JPH04134653A - Magneto-optical recording medium - Google Patents

Magneto-optical recording medium

Info

Publication number
JPH04134653A
JPH04134653A JP25410390A JP25410390A JPH04134653A JP H04134653 A JPH04134653 A JP H04134653A JP 25410390 A JP25410390 A JP 25410390A JP 25410390 A JP25410390 A JP 25410390A JP H04134653 A JPH04134653 A JP H04134653A
Authority
JP
Japan
Prior art keywords
film
magneto
recording
optical recording
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25410390A
Other languages
Japanese (ja)
Inventor
Hideo Kaneko
英雄 金子
Katsushi Tokunaga
徳永 勝志
Yoshio Tawara
俵 好夫
Yoshimasa Shimizu
清水 佳昌
Tadao Nomura
忠雄 野村
Masateru Takaya
高屋 征輝
Arata Sakaguchi
阪口 新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP25410390A priority Critical patent/JPH04134653A/en
Publication of JPH04134653A publication Critical patent/JPH04134653A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase a recording speed so as to allow high-degree recording and to improve a writing speed and to increase a performance index so as to improve productivity by constituting a dielectric film of any SiC, SiN, BN, and SiCN contg. hydrogen. CONSTITUTION:A recording film b, the dielectric film c and a reflection film 3 are successively superposed on a substrate a. This film c is constituted of any among the SiC, SiN an BN contg. the hydrogen, by which the film c having the small thermal conductivity is formed. Then, the recording sensitivity of the medium is increased and the use of a semiconductor laser of low output and short wavelength which is heretofore not usable is made usable and, therefore, the recording at a higher density is possible. The writing speed is increased in the high-speed rotation of a disk and further this medium is made of a three- layered structural body, the reflectivity is increased while a large Kerr rotating angle is maintained. The magneto-optical recording medium having the high performance index is formed in this way and since the man-hours for film formation is smaller as compared with the four-layered structural body and, therefore, the productivity is improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光磁気記録媒体、特には誘電体膜を水素を含有
したSin、 SiN、 BN、 SiCNからなる熱
伝導率の低いものとして、記録感度がよく、記録時のレ
ーザー出力を低減させることができるようにしたもので
、これは現在光磁気記録には通用できない低出力、短波
長の半導体レーザーが使用可能となるし、高密度記録す
ることができ、さらには記録感度の向上に件なってディ
スク回転速度を上げても記録が可能で、情報の書き込み
速度も向上することができる光磁気記録媒体に関するも
のである。
Detailed Description of the Invention (Industrial Application Field) The present invention provides a magneto-optical recording medium, particularly a dielectric film made of hydrogen-containing Sin, SiN, BN, or SiCN with low thermal conductivity. It has good sensitivity and can reduce the laser output during recording. This allows the use of low-power, short-wavelength semiconductor lasers that are currently not applicable for magneto-optical recording, and enables high-density recording. The present invention relates to a magneto-optical recording medium in which recording is possible even when the disk rotational speed is increased in order to improve recording sensitivity, and information writing speed can also be improved.

(従来の技術) 近年、情報化社会の進展に伴なって書換可能な光磁気メ
モリか注口を集めており、この光磁気メモリ用磁性膜と
してはTbFeCoなとの希土類元素−遷穆金属元素薄
膜が用いられている力釈このものは得られるカー回転角
が0.3度程度とあまり大きくないために、再生時のC
/Nを大きくする目的において、誘電体膜や反射膜の多
重反射によるエンハンス効果を利用して見かけのカー回
転角を約0.8度程度としたものが使用されている(特
開昭57−12428号公報、特公昭62−27458
号公報、第1図〜第4図参照)。
(Prior art) In recent years, with the development of the information society, rewritable magneto-optical memories or spouts have been gaining popularity, and magnetic films for these magneto-optical memories are made of rare earth elements such as TbFeCo and transmuted metal elements. Since the Kerr rotation angle that can be obtained with this force-shaping device using a thin film is not very large at about 0.3 degrees, the C during playback is
For the purpose of increasing /N, a device with an apparent Kerr rotation angle of approximately 0.8 degrees is used by utilizing the enhancement effect caused by multiple reflections of dielectric films and reflective films (Japanese Patent Application Laid-Open No. 1983-1999). Publication No. 12428, Special Publication No. 62-27458
(see Figures 1 to 4 of the publication).

