JPS61234575A - Amorphous solar battery - Google Patents

Amorphous solar battery

Info

Publication number
JPS61234575A
JPS61234575A JP60075974A JP7597485A JPS61234575A JP S61234575 A JPS61234575 A JP S61234575A JP 60075974 A JP60075974 A JP 60075974A JP 7597485 A JP7597485 A JP 7597485A JP S61234575 A JPS61234575 A JP S61234575A
Authority
JP
Japan
Prior art keywords
cell
light
substrate
layer
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60075974A
Other languages
Japanese (ja)
Other versions
JPH0750792B2 (en
Inventor
Yoshinori Yukimoto
行本 善則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60075974A priority Critical patent/JPH0750792B2/en
Publication of JPS61234575A publication Critical patent/JPS61234575A/en
Publication of JPH0750792B2 publication Critical patent/JPH0750792B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • H01L31/076Multiple junction or tandem solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To improve cell efficiency remarkably by a simple structure, by inputting scattered light from the side of a substrate to a lowermost cell layer. CONSTITUTION:A substrate 101 is constituted by a transparent material. Light can be inputted from the side of the back surface of the substrate through a part of the substrate. For example, a transparent electrode 17 is formed so as to cover a metal electrode 16, which is formed on the substrate 101 in a grid shape. A first PIN cell layers 2, 3 and 4 form a cell, whose main component is a-SiGe. In this structure, scattered light can be inputted from the side of the back surface together with incident light form the upper surface of a tandem structured cell. The light, which is inputted from the back surface side, reaches the P-N interface, and a high resistance region is reduced. Therefore, the sensitivity of the long wavelength light of the cell (the first layer) for the long wavelength light is improved, and the high-performance cell is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、高性能のタンデム構造アモルファス太陽電
池の新構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a new structure of a high-performance tandem structure amorphous solar cell.

〔従来の技術〕[Conventional technology]

一般に光エネルギーを電気エネルギーに変換する太陽電
池は、従来から結晶型半導体、あるいはアモルファス太
陽電池を用いて光を吸収させ、これを半導体内の量子効
果によって電気エネルギーに変換することによって該電
気エネルギーを発生させるものである。そしてこの太陽
電池としては各種のものが考案されているが、太陽電池
の片側の面(光入射面)から光を入射させ、裏面は金属
電極で被覆した一方の電極とされているのが通例である
Generally, solar cells that convert light energy into electrical energy have traditionally used crystalline semiconductors or amorphous solar cells to absorb light and convert it into electrical energy using quantum effects within the semiconductor. It is something that generates. Various types of solar cells have been devised, but it is customary to allow light to enter the solar cell from one side (light incidence side), and to cover the back side with a metal electrode. It is.

近年、低コスト太陽電池として出現したアモルファス太
陽電池も、仮え基板材料をガラス材料としても、裏面に
金属電極を蒸着している。この型の太陽電池は短波長に
しか感度がないため、長波長光に感度を持つタンデム構
造セルが考案されている。
Amorphous solar cells, which have emerged as low-cost solar cells in recent years, also use glass as a temporary substrate material, but have metal electrodes deposited on the back surface. This type of solar cell is only sensitive to short wavelengths, so tandem cells have been devised that are sensitive to longer wavelengths.

第3図は従来のアモルファス太陽電池を示し、基板1上
に、1層(又は9層)2.1層3.9層(又は1層)4
からなるタンデム構造を複数層(2、 3. 4及び5
. 6. 7及び8. 9. 10)積上げて太陽電池
を構成している。基板がステンレス鋼のときには、最後
に成長した9層1oの上に透明電極1)をつけ、さらに
グリッド電極12をつける。ガラス基板のときは、ガラ
ス板から光が入射するので、最上層は金属電極で覆って
しまう。
FIG. 3 shows a conventional amorphous solar cell, in which 1 layer (or 9 layers) 2. 1 layer 3. 9 layers (or 1 layer) 4 are formed on a substrate 1.
Multiple layers of tandem structures (2, 3, 4 and 5
.. 6. 7 and 8. 9. 10) Stacked to form a solar cell. When the substrate is made of stainless steel, a transparent electrode 1) is attached on top of the last grown nine layers 1o, and then a grid electrode 12 is attached. When using a glass substrate, light enters through the glass plate, so the top layer is covered with a metal electrode.

