JPH03187039A - Magneto-optical recording medium - Google Patents

Magneto-optical recording medium

Info

Publication number
JPH03187039A
JPH03187039A JP32520889A JP32520889A JPH03187039A JP H03187039 A JPH03187039 A JP H03187039A JP 32520889 A JP32520889 A JP 32520889A JP 32520889 A JP32520889 A JP 32520889A JP H03187039 A JPH03187039 A JP H03187039A
Authority
JP
Japan
Prior art keywords
film
magneto
recording medium
optical recording
sin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32520889A
Other languages
Japanese (ja)
Inventor
Yoshio Tawara
俵 好夫
Katsushi Tokunaga
徳永 勝志
Yoshimasa Shimizu
清水 佳昌
Tadao Nomura
忠雄 野村
Masateru Takaya
高屋 征輝
Yoshihiro Kubota
芳宏 久保田
Shu Kashida
周 樫田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP32520889A priority Critical patent/JPH03187039A/en
Publication of JPH03187039A publication Critical patent/JPH03187039A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To generate large enhancing effect, to increase Kerr rotation angle and to improve recording density by providing a dielectric film, magnetic film and reflecting film on a transparent substrate arranged at the incident side of light, and forming the dielectric layer with amorphous material composed of SiC and SiN. CONSTITUTION:On a transparent substrate 1 such as glass and polycarbonate resin formed with guide grooves for tracking, dielectric film 2, magnetic film 3, dielectric film 4 composed of the same material as the film 2, and reflecting film 5 are successively formed to constitute the magneto-optical recording medium. Light 6 incident on the substrate 1 is made to reflect by the film 5. In this constitution, the amorphous material for the films 2, 4 has such a molar composition ratio of SiC:SiN = 20 - 80 : 80 - 20 with Si:N = 0.6 - 1.34 of SiN. The refractive index of the amorphous material is specified to 1.70 - 2.30, and the amorphous material is formed by sputtering in gaseous Ar atmosphere. Thereby, thermal diffusion of laser beam can be reduced to prevent expanding of recording bit diameter.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は光磁気記録媒体、特にはカー回転角が大きく、
光透過性がすぐれていてC/Nもよく、記録密度の向上
をはかることができる光磁気記録媒体に関するものであ
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a magneto-optical recording medium, particularly a magneto-optical recording medium having a large Kerr rotation angle.
The present invention relates to a magneto-optical recording medium that has excellent optical transparency, good C/N, and can improve recording density.

[従来の技術] 近年、情報化社会の進展に伴なって書換可能な光磁気メ
モリが注目を集めており、この光磁気メモリ用磁性膜と
してはTbFeCoなどの希土類元素−遷移金属元素膜
が用いられているが、このものは得られるカー回転角が
あまり大きくないためにこれには再生信号のG/Nが十
分でないという欠点がある。
[Prior Art] In recent years, with the advancement of the information society, rewritable magneto-optical memories have attracted attention, and rare earth element-transition metal element films such as TbFeCo are used as magnetic films for these magneto-optical memories. However, this method has the disadvantage that the obtained Kerr rotation angle is not very large and the G/N of the reproduced signal is not sufficient.

[発明が解決しようとする課題) そのため、この種の光磁気記録媒体については従来公知
の非晶質磁性体膜の表面にSin、 SiN。
[Problems to be Solved by the Invention] Therefore, in this type of magneto-optical recording medium, the surface of a conventionally known amorphous magnetic film is coated with Sin or SiN.

^IN、 51に16Nなどの誘電体層(膜)を形成し
、その膜厚を入/4n(λはレーザー波長、nは屈折率
)とすることによって見かけのカー回転角を増大させ、
C/Nを大きくする(エンハンス効果)ことが行なわれ
ているが、これによる特性向上はまだ不十分であり、こ
の誘電体層(ついてはさらに高屈折率で透明性のよいも
のが求められている。
^IN, By forming a dielectric layer (film) such as 16N on 51 and setting the film thickness to /4n (λ is the laser wavelength, n is the refractive index), the apparent Kerr rotation angle is increased,
Efforts have been made to increase the C/N ratio (enhancement effect), but the improvement in properties by this is still insufficient, and a dielectric layer with an even higher refractive index and better transparency is required. .