そして、この中で現在広く使用されているものは第4図
に示されているような四層構造からなるもので、このも
のは第1の誘電体膜の屈折率を2.0程度のものとし、
基板と記録膜との間の多重反射によってカー回転角の増
大を図フているのであるが、これには反射率の減少が起
るためにC/N値の増大効果が十分でないという不利が
ある。
Among these, the one currently widely used has a four-layer structure as shown in Figure 4, and this one has a first dielectric film with a refractive index of about 2.0. year,
Although the Kerr rotation angle is attempted to be increased by multiple reflections between the substrate and the recording film, this method has the disadvantage that the effect of increasing the C/N value is not sufficient because the reflectance decreases. be.

また、この第1の誘電体膜としては透明で屈折率が大き
く、酸素や水分の透過の少ない材料が望ましいというこ
とから、現在はSiN膜が用いられているか、基板と記
録膜との間で多重反射を起こさせ十分なエンハンス効果
を得るためになるべく大きな屈折率となるようにこのS
iN 膜の窒素量を制御すると、同時に膜の吸収係数か
大きくなって媒体の反射率か低下するという不利が生じ
るので、現状では光の屈折率、透過率、保護膜としての
特性からSiNに変わる材料は現われていない。
Furthermore, since it is desirable for this first dielectric film to be a material that is transparent, has a high refractive index, and has low permeation of oxygen and moisture, SiN films are currently used, or This S is adjusted so that the refractive index is as large as possible in order to cause multiple reflections and obtain a sufficient enhancement effect.
If the amount of nitrogen in the iN film is controlled, the absorption coefficient of the film increases and the reflectance of the medium decreases, which is disadvantageous.Currently, SiN is used due to its light refractive index, transmittance, and properties as a protective film. The material has not appeared.

(発明が解決しようとする課題) そのため、この光磁気記録媒体については第5図に示し
たように基板と記録膜との間にあった誘電体膜を記録膜
と反射膜との間に設け、光の多重反射を起こしてエンハ
ンス効果を出すことも提案されており、これによれば従
来例(第4図のもの)と同しカー回転角でも反射率の大
きい媒体とすることができ、反射率が同じになるように
膜構造を設計すればカー回転角の大きい媒体を作ること
かてぎるけれども、この誘電体膜として通宝のSiN膜
を用いる場合には膜の熱伝導率が犬ぎいために記録感度
の点で十分な特性が得られないという欠点がある。
(Problem to be Solved by the Invention) Therefore, in this magneto-optical recording medium, the dielectric film that was between the substrate and the recording film is provided between the recording film and the reflective film, as shown in FIG. It has also been proposed to produce an enhancement effect by causing multiple reflections of It is possible to create a medium with a large Kerr rotation angle if the film structure is designed so that the values of The disadvantage is that sufficient characteristics cannot be obtained in terms of recording sensitivity.

(課題を解決するための手段) 本発明はこのような課題を解決することのできる光磁気
記録媒体に関するもので、これは基板の上に記録膜、誘
電体膜、反射膜を順次積み重ねてなる光磁気記録媒体に
おいて、誘電体膜を水素を含有したSiC,SiN、B
N、 SiCNのいずれかて構成してなることを特徴と
するものである。
(Means for Solving the Problems) The present invention relates to a magneto-optical recording medium that can solve the above problems, and is made by sequentially stacking a recording film, a dielectric film, and a reflective film on a substrate. In magneto-optical recording media, the dielectric film is made of hydrogen-containing SiC, SiN, or B.
It is characterized by being made of either N or SiCN.

