JPS61235548A - Manufacture of co-fe-al-b magnetic alloy - Google Patents

Manufacture of co-fe-al-b magnetic alloy

Info

Publication number
JPS61235548A
JPS61235548A JP7385985A JP7385985A JPS61235548A JP S61235548 A JPS61235548 A JP S61235548A JP 7385985 A JP7385985 A JP 7385985A JP 7385985 A JP7385985 A JP 7385985A JP S61235548 A JPS61235548 A JP S61235548A
Authority
JP
Japan
Prior art keywords
alloy
temp
magnetic
solidified
magnetic alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7385985A
Other languages
Japanese (ja)
Other versions
JPH0570705B2 (en
Inventor
Eiji Nakamura
英二 中村
Masao Shimizu
清水 正雄
Shigenori Sugizaki
杉崎 重徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP7385985A priority Critical patent/JPS61235548A/en
Publication of JPS61235548A publication Critical patent/JPS61235548A/en
Publication of JPH0570705B2 publication Critical patent/JPH0570705B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To prevent crack initiation in a solidified alloy by melting a Co-Fe-Al- B magnetic alloy to be solidified in a mold and by subjecting the solidified alloy to heat treatment under specific conditions. CONSTITUTION:As starting raw material, high-purity Co, Fe, Al, and B are heated to 1100-1150 deg.C by high-frequency heating under a vacuum of 10<-4>-10<-6> torr to form a molten Co-Fe-Al-B magnetic alloy. The molten alloy is cast in a mold equipped outside with an electric heater to be solidified, which is maintained at the temp. between the solidification temp. and a temp. lower than the solidification temp. by 100 deg.C for >=30min and is then allowed to stand to be cooled to ordinary temp. In this way, no cracks occur to the ingot of the magnetic alloy, so that the Co-Fe-Al-B magnetic alloy excelling in hardness and wear resistance and having superior workability as well as highly efficient magnetic properties can be obtained.

Description

【発明の詳細な説明】 及呈上坐豆凰光互 本発明は、磁性合金の製造方法、特にはクラックがなく
健全で、かつすぐれた磁気特性をもつGo−Fa−Al
−B系磁性合金の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a magnetic alloy, particularly a Go-Fa-Al alloy that is crack-free, sound, and has excellent magnetic properties.
The present invention relates to a method for manufacturing a B-based magnetic alloy.

日が  しよ とする    の−占 高性能の磁気記録媒体の開発に伴って、磁気ヘッド材料
の高性能化が進んできた。このために。
With the development of magnetic recording media with high performance as the sun shines, the performance of magnetic head materials has improved. For this.

保磁力Heが1000エルステッド以上の磁気記録媒体
には、磁束密度B1゜が7000ガウス以上のヘッド材
料を必要とするようになった。さらに狭トラツク化とい
う目的のために、良精密加工性を同時にもつことが要求
されている。
A magnetic recording medium with a coercive force He of 1000 Oe or more now requires a head material with a magnetic flux density B1° of 7000 Gauss or more. Furthermore, for the purpose of narrowing the track, it is required to have good precision machinability at the same time.

しかしこれまで酸化物記録媒体用として用いられている
Ni−Zn、Mn−Zn系フェライトは、磁束密度B1
゜が高々6000ガウスであるために、高性能の磁気記
録媒体の特性を充分に引出すことができなかった。その
ためセンダスト、アモルファス合金等の研究が進められ
ているが、センダストについては熱処理、接着技術に問
題があるほが摺動面の変質という欠点があり、アモルフ
ァス合金も熱処理、接着技術のほかトラック加工などに
問題があるため、これらは試作の段階に止まっており、
実用化にはいたっていない。
However, the Ni-Zn and Mn-Zn ferrites used so far for oxide recording media have a magnetic flux density of B1.
Since the angle is at most 6,000 Gauss, the characteristics of a high-performance magnetic recording medium cannot be fully exploited. For this reason, research on sendust, amorphous alloys, etc. is progressing, but Sendust has the disadvantage of deterioration of the sliding surface due to problems with heat treatment and adhesive technology, and amorphous alloys also require heat treatment, adhesive technology, and track processing. These are still at the prototype stage due to problems with
It has not yet been put into practical use.