また、ここに使用されている非晶質磁性体膜は希土類金
属を含んでいるが、この希土類金属が極めて酸化され易
いものであるために、これには高温高湿下で簡単に磁気
特性が劣化するという難点があり、上記の誘電体層に保
護膜としての役割を負わせるという提案もあるが、Si
Oなとの酸化物では逆に希土類元素がSiを還元してし
まうためにその効果は十分なものではないし、SiN、
Ai’Nなどの窒化物には、このような反応性が小さい
ので耐蝕性向上という目的には適しているものの、これ
には樹脂基板などじ成膜するときにクラックが生じ易く
、機械的強度に問題がある。
Additionally, the amorphous magnetic film used here contains rare earth metals, but since these rare earth metals are extremely easily oxidized, their magnetic properties can easily be lost under high temperature and high humidity conditions. There is a problem that it deteriorates, and there is a proposal to give the above dielectric layer the role of a protective film, but Si
On the other hand, with oxides such as O, the rare earth elements reduce Si, so the effect is not sufficient, and SiN,
Since nitrides such as Ai'N have low reactivity, they are suitable for improving corrosion resistance, but they tend to crack when deposited on resin substrates and have poor mechanical strength. There is a problem.

なお、この誘電体膜についてはONを使用することも提
案されており[M、^5ano et al、 IEE
ETrans、 Magn、 MAG−23,2820
,(1987)参照]、これは屈折率が大きく、透明で
あり、誘電体膜としての特性もすぐれているが、これに
はスパッタリング法で成膜しても完全なアモルファス状
態で形成することが難しく、組成が不均一で表面に凹凸
が生じてしまい、耐久性の点に問題がある。
It has also been proposed to use ON for this dielectric film [M, ^5ano et al, IEE
ETrans, Magn, MAG-23, 2820
, (1987)], it has a high refractive index, is transparent, and has excellent properties as a dielectric film, but even if it is formed by sputtering, it cannot be formed in a completely amorphous state. It is difficult, the composition is non-uniform, the surface becomes uneven, and there are problems in terms of durability.

[課題を解決するための手段] 本発明はこのような課題を解決することのできる光磁気
記録媒体に関するもので、これは光の入射側に皺かれる
透明基板上に、誘電体層、磁性膜、反射膜を設けてなる
光磁気記録媒体において、誘電体層がSiCとSiNと
からなる非晶質材料から作られることを特徴とするもの
である。
[Means for Solving the Problems] The present invention relates to a magneto-optical recording medium that can solve the above problems, and consists of a dielectric layer and a magnetic film on a transparent substrate that is wrinkled on the light incident side. , a magneto-optical recording medium provided with a reflective film, characterized in that the dielectric layer is made of an amorphous material consisting of SiC and SiN.

すなわち、本発明者らはカー回転角が大きく、光透過性
がすぐれていてC/Nもよく、記録密度も向上した光磁
気記録媒体を開発すべく種々検討した結果、基体上に設
けられる誘電体層をSiCとSiNとからなる非晶質材
料(以下アモルファス5iC−5iN II!材料と略
記する)で作ると、l)従来の保FiwAにくらべてI
!Jliシ難く、この膜は機械的強度、耐久性にすぐれ
ている、2)従来用いられてきたSin、 SiN、 
AINなどが屈折率1.4〜1.13であるのに比べて
、このアモルファス5iC−5iN膜は屈折率が1.7
0〜2.30であるために、大きなエンハンス効果をも
っており、これはまた光透過性がよく、特に可視〜赤外
領域で極めて高い透過性を有するので、C/Hの大きな
光磁気記録媒体を与える、3)アモルファス5iC−5
iN [lは熱伝導性が小さいために照射するレーザー
の熱拡散が小さく、記録ビット径の広がりを抑えること
ができるので、記録密度の向上をはかることができる、
という効果の得られることを見出し、このアモルファス
5iC−5iN膜の形成方法、sicとSiNとのモル
比組成などについての研究を行なって本発明を完成させ
た。
That is, the present inventors conducted various studies to develop a magneto-optical recording medium that has a large Kerr rotation angle, excellent optical transparency, good C/N, and improved recording density. When the body layer is made of an amorphous material consisting of SiC and SiN (hereinafter abbreviated as amorphous 5iC-5iN II! material), l) I
! 2) Conventionally used Sin, SiN,
Compared to AIN, which has a refractive index of 1.4 to 1.13, this amorphous 5iC-5iN film has a refractive index of 1.7.
0 to 2.30, it has a large enhancement effect, and it also has good optical transparency, especially in the visible to infrared region, so it is suitable for magneto-optical recording media with a large C/H. 3) Amorphous 5iC-5
iN [l has low thermal conductivity, so the thermal diffusion of the irradiated laser is small, and the expansion of the recording bit diameter can be suppressed, so it is possible to improve the recording density.
They found that the above effect can be obtained, and conducted research on the method of forming this amorphous 5iC-5iN film, the molar ratio composition of SIC and SiN, etc., and completed the present invention.