すなわち、本発明者らは従来公知の光磁気記録媒体にお
ける前記したような不利を伴なわない光磁気記録媒体を
開発すへく種々検討した結果、この光磁気記録媒体を上
記したように基板の上に記録膜、誘電体膜、反射膜を順
に重ねたものとすると共に、この誘電体膜を水素を含有
するSiC,SiN、BNのいずれかで構成すると、誘
電体膜を熱伝導率の小さいものとすることができるので
媒体の記録感度を大きくすることができること、またこ
れによれば従来使用することができなかった低出力で短
波長の半導体レーザーが使えるようになるのでより高密
度の記録が可能となるし、ディスクの高速回転で書き込
み速度の向上も図れること、さらにはこれが三層構造体
であることから大きなカー回転角を保ちながら反射率を
大きくすることができるので性能指数の高い光磁気記録
媒体を作成できるし、これは四層構造体にくらべて成膜
工数か少ないので生産性の向上も図れるということを見
出して本発明を完成させた。
That is, the present inventors have made various studies to develop a magneto-optical recording medium that does not have the above-mentioned disadvantages of conventionally known magneto-optical recording media. If a recording film, a dielectric film, and a reflective film are sequentially stacked on top, and if this dielectric film is made of hydrogen-containing SiC, SiN, or BN, the dielectric film has a low thermal conductivity. It is possible to increase the recording sensitivity of the medium, and it also allows the use of low-power, short-wavelength semiconductor lasers that could not previously be used, allowing for higher-density recording. It is possible to improve the writing speed by rotating the disk at high speed, and because it has a three-layer structure, it is possible to increase the reflectance while maintaining a large Kerr rotation angle, so it has a high figure of merit. The present invention was completed by discovering that it is possible to create a magneto-optical recording medium, and that productivity can be improved because the number of steps required for film formation is smaller than that of a four-layer structure.

以下にこれをさらに詳述する。This will be explained in further detail below.

(作用) 本発明は記録感度がよく、高密度記録のできる光磁気記
録媒体に関するものである。
(Function) The present invention relates to a magneto-optical recording medium that has good recording sensitivity and is capable of high-density recording.

本発明の光磁気記録媒体は第5図に示したように基板a
の上に記録膜C,誕電電体膜、反射膜dを順に積み重ね
た構造のものとされるが、この基板、記録膜、反射膜自
体はいずれも公知の材質で作られたものとすればよい。
The magneto-optical recording medium of the present invention has a substrate a as shown in FIG.
It is said to have a structure in which a recording film C, a power generation material film, and a reflective film d are stacked on top of each other in this order, but this substrate, recording film, and reflective film themselves are all made of known materials. good.

したがって、この基板aはトラッキング用ガイドグルー
プが形成されたガラス、石英ガラス、ポリカーボネート
樹脂、ポリオレフィン樹脂、ポリメチルメタクリレート
樹脂などからなる透明板とすればよく、これは厚さが0
.5〜2mmのものとすればよい。また、この基板の上
に形成される記録膜は希土類金属−遷移金属元素からな
る、例えばTb、[ly、Gd、Ndなどの希土類金属
とFe、Co、Niなどの遷移金属元素からなるTbF
e、 TbFeCo、GdTbFe、GdDyFeCo
などからなる非晶質金属膜からなるものとすればよいが
、この厚さは十分なファラデイ効果を得るために光が膜
を通過する程度に薄くする必要があるものの、8i端に
薄くすると垂直磁化膜が得られなくなるし、再現性よく
膜を作成することができないということから5〜40n
mのものとすればよい。またここに使用される反射膜は
i、Au、Ag、 Cuまたはこれらの一元素を含む合
金で作られたものとすればよく、この厚さは光が透過し
ない程度とすればよいが、厚すぎると熱が反射膜を通し
て逃げて記録感度が低下するので10〜1100n程度
のものとすればよい。なお、この記8膜、反射膜の形成
は雰囲気として不活性ガスを用いた通常の高周波または
直流マグネトロンスパッタリング法で行えばよく、これ
はその成膜時にバイアス電流を加えるようにしてもよい
Therefore, this substrate a may be a transparent plate made of glass, quartz glass, polycarbonate resin, polyolefin resin, polymethyl methacrylate resin, etc., on which a tracking guide group is formed, and this has a thickness of 0.
.. The thickness may be 5 to 2 mm. Further, the recording film formed on this substrate is made of a rare earth metal-transition metal element, for example, TbF is made of a rare earth metal such as Tb, [ly, Gd, Nd, etc., and a transition metal element such as Fe, Co, Ni, etc.
e, TbFeCo, GdTbFe, GdDyFeCo
The thickness should be thin enough to allow light to pass through the film in order to obtain a sufficient Faraday effect, but if it is thinned at the 8i edge, it will be vertical. 5 to 40 nm because it will not be possible to obtain a magnetized film and it will not be possible to create a film with good reproducibility.
It suffices to use m. The reflective film used here may be made of i, Au, Ag, Cu, or an alloy containing one of these elements, and the thickness may be set to a level that does not allow light to pass through. If it is too large, heat will escape through the reflective film and the recording sensitivity will decrease, so it may be about 10 to 1100 nm. Incidentally, the formation of the above-mentioned 8th film and the reflective film may be performed by ordinary high frequency or direct current magnetron sputtering method using an inert gas as an atmosphere, and a bias current may be applied during film formation.

