JPS6123363A - Semiconductor device and manufacture of the same - Google Patents

Semiconductor device and manufacture of the same

Info

Publication number
JPS6123363A
JPS6123363A JP14382784A JP14382784A JPS6123363A JP S6123363 A JPS6123363 A JP S6123363A JP 14382784 A JP14382784 A JP 14382784A JP 14382784 A JP14382784 A JP 14382784A JP S6123363 A JPS6123363 A JP S6123363A
Authority
JP
Japan
Prior art keywords
oxide film
film
field oxide
etching
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14382784A
Other languages
Japanese (ja)
Inventor
Naohiko Aku
安久 直彦
Toshinobu Yanase
柳瀬 年延
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP14382784A priority Critical patent/JPS6123363A/en
Publication of JPS6123363A publication Critical patent/JPS6123363A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • H01L29/513Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/518Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To curtail the time required to form a field oxide film by providing an etching-proof film within a gate insulation film and on a field oxide film. CONSTITUTION:A gate insulation film is composed of an oxide film 6, a silicon nitride film 21 and an oxide film 22 and this silicon nitride film 21 is also formed continuously on a field oxide film 4', a source region 24 and a drain region 25. This silicon nitride film has excellent etching proof characteristic for hydrogen fluoride. Therefore, film thickness can be reduced in a little amount in the manufacturing process and thereby the field oxide film 4 can be formed thinner by the thickness which has been reduced in the existing device.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は素子分離性能のすぐれた半導体装置およびその
!llll法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention provides a semiconductor device with excellent element isolation performance and its! Regarding the lllll method.

〔発明の技術的背景〕[Technical background of the invention]

MO8型半導体装置においては素子分離のために厚い酸
化膜(フィールド酸化膜)を通常使用する。
In MO8 type semiconductor devices, a thick oxide film (field oxide film) is usually used for element isolation.

これは第4図のnチャネルMOSトランジスタの各工程
を示す断面図に示される。まず、p型シリ]ン基板1の
表面に熱酸化膜2を形成し、窒化シリコン膜3をCVD
法により形成し素子形成領域を残してエツチング除去し
く第4図(a))、この窒化シリコン膜3を酸化のマス
クとして約1000℃の加熱酸素雰囲気中で酸化を行な
い、窒化シリコン膜を除去すると、素子形成領域以外の
領域に第4図(b)に示すような厚いフィールド酸化膜
4が形成される。このように窒化シリコン膜をマスクと
してフィールド酸化膜を形成する方法は選択酸化法と称
される。なお、フィールド酸化膜4の下部にはホウ素等
を高m瓜に拡散させたp+反転領域5が形成され、素子
形成領域の半導体基板上には熱酸化によりゲート酸化膜
6が形成される(第4図(b))。次に全面に多結晶シ
リコン層をCVD法により形成し、酸化膜と共にゲート
領域以外の部分を写真食刻法によりパターニングすると
ゲート電極7が得られる。このゲート電極7とフィール
ド酸化膜4をマスクとしてヒ素のイオン注入を行なうと
基板1中にはn+領領域あるソース領域8およびドレイ
ン領域9が形成され、さらにソース領域8およびドレイ
ン領域9上の酸化膜を除去すると第4図(C)の状態が
得られる。最後にシリコン絶縁膜10をCV、 D法に
より形成し、ソース領域8、ゲート電極6、ドレイン領
域9にそれぞれ対応してシリコン絶縁膜10に開孔を行
ない、全面にアルミニウムを蒸着した後写真型剣法によ
りバターニングを行なうとアルミニウム配線11,12
.13が得られ、最後にリンシリケートガラス等の保護
膜14を堆積形成することによりMOSトランジスタが
完成する。
This is shown in the cross-sectional view of FIG. 4 showing each step of the n-channel MOS transistor. First, a thermal oxide film 2 is formed on the surface of a p-type silicon substrate 1, and a silicon nitride film 3 is deposited by CVD.
The silicon nitride film 3 is etched away leaving the element formation region (FIG. 4(a)). Using this silicon nitride film 3 as an oxidation mask, oxidation is performed in a heated oxygen atmosphere at about 1000° C. to remove the silicon nitride film. A thick field oxide film 4 as shown in FIG. 4(b) is formed in a region other than the element forming region. This method of forming a field oxide film using a silicon nitride film as a mask is called a selective oxidation method. Note that a p+ inversion region 5 in which boron or the like is diffused to a high density is formed under the field oxide film 4, and a gate oxide film 6 is formed by thermal oxidation on the semiconductor substrate in the element formation region. Figure 4(b)). Next, a polycrystalline silicon layer is formed on the entire surface by the CVD method, and the portions other than the gate region are patterned together with the oxide film by the photolithography method to obtain the gate electrode 7. When arsenic ions are implanted using the gate electrode 7 and the field oxide film 4 as a mask, a source region 8 and a drain region 9 having n+ regions are formed in the substrate 1, and the oxidation on the source region 8 and the drain region 9 is formed. When the film is removed, the state shown in FIG. 4(C) is obtained. Finally, a silicon insulating film 10 is formed by CV and D methods, holes are made in the silicon insulating film 10 corresponding to the source region 8, gate electrode 6, and drain region 9, respectively, and aluminum is deposited on the entire surface, followed by a photo mold. When buttering is done using Kenpo, aluminum wiring 11, 12
.. 13 is obtained, and finally a protective film 14 of phosphosilicate glass or the like is deposited to complete the MOS transistor.

〔背景技術の問題点〕[Problems with background technology]

しかしながら、このような半導体装置の製造方法におい
ては途中工程においてフィールド酸化膜厚が減少するこ
とに起因して種々の問題が生じている。
However, in such a method of manufacturing a semiconductor device, various problems arise due to the decrease in field oxide film thickness in the middle of the process.

すなわち、当初8500八程度の膜厚で形成されたフィ
ールド酸化膜は素子形成領域の酸化膜をエツチング除去
する工程、ゲート電極をエツチング形成する工程、各工
程に対する前処理および後処理において行なわれるフッ
化水素(11F )処即により膜厚が減少して最終製品
では 4000八程度まで減少する場合がある。このようなフ
ィールド酸化膜厚の減少はフィールド酸化膜のしきい値
電圧V□1の低下を招き、素子分離性能を悪化させ半導
体装置としての性能を損うことになる。このため、当初
のフィールド酸化膜厚を厚く形成しておく必要があるが
、i ooo℃の加熱酸素雰囲気中でのフィールド酸化
膜の形成は4000人の場合70分であるのに対し85
00人の場合400分と膜厚が厚くなるほど時間がかか
り、生産能率の低下を招くことになる。
That is, the field oxide film, which was initially formed to a thickness of about 8,500 mm, was removed by fluoridation in the process of etching away the oxide film in the element formation region, the process of etching the gate electrode, and the pre-treatment and post-treatment for each process. The film thickness decreases due to hydrogen (11F) treatment, and may be reduced to about 40,000 mm in the final product. Such a decrease in the field oxide film thickness causes a decrease in the threshold voltage V□1 of the field oxide film, which deteriorates the element isolation performance and impairs the performance of the semiconductor device. For this reason, it is necessary to form the field oxide film thick at the beginning, but it takes 85 minutes to form the field oxide film in a heated oxygen atmosphere at 100°C, whereas it takes 70 minutes for 4000 people.
In the case of 00 people, it takes 400 minutes, and the thicker the film, the longer it takes, leading to a decrease in production efficiency.

また、フィールド酸化膜の厚さを厚く形成するほど窒化
シリコン膜下部にフィールド酸化膜が形成されて窒化シ
リコン膜が持上げられるバーズビークが生じやすく、集
積度向上の障害になる他、ストレスによるフィールド酸
化膜の結晶欠陥も発生しやすい。
In addition, the thicker the field oxide film is formed, the more likely the field oxide film is to form under the silicon nitride film, causing bird's beaks where the silicon nitride film is lifted. Crystal defects are also likely to occur.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に鑑みてなされたもので、フィールド
酸化膜厚の減少が少なく、素子分離性能のすぐれた半導
体装置およびその製造方法を提供することを目的とする
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a semiconductor device and a method for manufacturing the same, in which the field oxide film thickness is less reduced and the element isolation performance is excellent.

〔発明の概要〕[Summary of the invention]

上記目的達成のため、本発明にかかる半導体装置におい
ては、半導体基板表面に形成され、素子分離を行なうフ
ィールド酸化膜と、このフィールド酸化膜で囲まれた素
子形成領域中の半導体基板上に形成された、酸化シリコ
ン膜および少なくとも1層の第1の耐エツチング性膜を
含むゲート絶縁膜と、少なくとも前記フィールド酸化膜
上に形成された少なくとも1層の第2の耐エツチング性
膜とを備えるようにしており、製造過程においてフィー
ルド酸化膜の厚さの変動が少なく十分な素子分離性能を
得ることができるものである。
To achieve the above object, a semiconductor device according to the present invention includes a field oxide film formed on the surface of a semiconductor substrate for element isolation, and a field oxide film formed on the semiconductor substrate in an element formation region surrounded by the field oxide film. The gate insulating film includes a silicon oxide film and at least one first etching-resistant film, and at least one second etching-resistant film formed on at least the field oxide film. Therefore, there is little variation in the thickness of the field oxide film during the manufacturing process, and sufficient element isolation performance can be obtained.

また、本発明にかかる半導体装置の製造方法においては
、一導電型の半導体基板表面にフィールド酸化膜を形成
づ−る工程と、このフィールド酸化膜およびフィールド
酸化膜で囲まれた素子形成領域に形成されたゲート酸化
膜上に耐エツチング性膜を形成する工程と、前記素子形
成領域中のゲート領域に多結晶シリコン層をパターニン
グしてゲート電極を形成する工程と、このゲー1へ電極
の周囲の前記素子形成領域の半導体基板に逆導電型半導
体不純物を注入してソースおよびドレイン領域を形成す
る工程とを備えており、フィールド酸化膜の膜厚減少を
その上に形成された耐エツチング性膜にJ:り防止し、
素子分離性能の良好な半導体装置を得ることができるも
のである。
In addition, the method for manufacturing a semiconductor device according to the present invention includes a step of forming a field oxide film on the surface of a semiconductor substrate of one conductivity type, and a step of forming a field oxide film on the surface of the semiconductor substrate of one conductivity type, and a step of forming a field oxide film on the field oxide film and an element formation region surrounded by the field oxide film. a step of forming an etching-resistant film on the gate oxide film, a step of patterning a polycrystalline silicon layer in the gate region in the element formation region to form a gate electrode, and a step of forming a gate electrode around the electrode on the gate 1. and forming source and drain regions by implanting opposite conductivity type semiconductor impurities into the semiconductor substrate in the element formation region, and reducing the thickness of the field oxide film to an etching-resistant film formed thereon. J: Prevents
A semiconductor device with good element isolation performance can be obtained.

〔発明の実施例〕[Embodiments of the invention]

以下、図面を参照しながら本発明の実施例のいくつかを
詳細に説明する。
Hereinafter, some embodiments of the present invention will be described in detail with reference to the drawings.

第1図は本発明にかかる半導体装置とそのt411■程
を示寸断面図であって、第1図(d)が完成状態を示し
ている。これによれば、通常のnヂャネルMO8l−ラ
ンジスタど同様にp型基板表面に形成されたフィールド
酸化膜4で囲まれた素子形成領域内に多結晶シリコンの
ゲート電極23おJニびその周囲にn十領域であるソー
ス領域24およびドレイン領域25が形成されているが
、ゲート絶縁膜は酸化膜6、窒化シリコン膜21、酸化
膜22iから成っており、この窒化シリコン幕21はフ
ィールド酸化膜4およびソース領域24、ドレイン領域
25上にも連続して形成されている。
FIG. 1 is a sectional view showing a semiconductor device according to the present invention and its sectional view at about t411■, and FIG. 1(d) shows the completed state. According to this, a gate electrode 23 of polycrystalline silicon is formed in the element formation region surrounded by a field oxide film 4 formed on the surface of a p-type substrate, and an n A source region 24 and a drain region 25 are formed, and the gate insulating film is made up of an oxide film 6, a silicon nitride film 21, and an oxide film 22i. It is also formed continuously on the source region 24 and drain region 25.

この窒化シリコン膜はフッ化水素(HF)に対する耐エ
ツチング性にすぐれている。例えばフッ化アンモニウム
(N84F)の30%水溶液に対するエツチング量は酸
化シリコン(Si02)は約800人/分であるのに対
し、窒化シリコン(S13N4)は約9八/分である。
This silicon nitride film has excellent etching resistance against hydrogen fluoride (HF). For example, the etching rate for a 30% aqueous solution of ammonium fluoride (N84F) is approximately 800 per minute for silicon oxide (Si02), while it is approximately 98 per minute for silicon nitride (S13N4).

したがって、製造過程での膜厚減少が少なくて済むため
、フィールド酸化膜4の厚さは従来の膜厚減少分だ番プ
薄く形成されている。
Therefore, since the reduction in film thickness during the manufacturing process is small, the thickness of the field oxide film 4 is made much thinner than in the conventional method.

このような半導体装置は次のような工程により製造され
る。・ まず、p型シリコン基板1の表面に熱酸化膜2を約10
00℃の加熱酸素雰囲気中で形成し、その上に窒化シリ
コン膜3をCVD法により形成し、素子形成領域を残し
てエツチング除去する(第1図(a))。− このパターニングされた窒化シリコン膜3を酸化のマス
クとして約1000℃の加熱酸素雰囲気中で酸化を行な
うと素子形成領域以外の領域に厚いフィールド酸化膜4
′が形成される。なお、このフィールド酸化膜4′の厚
さは従来のそれに比べ従来の膜厚減少分だけ薄く形成さ
れている。また、第1図(a)の段階で素子分離領域の
酸化膜2にホウ素イオンを注入しておくことによりフィ
ールド酸化膜4′の下部にはp+反転防止領域5を形成
している。次に素子形成領域に残存している窒化シリコ
ン膜3と酸化シリコン膜2を除去し、改めて約100人
の熱酸化膜6を形成し、フィールド酸化膜4′および熱
酸化膜6上の全面に窒化シリコン膜21をCVD法によ
り約100人の厚さで形成し、熱酸化により表面に薄い
酸化膜22を形成する(第1図(b))。
Such a semiconductor device is manufactured by the following steps. - First, a thermal oxide film 2 is deposited on the surface of the p-type silicon substrate 1 for about 10 minutes.
A silicon nitride film 3 is formed thereon by a CVD method, and is removed by etching leaving an element formation region (FIG. 1(a)). - Using this patterned silicon nitride film 3 as an oxidation mask, oxidation is carried out in a heated oxygen atmosphere at approximately 1000°C, resulting in a thick field oxide film 4 in areas other than the element formation area.
' is formed. It should be noted that the thickness of this field oxide film 4' is made thinner than the conventional one by the same amount as the conventional film thickness. Further, by implanting boron ions into the oxide film 2 in the element isolation region at the stage shown in FIG. 1(a), a p+ inversion prevention region 5 is formed under the field oxide film 4'. Next, the silicon nitride film 3 and silicon oxide film 2 remaining in the element formation area are removed, and a thermal oxide film 6 of about 100 layers is formed again, covering the entire surface of the field oxide film 4' and the thermal oxide film 6. A silicon nitride film 21 is formed to a thickness of approximately 100 nm using the CVD method, and a thin oxide film 22 is formed on the surface by thermal oxidation (FIG. 1(b)).

次にこの酸化膜22の上に多結晶シリコンをCVD法に
より堆積させ、n型不純物であるリンを拡散させた後、
レジスト塗布してグー1〜電極部のみが残存するように
露光しプラズマエツチングによってグー1〜電極23を
得る。このエツチングにおいては多結晶シリコンの酸化
シリコンに対する高い選択比があるため、窒化シリコン
膜21はイのまま全面に残存する。さらにグー1へ電極
23とフィールド酸化膜4′をマスクとしてn型不純物
であるヒ素をイオン注入するど、グー1〜電極の両側の
基板1中にn1領域であるソース領域24およびドレイ
ン領域25が形成される〈第1図(C))。なお、窒化
シリコン層21はイオン注入を妨げるが、この場合非常
に薄いため、実際上はマスクにはならず、イオン注入が
行なわれる。
Next, polycrystalline silicon is deposited on this oxide film 22 by the CVD method, and after diffusing phosphorus, which is an n-type impurity,
A resist is coated, exposed to light so that only the goo 1 to electrode portions remain, and goo 1 to electrode 23 are obtained by plasma etching. In this etching, since polycrystalline silicon has a high selectivity to silicon oxide, the silicon nitride film 21 remains as it is on the entire surface. Furthermore, by ion-implanting arsenic, which is an n-type impurity, into the goo 1 using the electrode 23 and the field oxide film 4' as a mask, a source region 24 and a drain region 25, which are n1 regions, are formed in the substrate 1 on both sides of the goo 1 and the electrode. is formed (Fig. 1(C)). Note that although the silicon nitride layer 21 hinders ion implantation, it is very thin in this case, so it does not actually serve as a mask, and ion implantation is performed.

最後に、全面にCVD法で酸化シリコン膜26を形成し
、ゲート電極22、ソース領域24、ドレイン領域25
の上から写真食刻技術を用いてコンタクトホールを形成
し、ざらに全面にアルミニウムを蒸着し、これをパター
ニングしてアルミニウム配線層26,27.28を形成
した後、仝而にリンシリグー1−ガラス(PSG)の保
護膜29を形成することにより所望の半導体装置を得る
ことができる。
Finally, a silicon oxide film 26 is formed on the entire surface by the CVD method, and the gate electrode 22, source region 24, drain region 25
Contact holes are formed from above using photolithography, aluminum is roughly vapor deposited over the entire surface, and this is patterned to form aluminum wiring layers 26, 27 and 28. By forming the protective film 29 of (PSG), a desired semiconductor device can be obtained.

第2図は本発明にかかる半導体装nおJ:びその製造方
法の他の実施例を示す途中工程の断面図であって第1図
(C)に対応覆るものである。すなわち、窒化シリコン
膜21はゲート電極の一部をなすためもともと厚く形成
することばできない上、ゲート電極23のパターニング
の際に多少なりともエツチングされてさらに薄くなる。
FIG. 2 is a sectional view showing an intermediate step in another embodiment of the method for manufacturing a semiconductor device according to the present invention, and corresponds to FIG. 1(C). That is, since the silicon nitride film 21 forms a part of the gate electrode, it cannot be formed thick to begin with, and it is etched to some extent during patterning of the gate electrode 23, making it even thinner.

そこでフィールド酸化膜がエツチングされることを防止
するため、ソース領域24およびドレイン領域25を形
成した後、ゲート電極部の多結晶シリコンの表面を低温
で酸化し窒化シリコン膜30を全面に重ねて堆積形成し
たものである。この実施例ではフィールド酸化膜厚の減
少の危険がさらに少ない。
To prevent the field oxide film from being etched, after forming the source region 24 and drain region 25, the surface of the polycrystalline silicon of the gate electrode portion is oxidized at a low temperature, and a silicon nitride film 30 is deposited over the entire surface. It was formed. In this embodiment there is even less risk of field oxide thickness reduction.

第3図は本発明にかかる半導体装置の他の実施例を示す
断面図であって、この例では窒化シリコン膜はフィール
ド酸化膜4′上に形成されkもの21′とゲート絶縁膜
の一部をなすもの21″に分かれて形成されており、ソ
ース領域24上およびドレイン領域25上には形成され
ていない。このような構成を実現するには例えば第1図
(C)にお【プるゲート電極23のパターニング後にソ
ース領域およびトレイン領域となる部分の上にある窒化
シリコン膜を反応性イオンエツチング等で除去すればよ
い。この結束イオン注入によるソース領域24およびド
レイン領域25の形成はより容易となる。
FIG. 3 is a cross-sectional view showing another embodiment of the semiconductor device according to the present invention, in which the silicon nitride film is formed on the field oxide film 4' and a part of the gate insulating film 21'. 21", and is not formed on the source region 24 or the drain region 25. To realize such a structure, for example, as shown in FIG. After patterning the gate electrode 23, the silicon nitride film on the portions that will become the source region and the train region may be removed by reactive ion etching or the like.The formation of the source region 24 and the drain region 25 by this bundled ion implantation is easier. becomes.

以上の実施例においてはnチャネルMOSトランジスタ
を想定して説明したが、nチャネルMOSトランジスタ
、0M03等フィールド酸化膜およびゲート酸化膜を備
えたあらゆる半導体装置に適用するこができる。
Although the above embodiments have been described assuming an n-channel MOS transistor, the present invention can be applied to any semiconductor device including an n-channel MOS transistor, 0M03, etc., and a field oxide film and a gate oxide film.

また、実施例においては耐エツチング性膜として窒化シ
リコンを用いたが、フッ化水素等の1ツヂングガスに対
して酸化シリコンとの間で選択比を有する材料であれば
使用することができる。
Further, although silicon nitride is used as the etching-resistant film in the embodiment, any material can be used as long as it has a selectivity between silicon oxide and one etching gas such as hydrogen fluoride.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明にかかる半導体装置およびその製造
方法はゲート絶縁膜中およびフィールド酸化膜上に耐エ
ツチング性膜を備えているので製造過程でフィールド酸
化膜の膜厚減少がなく、このため最初から厚いフィール
ド酸化膜を形成する必要がないため、フィールド酸化膜
形成のための時間が短くなって生産能率が向上する。ま
たフィールド酸化膜厚が薄くて済むことからバーズビー
クが減少して素子領域を広くとることができ、高密度化
を実現できる。またストレスの減少による結晶欠陥の発
生を防止でき、さらにフィールド酸化膜厚が一定の厚さ
に維持されることから素子分離性能が向上し、半導体装
置の品質を向上させることができる。また耐エツチング
性膜は不純物の拡散も小さく、製造過程における汚染の
影響を減少させ半導体装置の特性をさらに向上させるこ
とができる。
As described above, since the semiconductor device and the method for manufacturing the same according to the present invention are provided with the etching-resistant film in the gate insulating film and on the field oxide film, there is no reduction in the thickness of the field oxide film during the manufacturing process. Since there is no need to form a thick field oxide film, the time required to form the field oxide film is shortened and production efficiency is improved. Furthermore, since the field oxide film only needs to be thin, bird's beaks are reduced, the device area can be widened, and high density can be achieved. In addition, the occurrence of crystal defects due to the reduction in stress can be prevented, and since the field oxide film thickness is maintained at a constant thickness, element isolation performance can be improved, and the quality of semiconductor devices can be improved. Furthermore, the etching-resistant film has less diffusion of impurities, which reduces the influence of contamination during the manufacturing process and further improves the characteristics of the semiconductor device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかる半導体装置の¥J造方法の各工
程を示す断面図、第2図は本発明の他の実施例の途中工
程の状態を示す断面図、第3図は本発明の他の実施例に
かかる半導体装置の完成状態を示す断面図、第4図は従
来の半導体装置の?J造方法の各■程を示す断面図であ
る。 1・・・基板、4,4′・・・フィールド酸化膜、5・
・・フィールド反転防止層、6・・・ゲート酸化膜、7
゜23・・・ゲート電極、8,26・・・シリコン絶縁
膜、11.12,13.26.27.28.・・・アル
ミニウム配線、14.29・・・保護膜、21.30・
・・窒化シリコン膜、31・・・多結晶シリコンゲート
電極酸化膜。
FIG. 1 is a cross-sectional view showing each step of the JJ manufacturing method for a semiconductor device according to the present invention, FIG. 2 is a cross-sectional view showing the state of an intermediate step in another embodiment of the present invention, and FIG. FIG. 4 is a sectional view showing a completed state of a semiconductor device according to another embodiment of the present invention. It is a sectional view showing each stage of the J construction method. 1...Substrate, 4,4'...Field oxide film, 5.
...Field inversion prevention layer, 6...Gate oxide film, 7
゜23... Gate electrode, 8, 26... Silicon insulating film, 11.12, 13.26.27.28. ...Aluminum wiring, 14.29...Protective film, 21.30.
...Silicon nitride film, 31...Polycrystalline silicon gate electrode oxide film.

Claims (1)

【特許請求の範囲】 1、半導体基板表面に形成され、素子分離を行うフィー
ルド酸化膜と、このフィールド酸化膜で囲まれた素子形
成領域中の半導体基板上に形成された、酸化シリコン膜
および少なくとも1層の第1の耐エッチング性膜を含む
ゲート絶縁膜と、少なくとも前記フィールド酸化膜上に
形成された少なくとも1層の第2の耐エッチング性膜と
、を備えた半導体装置。 2、第1の耐エッチング性膜と第2の耐エッチング性膜
とが同一工程で形成されたものである特許請求の範囲第
1項記載の半導体装置。 3、第2の耐エッチング性膜がソース領域およびゲート
領域上にも形成されたものである特許請求の範囲第1項
記載の半導体装置。 4、耐エッチング性膜が窒化シリコン膜である特許請求
の範囲第1項ないし第3項のいずれか記載の半導体装置
。 5、一導電型の半導体基板表面にフィールド酸化膜を形
成する工程と、このフィールド酸化膜およびフィールド
酸化膜で囲まれた素子形成領域に形成されたゲート酸化
膜上に耐エッチング性膜を形成する工程と、前記素子形
成領域中のゲート領域に多結晶シリコン層をパターニン
グしてゲート電極を形成する工程と、このゲート電極の
周囲の前記素子形成領域の半導体基板に逆導電型半導体
不純物を注入してソースおよびドレイン領域を形成する
工程と、を備えた半導体装置の製造方法。 6、フィールド酸化膜の形成が選択酸化法で行なわれる
特許請求の範囲第5項記載の半導体装置の製造方法。 7、ソースおよびドレイン領域上に形成された耐エッチ
ング性膜を除去する工程を含む特許請求の範囲第5項記
載の半導体装置の製造方法。 8、ゲート電極を形成しその電極表面を酸化した後に少
なくともフィールド酸化膜上に耐エッチング性膜を重ね
て形成する工程を含む特許請求の範囲第5項記載の半導
体装置の製造方法。 9、耐エッチング性膜が窒化シリコン膜である特許請求
の範囲第5項ないし第8項のいずれか記載の半導体装置
の製造方法。
[Claims] 1. A field oxide film formed on the surface of a semiconductor substrate for element isolation, a silicon oxide film formed on the semiconductor substrate in an element formation region surrounded by the field oxide film, and at least A semiconductor device comprising: a gate insulating film including one layer of a first etching resistant film; and at least one second etching resistant film formed on at least the field oxide film. 2. The semiconductor device according to claim 1, wherein the first etching-resistant film and the second etching-resistant film are formed in the same process. 3. The semiconductor device according to claim 1, wherein the second etching-resistant film is also formed on the source region and the gate region. 4. The semiconductor device according to any one of claims 1 to 3, wherein the etching-resistant film is a silicon nitride film. 5. Forming a field oxide film on the surface of a semiconductor substrate of one conductivity type, and forming an etching-resistant film on this field oxide film and the gate oxide film formed in the element formation region surrounded by the field oxide film. a step of patterning a polycrystalline silicon layer in a gate region in the element formation region to form a gate electrode; and implanting an opposite conductivity type semiconductor impurity into the semiconductor substrate in the element formation region around the gate electrode. A method of manufacturing a semiconductor device, comprising: forming a source and a drain region. 6. The method of manufacturing a semiconductor device according to claim 5, wherein the field oxide film is formed by a selective oxidation method. 7. The method of manufacturing a semiconductor device according to claim 5, which includes the step of removing the etching-resistant film formed on the source and drain regions. 8. The method of manufacturing a semiconductor device according to claim 5, which includes the step of forming an etching-resistant film over at least the field oxide film after forming the gate electrode and oxidizing the electrode surface. 9. The method of manufacturing a semiconductor device according to any one of claims 5 to 8, wherein the etching-resistant film is a silicon nitride film.
JP14382784A 1984-07-11 1984-07-11 Semiconductor device and manufacture of the same Pending JPS6123363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14382784A JPS6123363A (en) 1984-07-11 1984-07-11 Semiconductor device and manufacture of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14382784A JPS6123363A (en) 1984-07-11 1984-07-11 Semiconductor device and manufacture of the same

Publications (1)

Publication Number Publication Date
JPS6123363A true JPS6123363A (en) 1986-01-31

Family

ID=15347868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14382784A Pending JPS6123363A (en) 1984-07-11 1984-07-11 Semiconductor device and manufacture of the same

Country Status (1)

Country Link
JP (1) JPS6123363A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5608252A (en) * 1993-03-10 1997-03-04 Sharp Microelectronics Technology, Inc. Semiconductor with implanted dielectric layer having patched pin-holes
JP2007524992A (en) * 2003-03-27 2007-08-30 フリースケール セミコンダクター インコーポレイテッド Method for forming a dual metal gate device
US8178401B2 (en) 2005-08-25 2012-05-15 Freescale Semiconductor, Inc. Method for fabricating dual-metal gate device
US8382979B2 (en) 2009-06-29 2013-02-26 Shimadzu Corporation Liquid chromatograph system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5608252A (en) * 1993-03-10 1997-03-04 Sharp Microelectronics Technology, Inc. Semiconductor with implanted dielectric layer having patched pin-holes
JP2007524992A (en) * 2003-03-27 2007-08-30 フリースケール セミコンダクター インコーポレイテッド Method for forming a dual metal gate device
US8178401B2 (en) 2005-08-25 2012-05-15 Freescale Semiconductor, Inc. Method for fabricating dual-metal gate device
US8382979B2 (en) 2009-06-29 2013-02-26 Shimadzu Corporation Liquid chromatograph system

Similar Documents

Publication Publication Date Title
US4210993A (en) Method for fabricating a field effect transistor
JPS6242385B2 (en)
JPS5946107B2 (en) Manufacturing method of MIS type semiconductor device
JPH1022397A (en) Manufacture of semiconductor device
JPS6041470B2 (en) Manufacturing method of semiconductor device
JPH06163532A (en) Method for isolation of semiconductor element
JPS6123363A (en) Semiconductor device and manufacture of the same
JPH02222160A (en) Manufacture of semiconductor device
JPS5976472A (en) Manufacture of semiconductor device
JPS6252950B2 (en)
JPH0268930A (en) Manufacture of semiconductor device
JPH03116968A (en) Manufacture of semiconductor device
JPH03109739A (en) Manufacture of thin-film semiconductor device
JPS6156448A (en) Manufacture of complementary semiconductor device
JPH035656B2 (en)
JPH022633A (en) Manufacture of mis field effect semiconductor device
JPS62104078A (en) Manufacture of semiconductor integrated circuit device
JPS6154661A (en) Manufacture of semiconductor device
JPH03242937A (en) Manufacture of semiconductor device
JPH02158172A (en) Thin film transistor
JPH0217931B2 (en)
JPS62131538A (en) Manufacture of semiconductor device
JPS6018935A (en) Manufacture of semiconductor device
JPH0320086A (en) Manufacture of semiconductor storage device
JPH05198567A (en) Manufacture of semiconductor device