以下にこれをさらに詳述する。This will be explained in further detail below.

[作 用コ 本発明の光磁気記録媒体は透明基板上に誘電体層、磁性
膜、反射膜を設けてなる光磁気記録媒体における誘電体
層をアモルファス51に−3IN膜としたものである。
[Function] The magneto-optical recording medium of the present invention is a magneto-optical recording medium in which a dielectric layer, a magnetic film, and a reflective film are provided on a transparent substrate, and the dielectric layer is an amorphous 51--3IN film.

この光磁気記録媒体の構成は公知のものであり、これは
例えば第1図に示したように、トラッキング用ガイドグ
ループが形成されたガラス、石英ガラス、ポリカーボネ
ート樹脂、ポリメチルメタクリレート樹脂などからなる
透明基板1の上に誘電体膜2、磁性WA3、誘電体WA
2と同質の誘電体膜4および反射膜5を順次積層された
ものであり、これは第2図に示したように透明基板7の
上に誘電体1118、磁性膜9、誘電体1110を順次
積層した3層構造のものであってもよく、これらにおい
てほこの透明基板1.7の光の入射側から光6.11が
入射すると光6は反射膜5で反射され、磁性膜の膜厚を
厚くした′s2図のものでは入射光11は磁性lll9
で反射される。
The structure of this magneto-optical recording medium is known, and as shown in FIG. A dielectric film 2, a magnetic WA 3, and a dielectric WA are formed on the substrate 1.
2, a dielectric film 4 and a reflective film 5 of the same quality as those of 2 are sequentially laminated, and as shown in FIG. It may also have a three-layered structure, in which when light 6.11 enters from the light incident side of the transparent substrate 1.7, the light 6 is reflected by the reflective film 5, and the thickness of the magnetic film increases. In the diagram 's2 with thicker, the incident light 11 is magnetic
reflected.

本発明の光磁気記録媒体ではこの誘電体1112゜8お
よび/または4.10が前記したアモルファス5iC−
5iN fl!で形成されるのであるが、この誘電体膜
の形成はSiCとSiNとの混合物、SiとCとの混合
物、もしくはSiとSiCとの混合物をターゲットとし
たスパッタリング法で行えばよく、このスパッタリング
はこれらのターゲットが絶縁物であるので電源として高
周波を使用し、真空装置内を不活性ガ各雰囲気中(0、
01〜0,1トール)とする必要があるが、この雰囲気
はターゲットがSiCとSiNの混合物のときにはアル
ゴンガス雰囲気とし、これが51とCとの混合物、53
とSiCとの混合物のときにはアルゴン−窒素の混合ガ
ス雰囲気とし反応性スパッタリングによって基板上に成
膜させればよい。
In the magneto-optical recording medium of the present invention, the dielectric material 1112°8 and/or 4.10 is the amorphous 5iC-
5iN fl! However, this dielectric film can be formed by sputtering using a mixture of SiC and SiN, a mixture of Si and C, or a mixture of Si and SiC as a target. Since these targets are insulators, a high frequency is used as a power source, and the inside of the vacuum equipment is heated in an inert gas atmosphere (0,
When the target is a mixture of SiC and SiN, this atmosphere is an argon gas atmosphere.
In the case of a mixture of SiC and SiC, the film may be formed on the substrate by reactive sputtering in an argon-nitrogen mixed gas atmosphere.