他方、ここに使用される誘電体膜は熱伝導率の低いもの
とするということから水素を含有したSiC,SiN、
BN、SiCNのいずれかからなるものとする必要があ
るし、このものは従来例(第4図)の第1の誘電体膜と
同様に光の多重反射を起すものとする必要があるが、こ
のものは基板と誘電体膜との界面で十分な反射率を得る
必要はないので、基板と誘電体との屈折率の差は小さい
ものであってもよい。また、このSiC,SiN、BN
、 SiCNのに水素を含有させると、このものは熱伝
導率が低くなるが、多量の水素の混入は同時に屈折率を
低下させるので、従来公知の四層構造体ではこの水素量
が限定されていた(特願平1−279472〜2494
74号明細書参照)のであるが、本発明の誘電体膜は屈
折率が1.3〜2.5の広い範囲で使用できるので水素
量については特に限定する必要はない。なお、この誘電
体膜の成膜はアルゴンガスに窒素ガス、水素ガスを混入
した雰囲気中において、St、 5iC2SiN、BN
をターゲットとしてスパッタリングするか、アルゴンガ
スと水素ガス、メタン、エチレンとの混合ガス中でSi
C,SiN、BNをターゲットとしてスパッタリングす
ることによって行えばよいが、この膜の厚さは屈折率に
よってエンハンス効果の最適値は変化するものの、これ
が十分熱伝導率の小さいものであることから10〜50
0r++nの範囲とすればよく、これによれば記録感度
のすぐれた光磁気記録媒体を容易に得ることができると
いう有利性が与えられる。
On the other hand, since the dielectric film used here has low thermal conductivity, hydrogen-containing SiC, SiN,
It needs to be made of either BN or SiCN, and it needs to cause multiple reflections of light like the first dielectric film in the conventional example (Fig. 4). Since it is not necessary to obtain sufficient reflectance at the interface between the substrate and the dielectric film, the difference in refractive index between the substrate and the dielectric may be small. Also, this SiC, SiN, BN
, When SiCN contains hydrogen, its thermal conductivity decreases, but mixing a large amount of hydrogen also lowers the refractive index, so in conventional four-layer structures, the amount of hydrogen is limited. (Patent application No. 1-279472-2494
However, since the dielectric film of the present invention can be used in a wide range of refractive indexes from 1.3 to 2.5, there is no need to particularly limit the amount of hydrogen. Note that this dielectric film was formed using St, 5iC2SiN, BN in an atmosphere containing argon gas, nitrogen gas, and hydrogen gas.
sputtering using argon gas as a target, or in a mixed gas of argon gas, hydrogen gas, methane, and ethylene.
This can be done by sputtering using C, SiN, or BN as a target. Although the optimal value for the enhancement effect changes depending on the refractive index, the thickness of this film is 10 to 10% because it has a sufficiently low thermal conductivity. 50
It may be in the range of 0r++n, and this provides the advantage that a magneto-optical recording medium with excellent recording sensitivity can be easily obtained.

(実施例) つぎに本発明の実施例、比較例をあげる。(Example) Next, examples of the present invention and comparative examples will be given.

実施例1、比較例1 基板として直径20m+nx 60mm、厚み1■のガ
ラス板を使用し、これに第5図に示したように厚み25
nmのTbFeCoからなる記録膜、厚さ50nmの水
素を含有するSiNからなる誘電体膜、厚さ60nmの
へλ箔からなる反射膜を順次重ねて本発明の光磁気記録
媒体を作ると共に、比較のために第4図に示したように
このガラス板の上に厚さ1100nのSiNからなる第
1の誘電体膜、厚さ25r+mのTbFeCoからなる
記録膜、厚さ50nmのSiNからなる第2の誘電体膜
および厚ざ50nmのAl1からなる反射膜を重ねて比
較例としての光磁気記録媒体を作った。
Example 1, Comparative Example 1 A glass plate with a diameter of 20 m + nx 60 mm and a thickness of 1 inch was used as a substrate, and a glass plate with a thickness of 25 mm was used as shown in Fig. 5.
The magneto-optical recording medium of the present invention was prepared by sequentially stacking a recording film made of TbFeCo with a thickness of 50 nm, a dielectric film made of SiN containing hydrogen with a thickness of 50 nm, and a reflective film made of λ foil with a thickness of 60 nm. For this reason, as shown in FIG. 4, a first dielectric film made of SiN with a thickness of 1100 nm, a recording film made of TbFeCo with a thickness of 25 r+m, and a second dielectric film made of SiN with a thickness of 50 nm are placed on this glass plate. A magneto-optical recording medium as a comparative example was fabricated by overlapping a dielectric film of 1.0 and a reflective film of Al1 with a thickness of 50 nm.

これらは反射率がほぼ同じになるようにその膜厚を制御
したものであるが、これらの反射率とそのカー回転角を
測定したところ、第1表に示したとおりの結果が得られ
、本発明のものは比較例のものとほぼ同じ反射率を示し
たが、カー回転角は大きいものであることが確認された
The film thicknesses of these were controlled so that their reflectances were almost the same, but when we measured their reflectances and their Kerr rotation angles, we obtained the results shown in Table 1. It was confirmed that the inventive product showed almost the same reflectance as the comparative example, but the Kerr rotation angle was large.

第1表 実施例2、比較例2 基板として直径20mmX 60mm、厚さ1mmのス
ライドガラスを使用し、これに第5図に示したように厚
さ20nmのTbFeCoからなる記録膜、厚さが30
〜20Or+mで第6図に示したように水素量、窒素量
を変えて屈折率を1.6から2.2まで変化させた水素
を含んだONからなる誘電体膜、および厚さか60nm
の、1箔からなる反射膜を順次重ねて成膜して本発明の
光磁気記録媒体を作ると共に、比較のために第4図に示
したようにガラス基板の上に厚さが30〜200 nm
のSiNからなる第1の誘電体膜、厚さ25nmのTb
FeCoからなる記録膜、厚さが5on田で屈折率が2
0であるSiNからなる第2の誘電体膜および厚さが6
0nmのA4箔からなる反射膜を順次重ねて成膜して比
較例としての光磁気記録媒体を作り、これらについての
カー回転角をしらべたところ、本発明の三層膜構造体の
ものについては誘電体の膜厚と屈折率値について′fS
7図に示したとおりの結果が得られ、この場合には屈折
率に応じた膜厚を選択すればカー回転角を最大値とする
ことができることが確認されたが、比較例としての四層
膜構造体についてはZa図に示したような結果が得られ
たことから、この場合には誘電体の屈折率が2.0以下
では膜厚を最適化してもカー回転角のエンハンス効果が
十分ではないことがわかった。
Table 1 Example 2, Comparative Example 2 A slide glass with a diameter of 20 mm x 60 mm and a thickness of 1 mm was used as a substrate, and as shown in FIG.
A dielectric film made of hydrogen-containing ON whose refractive index was varied from 1.6 to 2.2 by changing the amount of hydrogen and nitrogen as shown in Figure 6 at ~20 Or+m, and a thickness of about 60 nm.
The magneto-optical recording medium of the present invention is prepared by sequentially depositing a reflective film consisting of one foil, and for comparison, as shown in FIG. nm
The first dielectric film is made of SiN with a thickness of 25 nm.
Recording film made of FeCo, with a thickness of 5 mm and a refractive index of 2.
A second dielectric film made of SiN with a thickness of 0 and a thickness of 6
A magneto-optical recording medium was prepared as a comparative example by sequentially depositing reflective films made of 0 nm A4 foil, and the Kerr rotation angles of these were examined. About the film thickness and refractive index value of dielectric material'fS
The results shown in Figure 7 were obtained, and it was confirmed that in this case, the Kerr rotation angle could be maximized by selecting the film thickness according to the refractive index. As for the film structure, the results shown in the Za diagram were obtained, so in this case, if the refractive index of the dielectric is 2.0 or less, the Kerr rotation angle enhancement effect is sufficient even if the film thickness is optimized. It turns out that's not the case.

実施例3、比較例3 基板として直径が130mm、厚さが1.2mmのトラ
ッキング用ガイドグループが形成されたポリカーボネー
ト樹脂板を用い、これに第5図に示したように厚さ25
nmのTbFeCoからなる記録膜、第2表に示した屈
折率(n)と厚さをもつSiC:H,SiN:HlBN
:H,SiCN:)lからなる誘電体膜、および厚さが
60nmのAft箔からなる反射膜を順次重ねて成膜し
て本発明の光磁気記録媒体を作ると共に、比較のために
比較例1で使用した水素を含有しないSiNを誘電体膜
とする四層膜構造体を準備した。なお、本発明の光磁気
記録媒体における誘電体膜はSi、SiC,SiN、 
BNをターゲットとし、SiC:H成膜時のガス流量比
は^r:H2=1:1とし、 SiN:H,BN:t(
成膜時のガス流量比はAr:N2:Hz−2:2:1と
し、SiCN:l(成膜時のガス流量比は^r:Nz:
CH3−1:1:1とし、ガス圧3 x 10−3トー
ルでスパッタリングしたものであり、この膜厚は屈折率
値からカー回転角が約1度となるように設定したものあ
る。
Example 3, Comparative Example 3 A polycarbonate resin plate on which a tracking guide group with a diameter of 130 mm and a thickness of 1.2 mm was formed was used as a substrate, and as shown in FIG.
recording film made of TbFeCo, SiC:H, SiN:HlBN with the refractive index (n) and thickness shown in Table 2.
:H, SiCN:)l and a reflective film made of Aft foil with a thickness of 60 nm were sequentially deposited to produce the magneto-optical recording medium of the present invention, and a comparative example was also prepared for comparison. A four-layer film structure having a dielectric film made of SiN, which does not contain hydrogen, used in Example 1 was prepared. Note that the dielectric film in the magneto-optical recording medium of the present invention is Si, SiC, SiN,
Using BN as a target, the gas flow rate ratio during SiC:H film formation was ^r:H2=1:1, and SiN:H, BN:t(
The gas flow ratio during film formation was Ar:N2:Hz-2:2:1, and SiCN:l (the gas flow ratio during film formation was ^r:Nz:
CH3-1:1:1 and sputtered at a gas pressure of 3 x 10-3 torr, and the film thickness was set so that the Kerr rotation angle was about 1 degree based on the refractive index value.

つぎにこのようにして得た4種の光ディスクについて 記録再生光の波長:    830nm、回転数   
  ・  1.800rpm、周波数        
  3.7MHz、測定位置    :  中心から6
0mmという測定条件において、記録時の最適記録パワ
ー(二次高調波が最小となるときの記録パワーで定義)
とそのときのC/N値を測定したところ、第2表に併記
したとおりの結果が得られ、水素を含有したSiC,S
iN、 BN、 SiCNIIiを誘電体膜としたもの
は、水素を含有しないSiNを誘電体膜としたものにく
らべて、最適記録パワーが小さく、C/N値が大きくな
っていることが確認された。
Next, for the four types of optical discs obtained in this way, the wavelength of the recording and reproducing light: 830 nm, the rotation speed
・1.800rpm, frequency
3.7MHz, measurement position: 6 from the center
Under the measurement condition of 0 mm, the optimal recording power during recording (defined as the recording power when the second harmonic is the minimum)
When the C/N value at that time was measured, the results as listed in Table 2 were obtained, and the hydrogen-containing SiC,S
It was confirmed that the optimum recording power was smaller and the C/N value was larger for the dielectric films made of iN, BN, and SiCNIIi than those made of hydrogen-free SiN dielectric films. .

第 表 (発明の効果) 本発明は新規な構造をもつ光磁気記録媒体に関するもの
で、これは前記したように基板の上に記録膜、誘電体膜
、反射膜を順次積み重ねてなる光磁気記録媒体において
、誘電体膜を水素を含有するSiC,SiN、BN、 
SiCN  からなることを特徴とするものであるが、
これによれば誘電体膜が熱伝導率の小さいものとなるの
で、媒体の記録速度を大きくすることができるし、従来
使用できなかった低出力で短波長の半導体レーザーが使
えるのでより高度の記録が可能となり、またディスクの
高速回転で書き込み速度の向上も図れ、さらにはこれが
三層膜構造体であることから大きなカー回転力を保ちな
がら反射率を大きくすることができるので、性能指数の
高い光磁気記録媒体を作成できるという有利性が与えら
れ、これにはまた従来の四層構造体にくらべて成膜工数
が少ないので生産性の向上も図ることができるという有
利性が与えられる。
Table 1 (Effects of the Invention) The present invention relates to a magneto-optical recording medium with a novel structure, which is a magneto-optical recording medium in which a recording film, a dielectric film, and a reflective film are sequentially stacked on a substrate as described above. In the medium, the dielectric film is made of hydrogen-containing SiC, SiN, BN,
It is characterized by being made of SiCN,
According to this, the dielectric film has a low thermal conductivity, so the recording speed of the medium can be increased, and low-power, short-wavelength semiconductor lasers that could not be used in the past can be used, allowing for more advanced recording. It is also possible to improve the writing speed by rotating the disk at high speed.Furthermore, because it has a three-layer film structure, it is possible to increase the reflectance while maintaining a large Kerr rotational force, so it has a high figure of merit. This has the advantage of being able to create a magneto-optical recording medium, and it also has the advantage of improving productivity since it requires fewer deposition steps than conventional four-layer structures.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第4図は従来公知の光磁気記録媒体の構成図、
第5図は本発明の光磁気記録媒体の構成図を示したもの
であり、第6図は本発明の実施例2における水素を含有
するBNの製造時におけるH2/Ar+H,のガス流量
比と屈折率との相関図、第7図は本発明の実施例2おけ
る三層膜構造体の誘電体膜の膜厚と屈折率およびカー回
転角との相関図、第8図は比較例2における四層膜構造
体の誘電体膜の膜厚と屈折率およびカー回転角との相関
図を示したものである。 第6図 一一一一一一)爪」1■し Hz/(Ar+H2) 17図 8黄、/j(mm) [8図 膜厚(mm)
1 to 4 are block diagrams of conventionally known magneto-optical recording media,
FIG. 5 shows a configuration diagram of the magneto-optical recording medium of the present invention, and FIG. 6 shows the gas flow rate ratio of H2/Ar+H during production of hydrogen-containing BN in Example 2 of the present invention. FIG. 7 is a correlation diagram between the dielectric film thickness, refractive index, and Kerr rotation angle of the three-layer film structure in Example 2 of the present invention, and FIG. 8 is a correlation diagram with the refractive index in Comparative Example 2. 2 is a diagram showing the correlation between the film thickness of the dielectric film, the refractive index, and the Kerr rotation angle of the four-layer film structure. Figure 6 111111) Nail 1 ■ Hz/(Ar+H2) 17 Figure 8 Yellow, /j (mm) [Figure 8 Film Thickness (mm)

Claims (1)

【特許請求の範囲】 1、基板の上に記録膜、誘電体膜、反射膜を順次積み重
ねてなる光磁気記録媒体において、誘電体膜を水素を含
有したSiC、SiN、BN、SiCNのいずれかで構
成してなることを特徴とする光磁気記録媒体。 2、基板がガラス、ポリカーボネート樹脂またはポリオ
レフィン樹脂で作られたものである請求項1に記載した
光磁気記録媒体。 3、記録膜が希土類と遷移金属との合金および添加物で
構成されてなるものである請求項1に記載した光磁気記
録媒体。 4、記録膜がTbFeCo、TbFeCo合金および添
加物で構成されている請求項1に記載した光磁気記録媒
体。 5、反射膜がAl、Au、Ag、Cuまたはこれらの1
元素以上を含む合金で作られたものである請求項1に記
載した光磁気記録媒体。 6、記録膜、誘電体膜、反射膜がスパッタリング法で成
膜される請求項1に記載した光磁気記録体。
[Claims] 1. In a magneto-optical recording medium in which a recording film, a dielectric film, and a reflective film are sequentially stacked on a substrate, the dielectric film is made of any one of hydrogen-containing SiC, SiN, BN, and SiCN. A magneto-optical recording medium comprising: 2. The magneto-optical recording medium according to claim 1, wherein the substrate is made of glass, polycarbonate resin or polyolefin resin. 3. The magneto-optical recording medium according to claim 1, wherein the recording film is composed of an alloy of a rare earth element and a transition metal and an additive. 4. The magneto-optical recording medium according to claim 1, wherein the recording film is composed of TbFeCo, a TbFeCo alloy, and additives. 5. The reflective film is Al, Au, Ag, Cu or one of these.
2. The magneto-optical recording medium according to claim 1, which is made of an alloy containing at least one element. 6. The magneto-optical recording medium according to claim 1, wherein the recording film, dielectric film, and reflective film are formed by a sputtering method.
JP25410390A 1990-09-26 1990-09-26 Magneto-optical recording medium Pending JPH04134653A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25410390A JPH04134653A (en) 1990-09-26 1990-09-26 Magneto-optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25410390A JPH04134653A (en) 1990-09-26 1990-09-26 Magneto-optical recording medium

Publications (1)

Publication Number Publication Date
JPH04134653A true JPH04134653A (en) 1992-05-08

Family

ID=17260266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25410390A Pending JPH04134653A (en) 1990-09-26 1990-09-26 Magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JPH04134653A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7615333B2 (en) * 2005-11-10 2009-11-10 Canon Kabushiki Kaisha Write-once optical disk and optical recording method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7615333B2 (en) * 2005-11-10 2009-11-10 Canon Kabushiki Kaisha Write-once optical disk and optical recording method

Similar Documents

Publication Publication Date Title
US5577021A (en) Optical and magnetooptical recording medium having a low thermal conductivity dielectric layer
JPS6180640A (en) Optical recording medium
JPH04134653A (en) Magneto-optical recording medium
JPH056820A (en) Magneto-optical recording medium
JPS6124042A (en) Magnetooptic storage element
US5091267A (en) Magneto-optical recording medium and process for production of the same
JPH01173455A (en) Magneto-optical recording medium
JPH02265052A (en) Production of optical recording medium
JP2527762B2 (en) Magneto-optical recording medium
JP2622206B2 (en) Magneto-optical recording medium
JPH03187039A (en) Magneto-optical recording medium
JP2754658B2 (en) Magneto-optical recording medium
JP2528184B2 (en) Magneto-optical recording medium
JP3148017B2 (en) Magneto-optical recording medium and method of manufacturing the same
JPH03122845A (en) Optical recording medium
JPH02261822A (en) Optical recording medium and preparation thereof
JPH0766579B2 (en) Magneto-optical recording medium and manufacturing method thereof
JPS6117236A (en) Magnetooptic storage element
JPS63166046A (en) Optical disk
JPH04113533A (en) Magneto-optical recording medium
JPH04162233A (en) Magneto optical recording medium
JPH0469832A (en) Magneto-optical recording medium
JPS6289255A (en) Photomagnetic recording medium
JPH0469834A (en) Magneto-optical recording medium
JPH0644624A (en) Magneto-optical recording medium