従来のタンデム構造セルは、主に金属基板上で試作され
ているので、この金属基板を用いた第3図の太陽電池の
動作について説明する。
Since conventional tandem structure cells have been prototyped mainly on metal substrates, the operation of the solar cell shown in FIG. 3 using this metal substrate will be described.

太陽光は上部のTCO(透明電極) 1)側の面より入
射し、順次第3層、第2層、第1層で短波長側の光から
吸収され、それぞれの層内に電子。
Sunlight enters from the upper TCO (transparent electrode) 1) side, and is sequentially absorbed by the 3rd layer, 2nd layer, and 1st layer, starting with the short wavelength light, and electrons are generated in each layer.

正孔対を発生して光電流を生じさせる。それぞれの層内
で吸収される光成分は第4図に波長に対する感度曲線(
スペクトル感度という)を示すように少しずつ感度領域
が波長帯域でずれている。このように感度領域をずらせ
た太陽電池を3層積重ねているために、全体として広帯
域の波長に対して高感度を維持でき、高効率の光電変換
装置が得られる。ここで高効率を得るためには、第1.
第2、第3の層で発生する光電流が等しくなければなら
ない。
Generate hole pairs to generate photocurrent. The light components absorbed within each layer are shown in Figure 4 as a wavelength sensitivity curve (
The sensitivity region gradually shifts in the wavelength band, as indicated by the spectral sensitivity (spectral sensitivity). Since three layers of solar cells with shifted sensitivity regions are stacked in this manner, high sensitivity can be maintained over a wide range of wavelengths as a whole, and a highly efficient photoelectric conversion device can be obtained. In order to obtain high efficiency here, the first step is to obtain high efficiency.
The photocurrents generated in the second and third layers must be equal.

このタンデム構造セルの欠点として、第1層セルの長波
長感度を有する層にはこれまでアモルファス・シリコン
・ゲルマニウムという2元系合金のアモルファス半導体
が用いられていたが、このアモルファス・シリコン・ゲ
ルマニウム(以下、a−3iGeと記す)はその電気的
性質がアモルファス・シリコン(以下a−5tと記す)
に比べて劣っており、このことが高効率タンデム構造セ
ルの実現の妨げとなっていた。
A drawback of this tandem structure cell is that the first layer cell, which has long wavelength sensitivity, has been made of an amorphous semiconductor made of a binary alloy called amorphous silicon germanium. The electrical properties of a-3iGe (hereinafter referred to as a-3iGe) are those of amorphous silicon (hereinafter referred to as a-5t).
This has hindered the realization of highly efficient tandem structure cells.

この欠点を除去するために、a −5iGeの膜質を改
善する努力が続けられているが、まだ決め手を欠いてお
り、また、十分な性質を得るに至っていない。
In order to eliminate this drawback, efforts are being made to improve the film quality of a-5iGe, but the decisive factor is still lacking and sufficient properties have not yet been achieved.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このタンデム構造セルの高効率化を妨げているものとし
て、a−SiGeの膜質がa −3tの膜質に劣るため
光電流の発生が少なく、従って効率を低下させていると
う欠点があった。この欠点をカバーするために、第1層
の膜厚を厚くしたり、基板表面からの反射光の活用を図
って第1層で吸収される光量を増大して光電流を増加さ
せる試みが採用されている。
A drawback of this tandem structure cell is that the film quality of a-SiGe is inferior to that of a-3t, so that less photocurrent is generated, thereby reducing efficiency. In order to overcome this drawback, attempts have been made to increase the photocurrent by increasing the thickness of the first layer and by utilizing reflected light from the substrate surface to increase the amount of light absorbed by the first layer. has been done.