このため、この種の磁性材料としては硬くて耐摩耗性に
すぐれ、高性能磁気特性をもっているCo−Fe−Al
−B系の磁性合金が注目されるようになったが、加工し
難いという欠点があった。
For this reason, Co-Fe-Al, which is hard, has excellent wear resistance, and has high performance magnetic properties, is suitable for this type of magnetic material.
-B-based magnetic alloys have attracted attention, but they have the drawback of being difficult to process.

しかし加工技術の進展に伴ってこの難点が解決され、そ
の高い硬度が耐摩耗性を向上させるし、精重加工性が良
いという長所が認められるようになってきたが、これは
硬脆材料であるために、クラックのない健全なインゴッ
トを得ることが非常に難しいという不利があった。
However, with the progress of processing technology, this difficulty has been solved, and the advantages of high hardness improve wear resistance and precision machinability have come to be recognized, but this is a hard and brittle material. Therefore, there was a disadvantage that it was very difficult to obtain a healthy ingot without cracks.

従来、Go−Fe−Al−B基磁性合金は1通常原料酸
分をアルミナルツボ中で高周波溶解してから、鋳型中に
注湯し凝固させるという方法で造られているが、得られ
るインゴットはクラックの多いものであった。鋳型材質
の選択、冷却条件の適合化によってクラックのない健全
なインゴットを得ることはできるが、また別の欠点を生
じた。たとえば溶湯の凝固速度を遅くすると、Go、B
Conventionally, Go-Fe-Al-B-based magnetic alloys have been produced by high-frequency melting of raw acid in an aluminium crucible, then pouring into a mold and solidifying. It had a lot of cracks. Although it is possible to obtain a healthy ingot without cracks by selecting the mold material and optimizing the cooling conditions, another drawback arises. For example, if the solidification rate of molten metal is slowed down, Go, B
.

Co、Bなどの立方晶以外の結晶相が析出し、異相量の
増加にしたがって保磁力Hcが増加し、軟磁性材料とし
ての磁気特性が劣化するという欠点があられれた。これ
は製造方法によっても相違する。
Crystal phases other than cubic crystals such as Co and B are precipitated, and as the amount of foreign phases increases, the coercive force Hc increases, resulting in the deterioration of the magnetic properties as a soft magnetic material. This also differs depending on the manufacturing method.

たとえば同一組成の原料を溶解し、調合型に注入して放
冷したものは異相の析出が少なく、保磁力Hcは0.0
3〜0.05エルステツドであるが、この溶湯を石灰鋳
型に注入して徐冷したものは異相の析出が比較的多く、
その保磁力Heは0.1〜0.2エルスツテドになり、
格子面間隔d=1.99人の異相のピークが観測された
(X線粉末回折図形の測定による)。
For example, when raw materials of the same composition are melted, poured into a mixing mold, and left to cool, there is less precipitation of different phases, and the coercive force Hc is 0.0.
3 to 0.05 oersted, but when this molten metal is poured into a lime mold and slowly cooled, there is a relatively large amount of precipitation of different phases.
Its coercive force He will be 0.1 to 0.2 Oersted,
A peak of a different phase with a lattice spacing of d=1.99 was observed (by measurement of an X-ray powder diffraction pattern).

この種合金における磁気特性の劣化と異相の析出量とは
対応しており、異相の析出量は凝固速度の遅い程多くな
ると考えられるので、磁気特性の劣化を防止するために
は凝固速度を上げて異相の析出を抑えることが重要であ
る。凝固速度を上げるために、熱伝導性がよく熱容量の
大きい金型を用いて溶湯を急速に冷却すると、クラック
のない健全なインゴットを得ることが難しくなる。しか
し、異相の析出量をある程度許して健全なインゴットを
得た場合には、熱処理によって異相を除去もしくは低減
できることが、磁気測定とX線回折による異相ピーク強
度の変化の[3Ilによって確認されている。
The deterioration of magnetic properties in this type of alloy corresponds to the amount of precipitated foreign phases, and it is thought that the amount of precipitated foreign phases increases as the solidification rate slows down. Therefore, in order to prevent deterioration of magnetic properties, increase the solidification rate. It is important to suppress the precipitation of foreign phases. If a mold with good thermal conductivity and large heat capacity is used to rapidly cool the molten metal in order to increase the solidification rate, it becomes difficult to obtain a healthy ingot without cracks. However, if a healthy ingot is obtained by allowing a certain amount of foreign phase precipitation, heat treatment can remove or reduce the foreign phase. .

。 、を  するための 本発明者らはGo−Fa−Al−B基磁性合金を公知の
方法に基いて高周波溶解し、鋳型内で凝固冷却させると
きに、凝固した磁性材料の保持温度範囲、保持時間、冷
却速度などについての研究を進めて本発明を完成させた
。すなわちこれは、Co、 Fa、 Al、Bを含む磁
性材料を溶解凝固させたのち、凝固体全体を凝固温度と
、その温度よりも100℃低い温度との間で30分以上
保持し、その後冷却することを特徴とするCo−Fa−
Al−B基磁性合金の製造方法である。
. In order to achieve this, the present inventors high-frequency melt a Go-Fa-Al-B based magnetic alloy based on a known method, and when solidifying and cooling it in a mold, the holding temperature range and holding temperature of the solidified magnetic material are determined. The present invention was completed by conducting research on time, cooling rate, etc. In other words, after melting and solidifying a magnetic material containing Co, Fa, Al, and B, the entire solidified body is held between the solidification temperature and a temperature 100°C lower than that temperature for 30 minutes or more, and then cooled. Co-Fa-
This is a method for producing an Al-B based magnetic alloy.

本発明の方法に使う原材料は、純度99.9%以上の電
解コバルト、純度99.9%以上の鉄、純度99.99
%以上の片状アルミニウム、純度99.8%以上の結晶
ホウ素のような公知の純金属でよいが、電解コバルトを
使用すると溶解時に吸収ガスを放出し。
The raw materials used in the method of the present invention are electrolytic cobalt with a purity of 99.9% or more, iron with a purity of 99.9% or more, and purity 99.99%.
Known pure metals such as flaky aluminum with a purity of 99.8% or higher and crystalline boron with a purity of 99.8% or higher may be used, but when electrolytic cobalt is used, absorbed gas is released during melting.

インゴットが気泡を含む恐れがあるので、予備処理とし
てこれらの合金材料を溶解してから凝固させ、ついでこ
れを粉砕して出発原料とするほうがよい。
Since the ingot may contain air bubbles, it is better to melt and solidify these alloy materials as a pretreatment, and then crush them to form the starting material.

以下に本発明の方法を詳しく説明する。The method of the present invention will be explained in detail below.

前記方法により得た出発原料を10−4〜10−@トー
ルの真空下で高周波溶解したのち、アルゴンガスを導入
して炉内を不活性ガス雰囲気とした。鋳型はたとえばカ
ルシア(Cab) 、マグネシア(MgO)などで造ら
れ、壁内に熱電対を埋設し温度を  。
After the starting materials obtained by the above method were high-frequency melted under a vacuum of 10-4 to 10-Torr, argon gas was introduced to create an inert gas atmosphere in the furnace. The mold is made of calcia (Cab), magnesia (MgO), etc., and a thermocouple is embedded in the wall to measure the temperature.

常に監視する。この溶湯は約1100℃〜1150℃の
温度になって凝固を始める。この凝固までの時間は特に
制御する必要はなく、放冷すればよい。
Always monitor. This molten metal reaches a temperature of approximately 1100°C to 1150°C and begins to solidify. There is no need to particularly control the time until solidification, and it is sufficient to allow it to cool.

このようにして得られた凝固体をそのまま常温まで放冷
すると、得られるインゴットが多数のクラックをもつの
で、本発明の方法は所定時間、凝固温度とこれより多く
ても100℃低い温度の範囲に保持するものである。こ
の保持は前記鋳型の外側に設けたヒーターの電力を調節
して行う、所定時間経過後は常温まで炉中放冷してもク
ラックの全くないインゴットを容易に製造できる。
If the solidified body obtained in this way is left to cool to room temperature, the obtained ingot will have many cracks. It is to be kept as such. This holding is carried out by adjusting the electric power of a heater provided outside the mold. After a predetermined period of time, an ingot without any cracks can be easily produced even if it is left to cool in the furnace to room temperature.

この凝固体を保持する時間は、健全なインゴットを製造
するためなら通常30分以上とすればよいが、健全かつ
磁気特性に優れたインゴットを製造するためには少なく
とも1時間以上を必要とする。
The time for holding this solidified body is usually 30 minutes or more in order to produce a sound ingot, but at least 1 hour or more is required to produce a sound ingot with excellent magnetic properties.

