JPH03242937A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH03242937A
JPH03242937A JP4000090A JP4000090A JPH03242937A JP H03242937 A JPH03242937 A JP H03242937A JP 4000090 A JP4000090 A JP 4000090A JP 4000090 A JP4000090 A JP 4000090A JP H03242937 A JPH03242937 A JP H03242937A
Authority
JP
Japan
Prior art keywords
film
insulating film
contact hole
executed
technique
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4000090A
Other languages
Japanese (ja)
Inventor
Ryoichi Ito
良一 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP4000090A priority Critical patent/JPH03242937A/en
Publication of JPH03242937A publication Critical patent/JPH03242937A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce a projecting part inside a contact hole and thereby to prevent disconnection of a metal wiring and to improve the reliability of a circuit element by a method wherein an insulating film which can be melted by heat is formed on a semiconductor substrate subjected to a prescribed processing and then heat treatment is executed in the atmosphere of a hydrogen gas. CONSTITUTION:A BPSG (boron-phosphorus silica glass) insulation film 8 as an insulating film which can be melted by heat is formed on a semiconductor substrate 1 and then heat treatment is executed in the atmosphere of a hydrogen gas. Thereafter, patterning is executed by a photomask technique, wet etching is executed by using a buffered fluorine acid of 20:1, the rest of the BPSG insulation film 8 and an oxide film 7 are etched completely in succession by a dry etching technique, and thereby a contact hole 9 is formed. Next, an Al film which is a metal wiring is evaporated by a sputtering technique, the wiring of the Al film 10 is formed by technique, and thus MOSFET is manufactured. This method makes it possible to prevent disconnection at a stepped part of the Al film 10 or in the part of the contact hole 9 and to improve the reliability of a semiconductor integrated circuit element.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高密度金属配線を備えた半導体集積回路素子
などの半導体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing a semiconductor device such as a semiconductor integrated circuit element having high-density metal wiring.

従来の技術 近年、半導体集積回路素子は高密度化、高集積化が進み
、それにともない金属配線の線幅が細くかつ厚みが薄く
なり、段差部やコンタクト孔での断線が発生している。
BACKGROUND OF THE INVENTION In recent years, semiconductor integrated circuit devices have become more dense and highly integrated, and as a result, metal wiring lines have become thinner and thinner, causing wire breaks at stepped portions and contact holes.

以下、従来の半導体装置の製造方法、特にMO8電界効
果トランジスタ(FET)の製造方法を第2図(a)〜
(C)を用いて説明する。
Below, a conventional method for manufacturing a semiconductor device, particularly a method for manufacturing an MO8 field effect transistor (FET), will be explained in FIGS. 2(a) to 2(a).
This will be explained using (C).

まずシリコン基板1を酸化し500nm程度のL OG
 OS (Local 0xidation of 5
ilicon )酸化膜2を成長させる。その後、25
OAのゲート酸化膜3を高温酸化雰囲気中で形成し、ス
レッシュホールドボルテージコントロールのためにボロ
ンイオ、ンを注入する。続いてCVD法により多結晶シ
リコン膜を400nm程度成長させる。その後、通常の
フォトマスク技術とドライエツチング技術によって多結
晶シリコン膜からなるゲート電極4を所定の形状に加工
し、その後イオン注入を行い、ソース領域5およびドレ
イン領域6を形成する。そして次に酸化膜7を常圧CV
D法により200nm程度成長させ、続いて熱溶融でき
る絶縁膜としてBPSG (ホウ素−リンケイ酸ガラス
)絶縁膜8aを600nm程度常圧CVD法により成長
させる。この時のBPSG絶縁膜8aのP(リン)濃度
は6〜8 w t%、B(ボロン)濃度は4wt%以下
である。次に通常のフォトマスク技術によりパターニン
グを行い、次にバッファード弗酸20:1 (NH4F
:HF=20: l)を用いて約350nmエツチング
(12分間エツチング〉し、続いてドライエツチング技
術によって残りのBPSG絶縁膜8aおよび酸化膜7を
完全にエツチングし、コンタクト孔9aを形成する。
First, the silicon substrate 1 is oxidized to form an LOG of about 500 nm.
OS (Local Oxidation of 5
ilicon) Grow the oxide film 2. After that, 25
A gate oxide film 3 of the OA is formed in a high temperature oxidizing atmosphere, and boron ions are implanted for threshold voltage control. Subsequently, a polycrystalline silicon film is grown to a thickness of about 400 nm using the CVD method. Thereafter, gate electrode 4 made of a polycrystalline silicon film is processed into a predetermined shape using conventional photomask technology and dry etching technology, and then ion implantation is performed to form source region 5 and drain region 6. Then, the oxide film 7 is coated with normal pressure CV.
The film is grown to a thickness of about 200 nm by the D method, and then a BPSG (boron-phosphosilicate glass) insulating film 8a is grown to a thickness of about 600 nm as a heat-meltable insulating film by the normal pressure CVD method. At this time, the P (phosphorus) concentration of the BPSG insulating film 8a is 6 to 8 wt%, and the B (boron) concentration is 4 wt% or less. Next, patterning is performed using normal photomask technology, and then buffered hydrofluoric acid 20:1 (NH4F
:HF=20:1) to about 350 nm (etching for 12 minutes), and then the remaining BPSG insulating film 8a and oxide film 7 are completely etched by a dry etching technique to form a contact hole 9a.

次にスパッタリング技術によって(b) 、 (C)に
示すように金属配線であるAe膜10aを800nm程
度蒸着させる。ところが、(b) 、 (c)の点線丸
印で示す突起部分11aは、バッファード弗酸20:1
を用いて約350nmエツチングし終えた箇所とドライ
エツチングを始めた箇所の境界部分が突起状の断面とな
っており、この部分のAe膜10aの膜厚が薄くなり、
ステップカバレッジ(段差被覆性)が不充分でAe膜1
0aの断線が発生し易い。これは半導体装置の信頼性低
下に大きく起因している。
Next, as shown in (b) and (c), an Ae film 10a, which is a metal wiring, is deposited to a thickness of about 800 nm using a sputtering technique. However, the protruding portions 11a indicated by dotted circles in (b) and (c) are made of buffered hydrofluoric acid 20:1.
The boundary between the area where etching has been completed for approximately 350 nm using etching and the area where dry etching has begun has a protruding cross section, and the thickness of the Ae film 10a in this area is thinner.
Ae film 1 due to insufficient step coverage
Disconnection of 0a is likely to occur. This is largely due to a decrease in reliability of the semiconductor device.

発明が解決しようとする課題 このような従来の構成では、コンタクト孔の突起部分の
A[膜のステップカバレッジが不充分なため断線が発生
するという問題があった。
Problems to be Solved by the Invention In such a conventional configuration, there was a problem in that the step coverage of the A film in the protruding portion of the contact hole was insufficient, resulting in disconnection.

本発明は上記従来の問題点を解決するもので、AQ膜の
段差部やコンタクト孔部分での断線を防ぎ、Ae膜のス
テップカバレッジを良くし段差部やコンタクト孔部分で
の断面積を小さくせず、半導体集積回路素子の信頼性向
上をはかることができる半導体装置の製造方法を提供す
ることを目的とする。
The present invention solves the above-mentioned conventional problems by preventing wire breakage at the stepped portions and contact hole portions of the AQ film, improving step coverage of the Ae film, and reducing the cross-sectional area at the stepped portions and contact hole portions. First, it is an object of the present invention to provide a method for manufacturing a semiconductor device that can improve the reliability of a semiconductor integrated circuit element.

課題を解決するための手段 この目的を達成するために本発明は、半導体基板上に熱
溶融できる絶縁膜を形成し、その絶縁膜を形成した半導
体基板を水素ガス雰囲気中で熱処理を施した後、所定の
深さまでウェットエツチングし、続いてドライエツチン
グによりコンタクト孔を形成し、そこに金属配線を設け
るようにしたものである。
Means for Solving the Problems In order to achieve this object, the present invention forms an insulating film that can be thermally melted on a semiconductor substrate, heat-treats the semiconductor substrate on which the insulating film is formed, and then heat-treats it in a hydrogen gas atmosphere. , contact holes are formed by wet etching to a predetermined depth, followed by dry etching, and metal wiring is provided in the contact holes.

作用 本発明は上記した構成により、絶縁膜の表面部分から約
250nmの所まで、バッファード弗酸20 : 1 
(NH4F : HF=20 : 1 )のエツチング
レートが、水素ガス雰囲気中で熱処理を施さない絶縁膜
よりも低下し、そのエツチングレートがほぼ半分となる
。これは、水素ガス雰囲気中で熱処理中に絶縁膜のP(
リン〉が膜外に拡散したためと推察される。この現象に
より絶縁膜を350nmバッファード弗酸20:1 (
NH4F: )(F20.1)を用いてエツチングする
と、エツチングレートの差によってコンタクト孔の突起
部分が緩和される。
Effect: With the above-described structure, the present invention uses buffered hydrofluoric acid 20:1 from the surface of the insulating film to about 250 nm.
The etching rate of (NH4F:HF=20:1) is lower than that of an insulating film not subjected to heat treatment in a hydrogen gas atmosphere, and the etching rate becomes approximately half. This is because the P(
This is presumed to be due to diffusion of phosphorus outside the membrane. This phenomenon causes the insulating film to be coated with 350nm buffered hydrofluoric acid 20:1 (
When etching is performed using NH4F: ) (F20.1), the protruding portion of the contact hole is relaxed due to the difference in etching rate.

実施例 以下、本発明の実施例について第1図(a)〜(d)の
図面とともに、第2図における部分と同一部分には同一
番号を付して説明を省略し、相違する点についてのみ説
明する。
Embodiments Hereinafter, embodiments of the present invention will be described along with the drawings in FIGS. 1(a) to (d). Parts that are the same as those in FIG. explain.

すなわち本発明においては、熱溶融できるBPSG絶縁
膜8を形成した後、水素ガス雰囲気中で温度が900〜
950℃+H2ガス1(N!/min、処理時間が20
分の条件下で熱処理を行う。
That is, in the present invention, after forming the heat-meltable BPSG insulating film 8, the temperature is increased to 900 to 900°C in a hydrogen gas atmosphere.
950℃ + H2 gas 1 (N!/min, processing time 20
Heat treatment is carried out under conditions of 10 minutes.

その後(C)のように、通常のフォトマスク技術によっ
てパターニングを行い、バッファード弗酸20:1(N
H4F : HF=20 : 1)を用イテ約350n
mウェットエツチング(16分間エツチング)し、続い
てドライエツチング技術によって残りのBPSG絶縁膜
8および酸化膜7を完全にエツチングし、コンタクト孔
9を形成する。次にスパッタリング技術によって金属配
線であるAe膜を800nm程度蒸着させ、ホトソン技
術によって(C)および(d)に示すようなAe膜10
の配線を形成し、半導体装置であるMOSFETを製造
する。(C)において点線の丸印をした突起部分11の
形状が、従来例第2図(b) 、 (C)の突起部分1
1aより緩やかになって、その部分に付着したAe膜1
0の膜厚が厚くなっている様子が示されている。なお、
水素ガス雰囲気中での処理時間は20分以上も行ったが
、同じ効果が得られた。また絶縁膜8のウェットエツチ
ングは300nm以上で突起部分11が緩やかになる効
果が現れた。
Thereafter, as shown in (C), patterning is performed using normal photomask technology, and buffered hydrofluoric acid 20:1 (N
H4F: Approximately 350n using HF=20:1)
Then, the remaining BPSG insulating film 8 and oxide film 7 are completely etched by wet etching (etching for 16 minutes), and a contact hole 9 is formed. Next, an Ae film, which is a metal wiring, is deposited to a thickness of about 800 nm using sputtering technology, and 10 Ae films as shown in (C) and (d) are deposited using photoson technology.
wiring is formed and a MOSFET, which is a semiconductor device, is manufactured. The shape of the protruding portion 11 marked with a dotted circle in (C) is the same as the protruding portion 1 of the conventional example shown in FIG.
Ae film 1 becomes looser than 1a and adheres to that part.
It is shown that the film thickness of 0 becomes thicker. In addition,
Although the treatment time was longer than 20 minutes in a hydrogen gas atmosphere, the same effect was obtained. In addition, the wet etching of the insulating film 8 had the effect of making the protruding portions 11 gentler when the thickness was 300 nm or more.

発明の効果 以上の実施例から明らかなように本発明によれば、所定
の処理が施された半導体基板上に熱溶融できる絶縁膜を
形成した後、水素ガス雰囲気中で熱処理を施すことによ
って、コンタクト孔内部の突起部分が緩和されて金属配
線の断線を防ぎ、半導体集積回路素子の信頼性向上をは
かることができる。
Effects of the Invention As is clear from the above embodiments, according to the present invention, after forming a thermally meltable insulating film on a semiconductor substrate that has been subjected to a predetermined treatment, heat treatment is performed in a hydrogen gas atmosphere. The protruding portion inside the contact hole is relaxed, preventing disconnection of the metal wiring, and improving the reliability of the semiconductor integrated circuit element.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(d)は本発明の一実施例である製造工
程を示す半導体装置の断面図、第2図(a)〜(C)は
従来の半導体装置の製造工程を示す半導体装置の断面図
である。 ■・・・・・・シリコン基板(半導体基板)、8・・・
・・・絶縁膜、9・・・・・・コンタクト孔、10・・
・・・・AeFM(金属配線)。
FIGS. 1(a) to (d) are cross-sectional views of a semiconductor device showing the manufacturing process according to an embodiment of the present invention, and FIGS. 2(a) to (C) are semiconductor sectional views showing the manufacturing process of a conventional semiconductor device. FIG. 2 is a cross-sectional view of the device. ■・・・Silicon substrate (semiconductor substrate), 8...
...Insulating film, 9...Contact hole, 10...
...AeFM (metal wiring).

Claims (3)

【特許請求の範囲】[Claims] (1)所定の処理が施された半導体基板上に熱溶融でき
る絶縁膜を形成する工程と、その絶縁膜を形成した前記
半導体基板を水素ガス雰囲気中で熱処理を施す工程と、
前記絶縁膜を任意の深さまでウェットエッチングした後
ドライエッチングしてコンタクト孔を形成する工程と、
蒸着技術とホトリソ技術により金属配線を設ける工程と
を有していることを特徴とする半導体装置の製造方法。
(1) a step of forming an insulating film that can be thermally melted on a semiconductor substrate that has been subjected to a predetermined treatment; and a step of heat-treating the semiconductor substrate on which the insulating film is formed in a hydrogen gas atmosphere;
wet etching the insulating film to a desired depth and then dry etching it to form a contact hole;
A method for manufacturing a semiconductor device, comprising the steps of providing metal wiring using a vapor deposition technique and a photolithography technique.
(2)水素ガス雰囲気中での熱処理条件として、温度を
900〜950℃、処理時間を少なくとも20分とする
ことを特徴とする請求項1記載の半導体装置の製造方法
(2) The method for manufacturing a semiconductor device according to claim 1, wherein the heat treatment conditions in a hydrogen gas atmosphere include a temperature of 900 to 950° C. and a treatment time of at least 20 minutes.
(3)絶縁膜をウェットエッチングするに際して、バッ
ファード弗酸を用いて300nm以上の深さにエッチン
グすることを特徴とする請求項1または2記載の半導体
装置の製造方法。
(3) The method for manufacturing a semiconductor device according to claim 1 or 2, wherein the insulating film is wet-etched using buffered hydrofluoric acid to a depth of 300 nm or more.
JP4000090A 1990-02-21 1990-02-21 Manufacture of semiconductor device Pending JPH03242937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4000090A JPH03242937A (en) 1990-02-21 1990-02-21 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4000090A JPH03242937A (en) 1990-02-21 1990-02-21 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH03242937A true JPH03242937A (en) 1991-10-29

Family

ID=12568655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4000090A Pending JPH03242937A (en) 1990-02-21 1990-02-21 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH03242937A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5502006A (en) * 1993-11-02 1996-03-26 Nippon Steel Corporation Method for forming electrical contacts in a semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5502006A (en) * 1993-11-02 1996-03-26 Nippon Steel Corporation Method for forming electrical contacts in a semiconductor device

Similar Documents

Publication Publication Date Title
US6017809A (en) Method of manufacturing semiconductor device
JPS61145868A (en) Manufacture of semiconductor device
JPH03242937A (en) Manufacture of semiconductor device
KR20030077387A (en) Method for manufacturing semiconductor device
KR100200184B1 (en) Manufacturing method of semiconductor device
JPS6123363A (en) Semiconductor device and manufacture of the same
JPH03116968A (en) Manufacture of semiconductor device
JPS5856436A (en) Manufacture of semiconductor device
KR100347149B1 (en) Manufacturing method for semiconductor device
KR970002428B1 (en) Fabricating method of semiconductor device
JPH0682668B2 (en) Method for manufacturing semiconductor device
JPH088262A (en) Manufacture of semiconductor device
JPS604224A (en) Manufacture of semiconductor device
JPS62104078A (en) Manufacture of semiconductor integrated circuit device
JPH10125623A (en) Manufacture of semiconductor device
JPH022633A (en) Manufacture of mis field effect semiconductor device
KR960011639B1 (en) Formation of shallow-junction using titanium silicide
JP2638285B2 (en) Method for manufacturing semiconductor device
JPS599937A (en) Manufacture of semiconductor device
JPS60127741A (en) Manufacture of semiconductor device
JPS6077460A (en) Manufacture of semiconductor device
JPH08236475A (en) Formation of contact window
JPH0458538A (en) Manufacture of semiconductor device
KR19990004932A (en) Semiconductor device manufacturing method
KR19990005997A (en) Manufacturing method of semiconductor device