しかし、a −5iGeはa −5iに比べて内部電界
強度が弱いため、厚い1層膜厚を採用すると、発生した
電子・正孔対がそれぞれ接合のn及びpへ到達する前に
再結合によって消滅してしまう結果となり、高効率を得
るに至らなかった。
However, since the internal electric field strength of a-5iGe is weaker than that of a-5i, if a thick single layer is used, the generated electron/hole pairs will undergo recombination before reaching the n and p junctions, respectively. As a result, high efficiency could not be obtained.

本発明は、上記のような高効率化が得られないという問
題点を解消せんとしてなされたもので、その原因を追及
する過程において発見した事実に基づいて、新たな高効
率タンデム構造セル太陽電池を提供しようとするもので
ある。
The present invention was made to solve the problem of not being able to achieve high efficiency as described above, and based on the facts discovered in the process of investigating the cause, we developed a new high-efficiency tandem structure cell solar cell. This is what we are trying to provide.

〔問題点を解決するための手段〕[Means for solving problems]

、本発明に係るアモルファス太陽電池は、タンデム構造
アモルフプス太陽電池において、基板を透明材料から構
成し、裏面側からも該基板を通してその一部から光を入
射できる構造としたものである。
The amorphous solar cell according to the present invention is a tandem structure amorphous solar cell in which the substrate is made of a transparent material and has a structure that allows light to enter from a part of the substrate through the substrate from the back side as well.

〔作用〕[Effect]

本発明においては、タンデム構造セルの表面からの光入
射とともに、裏面側からも散乱光が入射できる構造とし
たから、裏面側から入射した光はp/i界面にも到達し
、そこでの高抵抗領域を減少させるため、長波長光用セ
ル(第1層)の長波長光の感度が向上し、高性能セルが
実現される。
In the present invention, the structure is such that not only light enters from the front side of the tandem structure cell, but also scattered light enters from the back side, so the light incident from the back side also reaches the p/i interface, and the high resistance there Since the area is reduced, the sensitivity of the long wavelength light cell (first layer) to long wavelength light is improved, and a high performance cell is realized.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図は本発明の一実施例によるアモルファス太陽電池を示
し、図中、第3図と同一符号は同一部分を示す。101
はガラス基板、16は基板101上にグリッド状に形成
された金属電極、17は該金属電極16を覆って形成さ
れた透明電極である。そして第1層ルミnセル2. 3
. 4はaSiGeを主成分とするセルとなっている。
An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure shows an amorphous solar cell according to an embodiment of the present invention, and in the figure, the same reference numerals as in FIG. 3 indicate the same parts. 101
1 is a glass substrate, 16 is a metal electrode formed in a grid shape on the substrate 101, and 17 is a transparent electrode formed to cover the metal electrode 16. and the first layer Lumin cell2. 3
.. 4 is a cell whose main component is aSiGe.

第2図はa−5iGeからなる第1層の接合によるスペ
クトル感度の測定において同時にバイアス光として、波
長450nmの青色光(あるいは裏面からの散乱光バイ
アス)を照射したときのスペクトル感度の変化を示し、
この図から青色バイアス光によって長波長側の感度が著
しく改善されていることがわかる。これは、1つはpi
nセルのp/i界面に極めて高抵抗領域が存在していた
のが、青色バイアス光により光伝導を起こして電気抵抗
が減少し、赤色モノクロ光により発生した正孔が9層へ
到達しやすくなったことと、pin接合の内部電界がn
 / i界面のみに集中したため、正孔・電子の電界移
動度により電流が流れやす(なったためと考えられる。
Figure 2 shows the change in spectral sensitivity when blue light with a wavelength of 450 nm (or scattered light bias from the back side) is simultaneously irradiated as bias light in the measurement of spectral sensitivity by bonding the first layer made of a-5iGe. ,
From this figure, it can be seen that the sensitivity on the long wavelength side is significantly improved by blue bias light. One is pi
An extremely high resistance region existed at the p/i interface of the n-cell, but the blue bias light causes photoconduction and the electrical resistance decreases, making it easier for holes generated by the red monochrome light to reach the 9th layer. and the internal electric field of the pin junction is n
It is thought that this is because the current flows easily due to the electric field mobility of the holes and electrons because it is concentrated only at the /i interface.

このアモルファス太陽電池は次のようにして製作される
。即ちガラス基板101上に金属電極16をグリッド状
に形成し、その上に透明電極17を全面に被覆する。そ
の上に、従来方法と同じ方法でタンデム構造セルを作成
する。この方法は既述であるから説明を省略する。
This amorphous solar cell is manufactured as follows. That is, a metal electrode 16 is formed in a grid shape on a glass substrate 101, and a transparent electrode 17 is entirely covered thereon. On top of that, a tandem structure cell is created using the same method as the conventional method. This method has already been described, so its explanation will be omitted.

ガラス基板101上の金属電極16には、アモルファス
・シリコン等と反応しにくい金属材料で、光に対する反
射率が高い材料、例えばTi/Ag/Tiなどの複合材
料、あるいはAji!/SUS等を用いる。これをグリ
ッド状に形成して、一部光を透過できる窓を残す。この
パターンは比較的粗な構造でよく、金属部分の面積は全
体の面積の50%程度以下であればよい。
The metal electrode 16 on the glass substrate 101 is made of a metal material that does not easily react with amorphous silicon or the like and has a high reflectance to light, such as a composite material such as Ti/Ag/Ti, or a composite material such as Aji! /Use SUS etc. This is formed into a grid shape, leaving windows that allow some light to pass through. This pattern may have a relatively rough structure, and the area of the metal portion may be about 50% or less of the total area.

この上に透明電極17を設け、光電流に対する直列抵抗
を小さくする。この厚さは十分厚くてよく、数1)00
n以上の光に対して十分な透過率を持てばよい。ただこ
の透過率は良ければそれだけ良い。
A transparent electrode 17 is provided on this to reduce series resistance to photocurrent. This thickness may be sufficiently thick, and is the number 1) 00
It is sufficient to have sufficient transmittance for light of n or more. However, the better the transmittance, the better.

゛ この構造の要点は、散乱光を透過できるようにする
ことである。
゛ The point of this structure is to allow scattered light to pass through.

次に動作について説明する。Next, the operation will be explained.

第1図の構造から明らかなように、太陽電池の表面側と
裏面側から光が入射できる構造としたことにより、表面
側は太陽の直射光が入射するが、裏面側は散乱光が入射
する。光のうち長波長光成分は、散乱によって裏面側に
も入り込む確率が極めて大きい。このため、セルの組立
材料として、ガラス101とガラス17ではさむ構造の
モジュールとすることにより、長波長光成分を主とする
散乱光が裏面側から入り込む。この散乱光がタンデム構
造セルの第1層のバイアス光として働き、第4図に示す
第1層のバイアス光と同じようにp/i界面の電気抵抗
を低下させる。このために表面側からの入射光に対する
長波長光感度が増大し、このことによって膜質が不十分
なa −5iGeを用いても光電流を十分かせぐことが
できる。これはタンデム構造セルの高効率化に役立つ。
As is clear from the structure shown in Figure 1, by creating a structure that allows light to enter from the front and back sides of the solar cell, direct sunlight enters the front side, but scattered light enters the back side. . There is an extremely high probability that the long wavelength light component of the light will also enter the back side due to scattering. Therefore, by using a module sandwiched between glass 101 and glass 17 as the cell assembly material, scattered light mainly consisting of long wavelength light components enters from the back side. This scattered light acts as bias light for the first layer of the tandem structure cell, and lowers the electrical resistance of the p/i interface in the same way as the bias light for the first layer shown in FIG. For this reason, the long-wavelength photosensitivity to incident light from the surface side increases, and as a result, even when using a-5iGe with insufficient film quality, a sufficient photocurrent can be generated. This helps improve the efficiency of tandem cells.

なお上記実施例では本発明をpin3層タンデム構造に
通用した例を示したが、本発明はn1p3層タンデム構
造に適用してもそのn / i界面の改良に役立ち、同
様の効果が期待できる。また3層タンデム構造に限らず
、2層、4層・・・などの構造に対しても同様に用いる
ことができる。またタンデム構造のみならず、波長分割
をフィルターミラーによって行なう構成の長波長光用セ
ルのみに用いる場合にも効果があり、この場合表面側の
セルに対しても本発明を通用することによりその効率向
上に役立つ。
In the above embodiment, an example was shown in which the present invention was applied to a PIN three-layer tandem structure, but even when applied to an N1P three-layer tandem structure, the present invention is useful for improving the n/i interface, and similar effects can be expected. Further, the present invention is not limited to a three-layer tandem structure, but can be similarly applied to a two-layer, four-layer, etc. structure. In addition, it is effective not only in a tandem structure but also when used only in a long wavelength light cell with a structure in which wavelength division is performed by a filter mirror. Helpful for improvement.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明に係るアモルファス太陽電池に
よれば、散乱光を基板側から最下層セルに入射できる構
造としたので、簡単な構造によりセル効率を著しく向上
できる効果がある。
As described above, the amorphous solar cell according to the present invention has a structure that allows scattered light to enter the lowermost cell from the substrate side, and therefore has the effect of significantly improving cell efficiency with a simple structure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例によるアモルファス太陽電
池の断面構造を示す図、第2図は本発明の効果を示すス
ペクトル感度図、第3図は従来のアモルファス太陽電池
の断面構造を示す図、第4図は従来のアモルファス太陽
電池のスペクトル感度図である。 図において、101はガラス基板、16は金属電極、1
7は透明電極、2はn+a−Si層、3はi a−Si
Ge層、4はp a−3iJi、5はn a −3i層
、6は1a−5i層、7はp a−5i層、8はn a
 −Si層、9はi a−Si層、10はp a−Si
層、1)は透明電極(TCO) 、12はグリッド電極
である。 なお図中同一符号は同−又は相当部分を示す。
Fig. 1 is a diagram showing the cross-sectional structure of an amorphous solar cell according to an embodiment of the present invention, Fig. 2 is a spectral sensitivity diagram showing the effects of the present invention, and Fig. 3 is a diagram showing the cross-sectional structure of a conventional amorphous solar cell. , FIG. 4 is a spectral sensitivity diagram of a conventional amorphous solar cell. In the figure, 101 is a glass substrate, 16 is a metal electrode, 1
7 is a transparent electrode, 2 is an n+a-Si layer, 3 is ia-Si
Ge layer, 4 is pa-3iJi, 5 is na-3i layer, 6 is 1a-5i layer, 7 is pa-5i layer, 8 is na
-Si layer, 9 is ia-Si layer, 10 is p a-Si layer
Layer 1) is a transparent electrode (TCO) and 12 is a grid electrode. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (3)

【特許請求の範囲】[Claims] (1)タンデム構造アモルファス太陽電池において、基
板を透明材料で構成し、その裏面側からも上記透明基板
を通って光が入射可能な構造としたことを特徴とするア
モルファス太陽電池。
(1) An amorphous solar cell with a tandem structure, characterized in that the substrate is made of a transparent material, and has a structure that allows light to enter through the transparent substrate from the back side as well.
(2)最下層セルをa−SiGeを主成分とするセルと
したことを特徴とする特許請求の範囲1項記載のアモル
ファス太陽電池。
(2) The amorphous solar cell according to claim 1, wherein the lowermost layer cell is a cell containing a-SiGe as a main component.
(3)基板側電極が上記透明基板上にグリッド状に形成
された金属電極からなり、上記基板と最下層セルとの間
には上記金属電極を覆って透明電極が形成されているこ
とを特徴とする特許請求の範囲第1項又は第2項記載の
アモルファス太陽電池。
(3) The substrate side electrode is comprised of a metal electrode formed in a grid shape on the transparent substrate, and a transparent electrode is formed between the substrate and the lowermost cell to cover the metal electrode. An amorphous solar cell according to claim 1 or 2.
JP60075974A 1985-04-10 1985-04-10 Amorphous solar cell Expired - Fee Related JPH0750792B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60075974A JPH0750792B2 (en) 1985-04-10 1985-04-10 Amorphous solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60075974A JPH0750792B2 (en) 1985-04-10 1985-04-10 Amorphous solar cell

Publications (2)

Publication Number Publication Date
JPS61234575A true JPS61234575A (en) 1986-10-18
JPH0750792B2 JPH0750792B2 (en) 1995-05-31

Family

ID=13591722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60075974A Expired - Fee Related JPH0750792B2 (en) 1985-04-10 1985-04-10 Amorphous solar cell

Country Status (1)

Country Link
JP (1) JPH0750792B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101182424B1 (en) 2008-09-09 2012-09-12 한국전자통신연구원 Solar cell and solar cell manufacturing method
WO2019167227A1 (en) * 2018-03-01 2019-09-06 三菱電機株式会社 Photoelectric conversion element and photoelectric conversion module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56138960A (en) * 1980-03-31 1981-10-29 Sharp Corp Amorphous thin film solar battery
JPS57114290A (en) * 1981-01-07 1982-07-16 Nec Corp Amorphous thin film solar battery
JPS59105379A (en) * 1982-12-08 1984-06-18 Hitachi Ltd Amorphous silicon solar battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56138960A (en) * 1980-03-31 1981-10-29 Sharp Corp Amorphous thin film solar battery
JPS57114290A (en) * 1981-01-07 1982-07-16 Nec Corp Amorphous thin film solar battery
JPS59105379A (en) * 1982-12-08 1984-06-18 Hitachi Ltd Amorphous silicon solar battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101182424B1 (en) 2008-09-09 2012-09-12 한국전자통신연구원 Solar cell and solar cell manufacturing method
WO2019167227A1 (en) * 2018-03-01 2019-09-06 三菱電機株式会社 Photoelectric conversion element and photoelectric conversion module

Also Published As

Publication number Publication date
JPH0750792B2 (en) 1995-05-31

Similar Documents

Publication Publication Date Title
CN109728103B (en) Solar cell
US4292461A (en) Amorphous-crystalline tandem solar cell
EP0113434B2 (en) Photovoltaic device
JPH0322709B2 (en)
KR100624765B1 (en) Light sensitized and P-N junction silicon complexed solar cell and manufacturing method thereof
EP4365962A1 (en) Laminated solar cell and photovoltaic assembly
JPH0793451B2 (en) Multi-junction amorphous silicon solar cell
JPH0644638B2 (en) Stacked photovoltaic device with different unit cells
JPH09172193A (en) Thin film solar battery
JP4568531B2 (en) Integrated solar cell and method of manufacturing integrated solar cell
JPS61234575A (en) Amorphous solar battery
US9947824B1 (en) Solar cell employing nanocrystalline superlattice material and amorphous structure and method of constructing the same
KR100581840B1 (en) Light sensitized and P-N junction complexed solar cell and manufacturing method thereof
JP2936269B2 (en) Amorphous solar cell
JPS6213829B2 (en)
JP2710318B2 (en) Translucent solar cell
JP2630657B2 (en) Manufacturing method of integrated multilayer amorphous solar cell
TWI543383B (en) Buried electrode solar cells, production methods, and multi - face Solar module
JPH073876B2 (en) Photovoltaic device
KR20190141447A (en) Thin-film solar module and method for manufacturing the same
Bittkau et al. Geometrical light trapping in thin c-Si solar cells beyond lambertian limit
JP3143392B2 (en) Stacked solar cell
JP2647892B2 (en) Optical super power device
JP2771653B2 (en) Method for manufacturing photovoltaic device
JP2869178B2 (en) Photovoltaic device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees