keywords
film
disk
recording
thickness
magneto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16410686A
Other languages
Japanese (ja)
Inventor
Masako Tamaki
玉木 昌子
Masahiro Orukawa
正博 尾留川
Norio Miyatake
範夫 宮武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP16410686A priority Critical patent/JPS6320744A/en
Publication of JPS6320744A publication Critical patent/JPS6320744A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the deterioration of the data transfer speed and to improve the recording density by forming a protecting film having its thickness decreasing toward the outer circumference from the inner circumference of a disk substrate and laminating a magnetic thin film and a protecting film having the uniform thickness. CONSTITUTION:A protecting film 12 having its thickness decreasing continuously toward the outer circumference from the inner circumference of a disk substrate 11 is formed on this substrate 11 in an area used for recording and reproducing. Then a magnetic thin film 13 and a protecting film 14 having the uniform thickness are laminated on the film 12. The rise of temperature is suppressed in a reproduction mode and the reproduction of signals is possible with large reproduction power by making use of dispersion of heat owing to the thickness of the film 12 increasing toward the inner circumference of the disk 11. Thus the maximum signal output is obtained. While the dispersion of heat is suppressed owing to the thickness of the film 12 decreasing toward the outer circumference of the disk 11. Thus it is possible to prevent the deterioration of the recording sensitivity and to maintain the fast revolutions of a magneto- optical disk.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は情報の記録に用いられ、薄膜構成に特徴を有す
る光磁気ディスクに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a magneto-optical disk used for recording information and characterized by a thin film structure.

従来の技術 近年、情報化社会の進展と共に書き換え可能な大容量光
磁気ディスクの実用化が強く望まれている。その中で特
に注目を集めている光磁気メモリは、ディジタル、メモ
リとして優nた特性を有していることが最近にiって確
められて来よ。
BACKGROUND OF THE INVENTION In recent years, as the information society has progressed, there has been a strong desire to put rewritable large-capacity magneto-optical disks into practical use. Among these, magneto-optical memory, which is attracting particular attention, has recently been confirmed to have excellent characteristics as a digital memory.

ところで、光磁気薄膜材料は、記録感度を決定する主要
因であるキュリー温度、再生信号の品質を決定するカー
回転角、及び低温での膜作製等の制約から、希土類遷移
金属非晶質磁性体が用いられる。この希土類遷移金属は
、Fe、Go、Niのいずれか1種以上と、Gd、Tb
、Dyを中心とする希土類元素のいずれか1種以上の合
金で構成される。
By the way, due to constraints such as the Curie temperature, which is the main factor that determines recording sensitivity, the Kerr rotation angle, which determines the quality of the reproduced signal, and film fabrication at low temperatures, magneto-optical thin film materials are made of rare earth transition metal amorphous magnetic materials. is used. This rare earth transition metal includes at least one of Fe, Go, and Ni, as well as Gd and Tb.
, an alloy of one or more rare earth elements mainly consisting of Dy.

具体的には、TbFe 、 GdTbFe 、 TbF
eCo  などである。
Specifically, TbFe, GdTbFe, TbF
eCo etc.

しかしながら、これら磁性体薄膜は、他の磁性体材料に
比べ力−回転角が大きいものの、その角度は0.3〜0
.5度であり、十分な信号対雑音比が得らrLない。具
体的には、光磁気ディスクをディジタルメモリとして使
用する場合、次のような問題が生じる。つまり、ディス
ク上に記録さnfc領域(ドメイン)の長さが、記録、
再生に用いる光ビームスポット径より十分大きい場合に
は十分な信号対雑音比が得らnる反面、記録されたドメ
イン長が光ビームスポット径と同程度になると急激に信
号対雑音比が劣化する。したがって、信号対雑音比が高
密度記録の限界を与える乏め、記録密度を向上させるて
ばさらに大きな信号対雑音比を得ることが必要となる。
However, although these magnetic thin films have a larger force-rotation angle than other magnetic materials, the angle is 0.3 to 0.
.. 5 degrees, and a sufficient signal-to-noise ratio cannot be obtained. Specifically, when using a magneto-optical disk as a digital memory, the following problems arise. In other words, the length of the NFC area (domain) recorded on the disk is
If the optical beam spot diameter used for reproduction is sufficiently larger than the optical beam spot diameter, a sufficient signal-to-noise ratio can be obtained, but on the other hand, if the recorded domain length becomes about the same as the optical beam spot diameter, the signal-to-noise ratio deteriorates rapidly. . Therefore, the signal-to-noise ratio is poor, which limits high-density recording, and it is necessary to obtain an even larger signal-to-noise ratio to improve the recording density.

このような欠点を除くために、従来から光磁気ディスク
の構成シ′こ於いて、基板と磁性体薄膜の間にSiO、
ZnS 、 5i5N4 、ムlNなどの高屈折率誘電
体薄膜を用いる方式が提案されている。こrLは誘電体
薄膜による多重反射を利用し、カー回転角の増加を図る
もつである。したがって、誘電体薄膜の膜厚は、その屈
折率をn、記録、再生に用いるレーザ波長をλとすると
き、λ/ 4n に設定される。
In order to eliminate such drawbacks, in the configuration of magneto-optical disks, SiO,
Systems using high refractive index dielectric thin films such as ZnS, 5i5N4, and MulN have been proposed. This rL utilizes multiple reflections caused by a dielectric thin film to increase the Kerr rotation angle. Therefore, the thickness of the dielectric thin film is set to λ/4n, where n is the refractive index and λ is the laser wavelength used for recording and reproduction.

ところが、これら誘電体薄膜を用い念構造の光磁気ディ
スクは、カー回転が増加する反面反射率の減少及び光エ
ネルギ吸収率の増加を招く。したがって、記録感度の向
上が望める反面、再生時にも同様のエネルギ吸収を生じ
る。しかしながら磁性体薄膜は高温fヒによるカー回転
角の劣化を生じる念め、再生時に於ける光強度を小さく
する必要がある。再生時に於けるレーザ投入パワーを工
0、光磁気ディスクの反射率をR、カー回転角をθXと
するとき、シヲノトノイズに対する信号対雑音比S/N
1−j S / N oc  jiisin2θ、−−−(1)
で表わされる。前述の誘電体薄膜を用い念構造の光磁気
ディスクでは、カー回転角θにの増加と共K、Io +
 Hの低下を招き、大きなS/N向上は得られなかっ乏
However, magneto-optical disks using these dielectric thin films and having a magnetic structure increase Kerr rotation, but cause a decrease in reflectance and an increase in optical energy absorption rate. Therefore, although an improvement in recording sensitivity can be expected, similar energy absorption occurs during reproduction as well. However, in order to prevent the Kerr rotation angle from deteriorating due to high temperature f, the magnetic thin film must reduce the light intensity during reproduction. When the laser input power during reproduction is 0, the reflectance of the magneto-optical disk is R, and the Kerr rotation angle is θX, the signal-to-noise ratio S/N with respect to noise
1-j S/Noc jiisin2θ,---(1)
It is expressed as In the above-mentioned magneto-optical disk using a dielectric thin film and having a magnetic structure, as the Kerr rotation angle θ increases, K, Io +
This leads to a decrease in H, and a large S/N improvement cannot be obtained.

発明が解決しようとする問題点 光磁気ディスクでは、前述の如く信号対雑音比により高
密度記録の限界が与えらnる。したがって光のエネルギ
吸収量を低減することにより、再生時の光強度を増加さ
せ大きな信号対雑音比を得ることは容易に考えられてい
た(レリえば特開56−74844号公報)。
Problems to be Solved by the Invention In magneto-optical disks, the limit of high-density recording is determined by the signal-to-noise ratio as described above. Therefore, it has been easily considered that by reducing the amount of optical energy absorption, the light intensity during reproduction can be increased and a large signal-to-noise ratio can be obtained (as disclosed in Japanese Patent Application Laid-open No. 56-74844).

ところで、ディスクの回転方式には角速度一定力式と線
速度一定力式がある。一般にデータファイル用ディスク
ドライブでは、高速アクセスの必要性から、角速度一定
力式が用いられる。し念がって大きな信号対雑音比を得
るために光エネルギ吸収量を低減させた場合、同時に記
録感度の低下をも招き、次のような問題が生じる。つま
りディスクを角速度一定力式では、線速度が犬きくなる
ディスク外周部に於いて、記録に大パワーのレーザが必
要となる。ところがドライブの装置規模、コスト面から
は半導体レーザを用いることが不可欠であり、その結果
ディスク回転数が著しく制約され、必要なデータ転送速
度が得られないという問題点を有していた。
By the way, there are two types of disk rotation methods: a constant angular velocity force type and a constant linear velocity force type. In general, disk drives for data files use a constant angular velocity force method due to the need for high-speed access. However, if the amount of optical energy absorption is deliberately reduced in order to obtain a large signal-to-noise ratio, this also results in a decrease in recording sensitivity, resulting in the following problems. In other words, when a disk is operated using a constant angular velocity force type, a high power laser is required for recording at the outer periphery of the disk where the linear velocity is extremely high. However, from the standpoint of device size and cost of the drive, it is essential to use a semiconductor laser, and as a result, the number of rotations of the disk is severely restricted, resulting in the problem that the necessary data transfer rate cannot be obtained.

本発明は上記問題点に鑑み、ディスク基板上に第1の保
護層、磁性体薄膜、第2の保護層がこの順に形成さt″
L之光磁気ディスクに於いて、データ転送速度を損うこ
となく、大きな信号対雑音比を得る優れ次元磁気ディス
クを提供することを目的とする。
In view of the above-mentioned problems, the present invention provides a structure in which a first protective layer, a magnetic thin film, and a second protective layer are formed in this order on a disk substrate.
An object of the present invention is to provide an excellent dimensional magnetic disk that obtains a large signal-to-noise ratio without impairing the data transfer rate.

問題点を解決するための手段 この目的を達成する乏め、本発明の光磁気ディスクに基
板上に少なくとも記録再生に使用される領域内で内周;
■りから外周i’l<に行くに従って膜厚が減少する第
1の保護膜が形成され、さらに磁性体薄膜、第2の保護
膜が積層され念溝成とiっている。
Means for Solving the Problems To achieve this object, the magneto-optical disk of the present invention has at least an inner periphery on the substrate within the area used for recording and reproduction;
A first protective film whose thickness decreases as it goes from the edge to the outer circumference i'l is formed, and further a magnetic thin film and a second protective film are laminated to form a groove.

作用 一般に光磁気ディスクは、記録ドメインの長さが短かく
なるに従って、再生信号は小さくなる。
Function Generally, in a magneto-optical disk, as the length of the recording domain becomes shorter, the reproduced signal becomes smaller.

角速度一定でディスクを回転させながら記録を行う場合
、内周部はど記録ドメイン長は短かくなり、外周部はど
長くなる。最短記録ドメイン長は最短パルス幅を最内周
部に記録したとき充分な信号対雑音比が得られることか
ら決定される。一方外周部はど媒体移動速度が大きくな
るなめ、記録時、消去時の光投入パワーを犬きくする必
要がある。
When recording is performed while rotating the disk at a constant angular velocity, the recording domain length becomes shorter at the inner periphery and longer at the outer periphery. The shortest recording domain length is determined because a sufficient signal-to-noise ratio can be obtained when the shortest pulse width is recorded at the innermost circumference. On the other hand, since the medium movement speed increases at the outer periphery, it is necessary to increase the light input power during recording and erasing.

つまり半導体レーザを用いることのできる最大限の投入
パワーで十分記録できるという記録感度の制約からディ
スクの回転数が決定される。
In other words, the number of rotations of the disk is determined based on the recording sensitivity constraint that sufficient recording can be performed with the maximum input power that can be used with a semiconductor laser.

し之がって、ディスクの内周部では信号出力の大きさが
装置設計の限界を与えており、ディスク7つ外周部では
記録感度が装置設計の限界を与える。
Therefore, at the inner circumference of the disk, the magnitude of the signal output imposes a limit on device design, and at the seven outer circumferences of the disk, recording sensitivity imposes a limit on device design.

本ブd明は、第1 C’)保護膜が、内周部にいくにつ
れて1漠厚が・1〈形成されることにより熱拡散を利用
して再生時の温1度上昇を抑え、大きな再生パワーによ
る信号再生を可能とし、装置設計の限界を与える信号出
力を最大限得ると共に、第1の保護膜が外周部に行くに
つれて膜厚が薄く形成されることにより熱拡散を防止し
、記録感度の低下を防ぎ、ディスクの高速回転を維持す
るものである。
In this project, the first C') protective film is formed with a thickness of 1 degree as it goes toward the inner periphery, thereby utilizing thermal diffusion to suppress the temperature rise of 1 degree during regeneration, and This enables signal reproduction using the reproduction power and maximizes the signal output, which limits device design.The first protective film becomes thinner toward the outer periphery to prevent heat diffusion and prevent recording. This prevents a decrease in sensitivity and maintains high speed rotation of the disk.

これにより、従来の光磁気ディスクと比較し、データの
転送速度の低下を招くことなく、記録密度を向上させ、
ディスク1枚幽之りの記録容量を増加させるものである
Compared to conventional magneto-optical disks, this improves recording density without reducing data transfer speed.
This increases the recording capacity of a single disc.

実施例 以下、本発明の一実施例について図面を参照しながら説
明する。第1図は、本発明の一実施例による光磁気ディ
スクの構造と第1の保護膜の膜厚分布との対応を示す図
である。第1図において、11はプラスチックあるいは
ガラスの基板、12は第1の保護薄膜、13は磁性体薄
膜、14は第2の保護膜である。円盤状の基板11上に
基板の内周部から外周部に向かって連続的に膜厚が減少
するように第1の保護膜12を形成する。この第1の保
護膜12の上に厚みの均一な磁性体薄膜13、第2の保
護膜14を順に積層する。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing the correspondence between the structure of a magneto-optical disk and the thickness distribution of a first protective film according to an embodiment of the present invention. In FIG. 1, 11 is a plastic or glass substrate, 12 is a first protective thin film, 13 is a magnetic thin film, and 14 is a second protective film. A first protective film 12 is formed on a disk-shaped substrate 11 so that the film thickness decreases continuously from the inner circumference to the outer circumference of the substrate. On this first protective film 12, a magnetic thin film 13 having a uniform thickness and a second protective film 14 are laminated in this order.

本実施例の光磁気ディスクは直径130Wtttφであ
り、半径30Mから半径60!ffまでが記録再生にさ
れる。この記録再生に使用される領域の厚内周部での第
1の保護膜12の厚みは200OAであり、最外周部で
の膜厚は500Aである。
The magneto-optical disk of this embodiment has a diameter of 130Wtttφ and a radius of 30M to 60! ff is recorded and reproduced. The thickness of the first protective film 12 at the inner circumferential portion of the area used for recording and reproduction is 200 OA, and the film thickness at the outermost circumferential portion is 500 Å.

次に本実施例の光磁気ディスクの作製方法について述べ
る。第2図は第1の保護膜の作製装置の構成図を示す。
Next, a method for manufacturing the magneto-optical disk of this example will be described. FIG. 2 shows a configuration diagram of the first protective film manufacturing apparatus.

第2図において、21は基板ホルダー、22はプラスチ
ックあるいはガラスからなる基板、23はMg0x、 
5iOyを蒸発させる蒸発源、24は膜厚補正板である
。まず、第2図に示される電子ビーム蒸発源を装備した
蒸着装置を用いて第1の保護膜であるMg0x、 5i
Oy (o<x<1 、 O(Y<2 )を製膜する。
In FIG. 2, 21 is a substrate holder, 22 is a substrate made of plastic or glass, 23 is Mg0x,
An evaporation source for evaporating 5iOy, and 24 a film thickness correction plate. First, a first protective film, Mg0x, 5i, is deposited using an evaporation apparatus equipped with an electron beam evaporation source shown in FIG.
Oy (o<x<1, O(Y<2) is formed into a film.

最初2 X 10  Torrまで排気し念後、基板ホ
ルダ21に装着され之直径13QM’lφの基板22を
6 Orpmにて回転させながら蒸発源23からMg0
x、S工07を蒸着する。このとき、所望の膜厚分布を
得るために、膜厚補正板24を蒸発源23と基板22と
の間に配する。その上に、蒸着装置、あるいはスパッタ
装置を用いて、磁性体薄膜であるGdTbFeを800
ム、第2の保護膜であるMg0x 、 5iOyをeo
oム形成する。
After first evacuation to 2 x 10 Torr, Mg0 is removed from the evaporation source 23 while rotating the substrate 22 with a diameter of 13QM'lφ mounted on the substrate holder 21 at 6 Orpm.
x, S process 07 is deposited. At this time, in order to obtain a desired film thickness distribution, a film thickness correction plate 24 is placed between the evaporation source 23 and the substrate 22. On top of that, a magnetic thin film of GdTbFe with a thickness of 800 nm is applied using a vapor deposition device or a sputtering device
The second protective film Mg0x, 5iOy was
form.

これらの構成からなる製膜装置によりMg0x 。Mg0x is produced by a film forming apparatus having these configurations.

5iOyを製膜すれば、第1図に示される膜厚分布を有
する保護膜が得られる。なお、製膜速度は、膜厚補正板
24の効果で、内周部1oA/sec。
By forming a film of 5iOy, a protective film having the film thickness distribution shown in FIG. 1 can be obtained. Note that the film forming speed is 1oA/sec on the inner circumference due to the effect of the film thickness correction plate 24.

外周部0.2ム/sea以下となる。The outer circumference is 0.2 mm/sea or less.

次に本実施例の光磁気ディスクの記録再生特性を第3図
に示す。第3図aは本実施す]の特性図、第3図すは従
来構成の特性図を示すものである。記録は3000 r
pH1でディスクを回転させながら、4.5MHz  
の信号を記録した。したがって記録ドメイン長は最内周
部が従来の1.0μmより短い0.8μm、最外周部が
2.0μmとなっている。
Next, FIG. 3 shows the recording and reproducing characteristics of the magneto-optical disk of this example. FIG. 3A shows a characteristic diagram of the present implementation, and FIG. 3A shows a characteristic diagram of the conventional configuration. The record is 3000 r
4.5 MHz while rotating the disk at pH 1.
The signal was recorded. Therefore, the recording domain length is 0.8 μm at the innermost circumference, which is shorter than the conventional 1.0 μm, and 2.0 μm at the outermost circumference.

従来構造では最内周部の信号対雑音比(C/N )は6
0.0 (iB であったが、本実施例では外周部の記
録感度低下を招くことなく信号対雑音比(C/N )5
2.0 dB を得ることができる。
In the conventional structure, the signal-to-noise ratio (C/N) at the innermost circumference is 6.
0.0 (iB), but in this example, the signal-to-noise ratio (C/N) was 5 without causing a decrease in recording sensitivity at the outer periphery.
2.0 dB can be obtained.

尚、第3図において実線Aは記録レーザパワーを、点線
Bは信号対雑音比を示している。
In FIG. 3, the solid line A indicates the recording laser power, and the dotted line B indicates the signal-to-noise ratio.

なお、本実施例では第1の保護膜をMg0x、 5iO
yとしたが5102でもよい。5i02の場合には内周
部の膜厚を300OAとする。また、本実施例では、磁
性体膜として(1,dTbFeを用い念が他の光磁気磁
性体でもよい。
In this example, the first protective film is Mg0x, 5iO
Although it is set to y, 5102 may also be used. In the case of 5i02, the film thickness at the inner peripheral portion is 300OA. Further, in this embodiment, (1, dTbFe is used as the magnetic film), but other magneto-optical magnetic materials may be used.

また、本実施例では、基板にプラスチ、り、ガラスを用
いたが、金属などの基板でもよい。
Further, in this embodiment, plastic, resin, or glass was used as the substrate, but a substrate made of metal or the like may be used.

発明の効果 本発明は、基板上に膜厚が内周部から外周部に行くにつ
れて減少され之第1の保護膜が形成され、その上に磁性
体薄膜、第2の保護膜が積層されているので外周部にお
ける記録感度の低下を招くことなく、内周部の信号対雑
音比を2dB向上させ、その結果、最短記録ドメイン長
と1μmから0・8μmに短かくすることができ、ディ
スク1枚あたりの記録容量を25%増加させることがで
きる。
Effects of the Invention In the present invention, a first protective film whose film thickness decreases from the inner circumference to the outer circumference is formed on a substrate, and a magnetic thin film and a second protection film are laminated thereon. This improves the signal-to-noise ratio at the inner periphery by 2 dB without causing a decrease in recording sensitivity at the outer periphery. As a result, the shortest recording domain length can be shortened from 1 μm to 0.8 μm. The recording capacity per sheet can be increased by 25%.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における光磁気ディスクの構
造と膜厚分布との対応図、第2図:・笠本宛明の光磁気
ディスクを実現するための保護膜作表装置の構成図、第
3図は不発明の一実施例における記録再生特性図である
。 11・・・・・基板、12・・・・・・第1の保護薄膜
、13・・・・・・磁性体薄膜、14・・・・・・第2
の保護薄膜、21−・・・・基板ホルダ、22・・−・
・・基板、23・・山・蒸発源、24・・・・・・膜厚
補正板。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名寸 q 沙 ぐ1 法      8 と螢萩群彌吐℃ 、=迭!ツ“トー°ぐい−普 二)
Figure 1 is a correspondence diagram between the structure and film thickness distribution of a magneto-optical disk in an embodiment of the present invention, and Figure 2: Configuration of a protective film tabulation device for realizing a magneto-optical disk written by Kasamoto. 3 are recording and reproducing characteristics diagrams in one embodiment of the invention. 11... Substrate, 12... First protective thin film, 13... Magnetic thin film, 14... Second
protective thin film, 21-...substrate holder, 22...
... Substrate, 23 ... Mountain/evaporation source, 24 ... Film thickness correction plate. Name of agent: Patent attorney Toshio Nakao and one other person. TS “To ° Gui - Fuji)

Claims (1)

【特許請求の範囲】[Claims] 一定の角速度で回転される円盤状の基板上に、第1の保
護薄膜、磁性体薄膜、第2の保護薄膜が、この順に積層
され、前記第1の保護薄膜は、少くとも記録再生に使用
される領域内で、内周部から外周部にいくに従って減少
する膜厚を有しているものであることを特徴とする光磁
気ディスク。
A first protective thin film, a magnetic thin film, and a second protective thin film are laminated in this order on a disk-shaped substrate that is rotated at a constant angular velocity, and the first protective thin film is used at least for recording and reproduction. What is claimed is: 1. A magneto-optical disk having a film thickness that decreases from an inner circumferential portion to an outer circumferential portion.
JP16410686A 1986-07-11 1986-07-11 Magneto-optical disk Pending JPS6320744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16410686A JPS6320744A (en) 1986-07-11 1986-07-11 Magneto-optical disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16410686A JPS6320744A (en) 1986-07-11 1986-07-11 Magneto-optical disk

Publications (1)

Publication Number Publication Date
JPS6320744A true JPS6320744A (en) 1988-01-28

Family

ID=15786872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16410686A Pending JPS6320744A (en) 1986-07-11 1986-07-11 Magneto-optical disk

Country Status (1)

Country Link
JP (1) JPS6320744A (en)

Similar Documents

Publication Publication Date Title
JPS6320744A (en) Magneto-optical disk
JPS6314342A (en) Magneto-optical recording medium
JPH0442452A (en) Magneto-optical disk and production thereof
JPS6316447A (en) Magneto-optical disk
JPS63124249A (en) Magneto-optical disk
JPS63124250A (en) Optical magnetic recording disk
JPS6122454A (en) Photomagnetic recording medium
JPH0430343A (en) Protective film for optical recording medium
JPS62298045A (en) Magneto-optical disk
JPS63146256A (en) Magneto-optical disk
JP3214513B2 (en) Magneto-optical recording medium
JP2616120B2 (en) Magneto-optical recording medium and method of manufacturing the same
JP2801984B2 (en) Magneto-optical storage element
JP2861807B2 (en) Method for manufacturing magneto-optical recording medium
JPH04205938A (en) Optical recording method
JPH02179947A (en) Magneto-optical recording medium
JPS6342053A (en) Information recording medium
JPH06124488A (en) Manufacture of magneto-optical recording medium
JPS60209946A (en) Optomagnetic recording medium
JPH04238124A (en) Optical recording medium
JPH07201089A (en) Magneto-optical disk and its manufacture
JPH0383239A (en) Magneto-optical disk
JPH04337543A (en) Magneto-optical recording medium
JPH03235237A (en) Structure of magneto-optical recording medium
JPH02227846A (en) Magneto-optical recording medium