また、このようにして形成した誘電体膜におけるSiC
とSiNとの組成比には特に制限はないが、このものは
その屈折率が1.70未満では媒体表面での光の多重反
射によるθにの見かけ上の増大(エンハンス効果)が期
待できず、2.30より大きくすると膜質が低下して機
械的強度や耐久性に悪影響が及ぼされるので、この屈折
率は1.70以上で2.30以下のものとすることが好
ましく、この観点からSiCとSiNとのモル組成比は
SiC: SiN −20〜80:80〜20の範囲と
することがよく、このSiNについてはその組成比であ
るSi:Nが0.6〜1.34のものとすることがよい
Moreover, SiC in the dielectric film formed in this way
There is no particular restriction on the composition ratio between SiN and SiN, but if the refractive index is less than 1.70, an apparent increase in θ (enhancement effect) due to multiple reflections of light on the medium surface cannot be expected. If the refractive index is larger than 2.30, the film quality will deteriorate and the mechanical strength and durability will be adversely affected. Therefore, it is preferable that the refractive index is 1.70 or more and 2.30 or less. From this point of view, SiC The molar composition ratio of SiC and SiN is preferably in the range of SiC:SiN -20 to 80:80 to 20, and for this SiN, the composition ratio Si:N is 0.6 to 1.34. It is good to do.

なお、本発明の光磁気記録媒体は基体上に成膜されたこ
の誘電体層の上に磁性膜と反射膜を形成するのであるが
、これらはいずれも公知のものでよく、この磁性膜は希
土類元素−遷移金属元素膜からなるもの、したがってT
b、 Dy、 Gd、 Ndなどの希土類元素とFe、
 Co、 Niなどの遷移金属元素からなる、例えばT
bFe、 TbFeCo、 GdTbFe、 GdDy
FeCoなどからなる非晶質金属膜を第1図の構造のも
のでは200〜500人、第2図の構造のものでは80
0〜1.000人程度の厚さでスパッタリング法で形成
すればよく、この反射層はAj、 Cu、 Au、 A
gなどの金属膜を厚さ200〜1,000人程度で設け
ればよい。
In addition, in the magneto-optical recording medium of the present invention, a magnetic film and a reflective film are formed on the dielectric layer formed on the substrate, and both of these may be of known type. consisting of a rare earth element-transition metal element film, therefore T
b, Rare earth elements such as Dy, Gd, and Nd and Fe,
Made of transition metal elements such as Co and Ni, for example T
bFe, TbFeCo, GdTbFe, GdDy
An amorphous metal film made of FeCo or the like with the structure shown in Figure 1 requires 200 to 500 people, and with the structure shown in Figure 2 it requires 80 people.
The reflective layer may be formed by sputtering to a thickness of about 0 to 1,000 mm.
It is sufficient to provide a metal film such as G with a thickness of about 200 to 1,000.

[実施例] つぎに本発明の実施例、比較例をあげる。[Example] Next, examples of the present invention and comparative examples will be given.

実施例1〜3、比較例1〜2 スパッタリング装置にガラス基板をセットとして110
℃に加熱し、装置内にSiCと SiNの混合物をター
ゲットとして設置し、装置内を4 X 10−’ トー
ルのアルゴンガス雰囲気とし、ここに出力600Wの高
周波を印加してスパッタリングによってガラス基板上に
アモルファス5iC−5iNからなる非晶質の誘電体層
を膜厚0.2μmとなるように設け(実施例1.2)ま
たターゲットに51とCの混合物を用い、装置内をガス
圧8X10−”トールのA「80%−N220%の雰囲
気として同じくスパッタリングにより誘電体層を作製し
た(実施例3)。なお、比較のためにターゲットを窒化
はう素(BN)、二酸化けい素(Si(h)としてBN
(比較例1 ) 、 5t(h(比較例2)を誘電体層
とするものを作り、この誘電体層のモル組成比、屈折率
、透過率を測定したところ、第1表に示したとおりの結
果が得られた。
Examples 1 to 3, Comparative Examples 1 to 2 110 with glass substrate set in sputtering equipment
℃, a mixture of SiC and SiN was placed as a target in the device, the device was made into an argon gas atmosphere of 4 × 10-' Torr, and a high frequency wave with an output of 600 W was applied to sputter the mixture onto a glass substrate. An amorphous dielectric layer made of amorphous 5iC-5iN was provided to a thickness of 0.2 μm (Example 1.2). A mixture of 51 and C was used as the target, and the inside of the apparatus was heated at a gas pressure of 8×10-” A dielectric layer was similarly prepared by sputtering in an atmosphere of 80%-N220% (Example 3).For comparison, the targets were boron nitride (BN) and silicon dioxide (Si(h)). ) as BN
(Comparative Example 1), 5t(h (Comparative Example 2)) was made as a dielectric layer, and the molar composition ratio, refractive index, and transmittance of this dielectric layer were measured, as shown in Table 1. The results were obtained.

第  1  表 また、このアモルファス5iC−5INからなる誘電体
膜についてその膜厚と可視光線透過率との関係をしらべ
たところ、波長633naの光線透過率については第3
図に示したとおりの結果が得られ、この誘電体層におけ
るSiCとSiNとのモル比とその成膜速度をしらべた
ところ、第4図に示したとおりの結果が得られ、この結
果から光の透過率は膜厚の薄くなるほど増加すること、
成膜速度はSiC:5iN=50:50のものが早く、
量産化に有利であることが確認された。
Table 1 Also, when we investigated the relationship between the film thickness and visible light transmittance of this dielectric film made of amorphous 5iC-5IN, we found that the light transmittance at a wavelength of 633 na was
The results shown in the figure were obtained, and when the molar ratio of SiC and SiN in this dielectric layer and the film formation rate were investigated, the results shown in Figure 4 were obtained. The transmittance of the film increases as the film thickness becomes thinner.
The film formation rate is faster when SiC:5iN=50:50.
It was confirmed that it is advantageous for mass production.

なお、この誘電体膜についてはSiCとSiNとのモル
比を50:5Qとしたもの、また、BN、 5ift膜
としたもめについて各種の膜厚のものを作り、この膜厚
とカー回転角との関係をしらべたところ、第5図に示し
たとおりの結果が得られ、膜厚dがd=λ/4nとなる
8Onm付近でθkが最大値2.0となり、十分なエン
ハンス効果を示すことが確認された。
This dielectric film was made with a molar ratio of SiC and SiN of 50:5Q, and various film thicknesses were made for the BN and 5ift films, and the film thickness and Kerr rotation angle were When we investigated the relationship, we obtained the results shown in Figure 5, and found that θk reached its maximum value of 2.0 at around 8 Onm, where the film thickness d was d = λ/4n, indicating a sufficient enhancement effect. was confirmed.

つぎにこのようにして得た誘電体膜の上に、常法によっ
て膜厚20nmのTbFe磁性膜を、またこの上に上記
と同じ方法で膜厚2On鵬のアモルファスSl(ニーS
iN B電体膜を設け、さらにこの上に高周波出力20
0W、アルゴンガス圧7xlO−’トールの条件下での
スパッタリングによって膜厚40rvのアル主ニウム反
射膜を設けて第1図に示したような光磁気記録媒体を作
り、このものの85℃、85%RHでの耐久性試験を行
なったところ、その保持力変化と保持時間(hrs)に
ついて第6図に示したような結果が得られ、実施例とし
てのアモルファス5iC−5iN誘電体層のものは比較
例としてのBN、 5102を誘電体層とするものにく
らべてすぐれており、実施例のものが500時間経過後
も保持力が殆んど低下しないのに対し、BN、 Sin
、ではこれがかなり低下することが確認された。
Next, on the dielectric film thus obtained, a TbFe magnetic film with a thickness of 20 nm is deposited by a conventional method, and an amorphous Sl (nee S) film with a film thickness of 2 On is deposited on top of this by the same method as described above.
An iN B electric film is provided, and a high frequency output of 20
A magneto-optical recording medium as shown in Fig. 1 was prepared by sputtering under conditions of 0W and argon gas pressure of 7xlO-'Torr to form an aluminum-based reflective film with a film thickness of 40rv. When we conducted a durability test at RH, we obtained the results shown in Figure 6 regarding the retention force change and retention time (hrs), and the amorphous 5iC-5iN dielectric layer as an example was compared. It is superior to the example in which BN and 5102 are used as the dielectric layer, and the holding force of the example shows almost no decrease even after 500 hours, whereas BN and Sin
, it was confirmed that this decreases considerably.

[発明め効果] 本発明は光磁気記録媒体に関するもので、これは前記し
たように基板に誘電体膜、磁性膜、反射膜を設けた光磁
気記録媒体において、この誘電体をSiCとSiNとか
らなる非晶質材料とするというものであり、これによれ
ばこの誘電体膜が屈折率1.70〜2.30のものとな
るので大きなエンハンス効果をもつものとなり、カー回
転角の増大がはかれるし、これはまた光透過性がすぐれ
ているのでC/Nが増大されるほか、この非晶質膜は膜
面が平滑で、機械的強度、耐久性がすぐれたものとなり
、熱伝導度が小さいのでレーザーの熱拡散が小さくなっ
て記録ビットの径の広がりが抑えられるので記録密度が
向上されるという有利性が与えられる。
[Effects of the Invention] The present invention relates to a magneto-optical recording medium in which a dielectric film, a magnetic film, and a reflective film are provided on a substrate as described above. According to this method, this dielectric film has a refractive index of 1.70 to 2.30, which has a large enhancement effect, and increases the Kerr rotation angle. In addition, this amorphous film has a smooth film surface, excellent mechanical strength and durability, and has excellent thermal conductivity. Since this is small, the thermal diffusion of the laser is reduced, and the expansion of the diameter of the recording bit is suppressed, giving the advantage that the recording density is improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は光磁気記録媒体の構成図、第3図はア
モルファス5iC−5iN誘電体膜のSiCとSiNと
のモル比と可視光線透過率との関係グラフ、第4図は同
じくこのSiCとSiNのモル比と成膜速度との関係グ
ラフ、第5図は実施例、比較例における誘電体膜の膜厚
とカー回転角との関係グラフ、第6図は実施例、比較例
における保持時間と保磁力との関係グラフを示したもの
である。 図中の符号: 1.7・・・透明基板 2.4,8.10・ ・誘電体膜(層)3.9・・・磁
性膜 反射膜 5llN4 SiC+431.N4(モルシツ 第 図 +00 00 00 00 00 保持時間 (11) 第 図 カー回転角(度) □へ#速度(刃/今) 手続補正書 平成 2年10月16日 平成 1年特許願第325208号 2゜ 発明の名称 光磁気記録媒体 名 称 (206) 信越化学工業株式会社 4゜
Figures 1 and 2 are configuration diagrams of the magneto-optical recording medium, Figure 3 is a graph of the relationship between the molar ratio of SiC and SiN of an amorphous 5iC-5iN dielectric film and visible light transmittance, and Figure 4 is the same. A graph of the relationship between the molar ratio of SiC and SiN and the film formation rate, FIG. 5 is a graph of the relationship between the film thickness of the dielectric film and the Kerr rotation angle in Examples and Comparative Examples, and FIG. 6 is a graph of the relationship between the Example and Comparative Examples. This is a graph showing the relationship between retention time and coercive force. Codes in the figure: 1.7...Transparent substrate 2.4, 8.10...Dielectric film (layer) 3.9...Magnetic film reflective film 5llN4 SiC+431. N4 (Morschitsu diagram +00 00 00 00 00 Holding time (11) Diagram Kerr rotation angle (degrees) To # Speed (blade/now) Procedural amendment October 16, 1990 Patent application No. 325208 of 1999 2゜Name of invention Magneto-optical recording medium name (206) Shin-Etsu Chemical Co., Ltd. 4゜

Claims (1)

【特許請求の範囲】 1、光の入射側に置かれる透明基板上に、誘電体層、磁
性膜、反射膜を設けて成る光磁気記録媒体において、誘
電体層がSiCとSiNとからなる非晶質材料で作られ
ることを特徴とする光磁気記録媒体。 2、非晶質材料がモル組成比でSiC:SiN=20〜
80:80〜20で、SiNがSiN=0.6〜1.3
4であるものとされる請求項1に記載の光磁気記録媒体
。 3、非晶質材料が屈折率(n)=1.70〜2.30の
ものとされる請求項1または2に記載の光磁気記録媒体
。 4、誘電体層がスパッタリング法によって形成される請
求項1、2または3に記載の光磁気記録媒体。 5、誘電体層がSiCとSiNの混合物をターゲットと
し、アルゴンガス雰囲気下でのスパッタリング法によっ
て形成される請求項1、2または3に記載の光磁気記録
媒体。 6、誘電体層がSiとCとの混合物をターゲットとし、
アルゴン−窒素混合ガス雰囲気下でのスパッタリング法
で形成される請求項1に記載の光磁気記録媒体。 7、誘電体層がSiとSiCの混合物をターゲットとし
、アルゴン−窒素混合ガス雰囲気下でのスパッタリング
法で形成される請求項1、2または3に記載の光磁気記
録媒体。
[Claims] 1. A magneto-optical recording medium comprising a dielectric layer, a magnetic film, and a reflective film on a transparent substrate placed on the light incident side, in which the dielectric layer is a non-containing material made of SiC and SiN. A magneto-optical recording medium characterized by being made of a crystalline material. 2. The amorphous material has a molar composition ratio of SiC:SiN=20~
80:80~20, SiN=0.6~1.3
4. The magneto-optical recording medium according to claim 1, wherein the magneto-optical recording medium is 3. The magneto-optical recording medium according to claim 1 or 2, wherein the amorphous material has a refractive index (n) of 1.70 to 2.30. 4. The magneto-optical recording medium according to claim 1, 2 or 3, wherein the dielectric layer is formed by a sputtering method. 5. The magneto-optical recording medium according to claim 1, 2 or 3, wherein the dielectric layer is formed by sputtering in an argon gas atmosphere using a mixture of SiC and SiN as a target. 6. The dielectric layer targets a mixture of Si and C,
2. The magneto-optical recording medium according to claim 1, which is formed by sputtering in an argon-nitrogen mixed gas atmosphere. 7. The magneto-optical recording medium according to claim 1, 2 or 3, wherein the dielectric layer is formed by sputtering using a mixture of Si and SiC as a target in an argon-nitrogen mixed gas atmosphere.
JP32520889A 1989-12-15 1989-12-15 Magneto-optical recording medium Pending JPH03187039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32520889A JPH03187039A (en) 1989-12-15 1989-12-15 Magneto-optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32520889A JPH03187039A (en) 1989-12-15 1989-12-15 Magneto-optical recording medium

Publications (1)

Publication Number Publication Date
JPH03187039A true JPH03187039A (en) 1991-08-15

Family

ID=18174235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32520889A Pending JPH03187039A (en) 1989-12-15 1989-12-15 Magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JPH03187039A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000069784A1 (en) * 1999-05-18 2000-11-23 Cardinal Ig Company Hard, scratch-resistant coatings for substrates
USRE43817E1 (en) 2004-07-12 2012-11-20 Cardinal Cg Company Low-maintenance coatings
US9738967B2 (en) 2006-07-12 2017-08-22 Cardinal Cg Company Sputtering apparatus including target mounting and control
US10604442B2 (en) 2016-11-17 2020-03-31 Cardinal Cg Company Static-dissipative coating technology

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000069784A1 (en) * 1999-05-18 2000-11-23 Cardinal Ig Company Hard, scratch-resistant coatings for substrates
USRE43817E1 (en) 2004-07-12 2012-11-20 Cardinal Cg Company Low-maintenance coatings
USRE44155E1 (en) 2004-07-12 2013-04-16 Cardinal Cg Company Low-maintenance coatings
US9738967B2 (en) 2006-07-12 2017-08-22 Cardinal Cg Company Sputtering apparatus including target mounting and control
US10604442B2 (en) 2016-11-17 2020-03-31 Cardinal Cg Company Static-dissipative coating technology
US11325859B2 (en) 2016-11-17 2022-05-10 Cardinal Cg Company Static-dissipative coating technology

Similar Documents

Publication Publication Date Title
JP3178025B2 (en) Magneto-optical recording medium and method of manufacturing the same
JPH0352142B2 (en)
JPH03187039A (en) Magneto-optical recording medium
JPH02265052A (en) Production of optical recording medium
JPS60246041A (en) Photo thermomagnetic recording medium
JPH0469833A (en) Magneto-optical recording medium
JPS6132242A (en) Optothermomagnetic recording medium
JPH04113533A (en) Magneto-optical recording medium
JPS63273236A (en) Magneto-optical recording medium
JPH0583971B2 (en)
JPS6371959A (en) Production of magneto-optical recording medium
JP2528184B2 (en) Magneto-optical recording medium
JP3030713B2 (en) Magneto-optical recording medium and method of manufacturing the same
JPS62234253A (en) Magneto-optical recording medium and its production
JPH0469834A (en) Magneto-optical recording medium
JPS61278061A (en) Photomagnetic recording medium
JPS62121943A (en) Optical recording medium
JPH02156445A (en) Magneto-optical recording medium and production thereof
JPH04162233A (en) Magneto optical recording medium
JPH01279443A (en) Production of magneto-optical recording medium
JPH03141058A (en) Magneto-optical recording medium
JPH04134653A (en) Magneto-optical recording medium
JPH04178940A (en) Optical recording medium
JP2000222789A (en) Optical recording medium
JPS62209750A (en) Photomagnetic recording medium