最も標準とされるコバルト70〜80重量%、鉄10〜
20重量%、ホウ素2〜10重量%よりなる出発原料は
、凝固温度が1100℃〜1150℃であるので、(1
000−1050)〜(1100−1150)’Cの範
囲に保持すればよい、この保持時間内では一時的でも1
000℃以下にならないようにすることが必要である。
The most standard is 70-80% by weight of cobalt and 10-80% of iron.
Since the starting material consisting of 20% by weight and 2 to 10% by weight of boron has a solidification temperature of 1100°C to 1150°C, (1
000-1050) to (1100-1150)'C. Within this holding time, even temporarily
It is necessary to prevent the temperature from falling below 000°C.

凝固体をこの温度範囲で所定時間保持したあとは、常温
まで50℃/分程度の炉中放冷でよいが、必要に応じて
加熱しながら徐冷してもよい。
After the solidified body is maintained in this temperature range for a predetermined period of time, it may be left to cool in a furnace at a rate of about 50° C./min to room temperature, but it may be slowly cooled while being heated if necessary.

裏庭丘よ コバルト74.33重量%、鉄16.08重量%、アル
ミニウム4.20重量%、ホウ素5.05重量%、チタ
ン0゜34重量%からなる混合物を、1×10°3トー
ル以下の真空中で、アルミナルツボを用いて高周波溶解
し、調合型中に注湯し、放冷してから平均粒径10■く
らいに砕き、所定の組成比をもつ出発原料を造った。つ
いでこの出発原料soo gをアルミナルツボに入れ、
lXl0−’トール以下の真空中で高周波溶解し、溶湯
が対流をおこし初めた時点でアルゴンガスを10トール
分だけ導入し、高周波電力を調節して溶湯を1400℃
(光温度計で測定)に加熱した。
Backyard hill, a mixture consisting of 74.33% by weight of cobalt, 16.08% by weight of iron, 4.20% by weight of aluminum, 5.05% by weight of boron, and 0°34% by weight of titanium was heated to 1×10° below 3 Torr. The mixture was melted at high frequency in a vacuum using an aluminum crucible, poured into a mixing mold, allowed to cool, and then crushed to an average particle size of about 10 square centimeters to produce a starting material having a predetermined composition ratio. Next, put this starting material soo g into an aluminum crucible,
High frequency melting is carried out in a vacuum of less than lXl0-' Torr. When the molten metal begins to generate convection, argon gas is introduced in an amount of 10 Torr, and the molten metal is heated to 1400°C by adjusting the high frequency power.
(measured with a light thermometer).

つぎにこの溶湯を、前記石灰鋳型の中に注湯し、鋳型全
体を1100℃まで冷却し2時間保持した後、2℃/分
の冷却速度で常温まで冷却した。得られた直径25mの
丸棒状インゴットは外観が良好であり、これをスライz
して得た円板は内部に全くクラックのない健全なもので
あった。この円板から超音波加工機で抜き出した外径8
■、内径3.5mm、厚さ1■のリングの磁気特性を調
べたところ、保磁力Hcが0.04エルステツド、磁束
密度B工。が7500ガウスであった。その他保持温度
と保持時間を変えて試験を行った結果を第1表に示す。
Next, this molten metal was poured into the lime mold, and the entire mold was cooled to 1100°C, held for 2 hours, and then cooled to room temperature at a cooling rate of 2°C/min. The obtained round bar ingot with a diameter of 25 m had a good appearance and was sliced.
The disc thus obtained was sound with no internal cracks. Outer diameter 8 extracted from this disc using an ultrasonic processing machine
(2) When we investigated the magnetic properties of a ring with an inner diameter of 3.5 mm and a thickness of 1 (2), we found that the coercive force Hc was 0.04 oersted and the magnetic flux density was B. was 7500 Gauss. Table 1 shows the results of tests conducted at different holding temperatures and holding times.

ル][匹 実施例1と同じ出発原料の溶湯を石灰鋳型に注湯し、1
000℃で10時間保持し、その後2℃/分で冷却して
得たインゴットには内部にクラックが発生しており健全
ではなかった。このインゴットをスライスした円板から
、超音波加工機で抜き出した外径8m、内径3.5閣、
厚さ1mのリングの磁気特性を調べたところ、保磁力H
eが0.07エルステツド、磁束密度BL、が7400
ガウスであった。
Pour the molten metal of the same starting material as in Example 1 into a lime mold,
The ingot obtained by holding at 000°C for 10 hours and then cooling at 2°C/min had internal cracks and was not sound. A disc with an outer diameter of 8 m and an inner diameter of 3.5 m was extracted using an ultrasonic processing machine from a disk sliced from this ingot.
When we investigated the magnetic properties of a ring with a thickness of 1 m, we found that the coercive force H
e is 0.07 oersted, magnetic flux density BL is 7400
It was Gauss.

且匪夏羞来 上記したように、本発明によれば、優れた磁気特性をも
ちかつクラックのない健全なGo−Fe−Al−B基磁
性合金を製造することができる。
As described above, according to the present invention, a healthy Go-Fe-Al-B-based magnetic alloy with excellent magnetic properties and no cracks can be manufactured.

Claims (1)

【特許請求の範囲】[Claims] Co、Fe、Al、Bを含む磁性材料を溶解凝固させた
のち、凝固体全体を凝固温度と、その温度よりも100
℃低い温度との間で30分以上保持し、その後冷却する
ことを特徴とするCo−Fe−Al−B系磁性合金の製
造方法。
After melting and solidifying a magnetic material containing Co, Fe, Al, and B, the entire solidified body is heated to the solidification temperature and 100% higher than that temperature.
A method for producing a Co-Fe-Al-B magnetic alloy, which comprises holding the temperature at a low temperature for 30 minutes or more, and then cooling it.
JP7385985A 1985-04-08 1985-04-08 Manufacture of co-fe-al-b magnetic alloy Granted JPS61235548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7385985A JPS61235548A (en) 1985-04-08 1985-04-08 Manufacture of co-fe-al-b magnetic alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7385985A JPS61235548A (en) 1985-04-08 1985-04-08 Manufacture of co-fe-al-b magnetic alloy

Publications (2)

Publication Number Publication Date
JPS61235548A true JPS61235548A (en) 1986-10-20
JPH0570705B2 JPH0570705B2 (en) 1993-10-05

Family

ID=13530308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7385985A Granted JPS61235548A (en) 1985-04-08 1985-04-08 Manufacture of co-fe-al-b magnetic alloy

Country Status (1)

Country Link
JP (1) JPS61235548A (en)

Also Published As

Publication number Publication date
JPH0570705B2 (en) 1993-10-05

Similar Documents

Publication Publication Date Title
US4536233A (en) Columnar crystal permanent magnet and method of preparation
JP2639609B2 (en) Alloy ingot for permanent magnet and method for producing the same
JP3505261B2 (en) Sm-Co permanent magnet material, permanent magnet and method for producing the same
US4342608A (en) Mn-Al Permanent magnets and their manufacture
CN109468548A (en) A kind of width supercooling liquid phase region zirconium-base amorphous alloy
JPS61235548A (en) Manufacture of co-fe-al-b magnetic alloy
JPS5947017B2 (en) Magnetic alloy for magnetic recording and playback heads and its manufacturing method
JP3230581B1 (en) Manufacturing method of giant magnetostrictive material under microgravity environment
JPH0559983B2 (en)
JP4573381B2 (en) Manufacturing method of sputtering target
EP4213166B1 (en) Supersaturated solid solution soft magnetic material and preparation method thereof
JPS61163252A (en) Manufacture of magnetic co-fe-al-b alloy
JPS5824924B2 (en) Stork
JPS633943B2 (en)
JPH1092619A (en) Fe-based soft magnetic metallic glass sintered body and its manufacture
JPH01242733A (en) Manufacture of alloy powder for rare earth metal-transition metal target and manufacture of rare earth metal-transition metal target
JPS6057686B2 (en) Permanent magnetic ribbon and its manufacturing method
CN105803452A (en) Preparing method of magnetically soft alloy with amorphous coating
JPS6111303B2 (en)
JPH0488603A (en) Method for horizontally casting magnetic alloy
JPS5935981B2 (en) High permeability alloy for Fe-based magnetic head and magnetic recording/reproducing head
JPH1171648A (en) Soft magnetic metallic glass alloy sintered body and its production
JPH0684627A (en) R-b-fe based cast magnet
CN109300683A (en) A kind of preparation method of iron-based soft magnetic composite cores
JPS6116416B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees