JPS612323A - Annealing method for semiconductor device - Google Patents

Annealing method for semiconductor device

Info

Publication number
JPS612323A
JPS612323A JP12081184A JP12081184A JPS612323A JP S612323 A JPS612323 A JP S612323A JP 12081184 A JP12081184 A JP 12081184A JP 12081184 A JP12081184 A JP 12081184A JP S612323 A JPS612323 A JP S612323A
Authority
JP
Japan
Prior art keywords
film
substrate
irradiation
infrared rays
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12081184A
Other languages
Japanese (ja)
Inventor
Tsunetoshi Arikado
経敏 有門
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP12081184A priority Critical patent/JPS612323A/en
Publication of JPS612323A publication Critical patent/JPS612323A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To enable to irradiate infrared rays from the back-side of an Si substrate on an MOS type device by a method wherein the characteristics of silicon which is almost transparent for infrared rays and an SiO2 film which absorbs infrared rays are utilized. CONSTITUTION:An element isolation region 2 is formed on an MOS type transistor using a P type substrate 1. A gate electrode 3 is polycrystalline Si, and phosphorus is diffused thereon. A passivation film has a two-layer construction consisting of an SiO2 film 4 and a phosphosilicide glass film 5. A diffusion layer 6 is formed by performing an ion implantation of phosphorus. An Al film 7 is formed by sputtering, and a phosphosilicide glass film 8 is deposited thereon. This substrate is placed in an electron beam direct patterning device, and an EB irradiation is performed. After the EB irradiation is finished, the variation of the threshold voltage in the stage of annealing (curved line 1) at 450 deg.C for 30min and in the stage of laser irradiation (curved lines 2 and 3) of one pulse and two pulses can be plotted as the function of dosage.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は半導体装置のアニール技術、特に電子ビームや
X線など高エネルギービームによって半導体デバイスに
与えられた損傷のアニール技術に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field to which the Invention Pertains] The present invention relates to annealing technology for semiconductor devices, and particularly to an annealing technology for damage caused to semiconductor devices by high-energy beams such as electron beams and X-rays.

〔従来技術とその問題点〕[Prior art and its problems]

半導体集積回路の微細化、高集積化はますます拍車がか
かり、2年で集積度4倍の割合で開発が進められている
。*/JA寸法もいよいよりブミクロンに突入し、0.
5μmの解像力が要求されるようになってきている。現
在では、0.7〜0.8μmまでは、光リソグラフイ技
術で加工しうると一般に考えられているが、0.5μm
では、X線リングラフィかまたは電子ビーム直接描画技
術が必要になると予想される。
Semiconductor integrated circuits are becoming increasingly miniaturized and highly integrated, with development progressing at a rate of quadrupling the degree of integration every two years. */JA dimensions are finally entering Bumicron, and 0.
A resolution of 5 μm is increasingly required. Currently, it is generally believed that optical lithography can process up to 0.7 to 0.8 μm, but 0.5 μm
It is expected that X-ray phosphorography or electron beam direct writing techniques will be required.

電子ビーム直接描画やX線リングラフィ技術における問
題点の1つは、素子の放射損傷である。
One of the problems with electron beam direct writing and X-ray phosphorography techniques is radiation damage to the device.

MO8型デバイスの場合、一般に高エネルギービームが
照射されるとゲート酸化膜中に電子ホール対が生成し、
移動度の大きな電子は容易に拡散するが、移動度の/J
’yさなホールがS t /S t O2界面の不安定
な結合にトラップされて正電荷を形成し、しきい値電圧
が負側ヘシフトするといわれている。さらにデバイスの
信頼性をそこなう中性トラップも形成されるといわれて
いる。
In the case of MO8 type devices, electron-hole pairs are generally generated in the gate oxide film when irradiated with a high-energy beam.
Electrons with high mobility diffuse easily, but the mobility /J
It is said that the small holes are trapped by the unstable bonds at the S t /S t O2 interface, form positive charges, and shift the threshold voltage to the negative side. Furthermore, neutral traps are said to be formed that impair device reliability.

これらの放射損傷は、一般に熱アニールにより回復する
が、たとえばAI!のパターニングに電子ビーム直接描
画やX線リングラフィ技術を用いた場合、その後に45
0°C程度の熱工程しか入れられないために、上記放射
損傷が充分に回復しない。
These radiation damages are generally repaired by thermal annealing, but for example AI! When electron beam direct writing or X-ray phosphorography technology is used for patterning, 45
Since only a heat treatment of about 0° C. can be applied, the radiation damage described above cannot be sufficiently recovered.

第1図は、放射損傷の一例として、MOS 型)ランジ
スタに10〜5QKVの電子ビームを照射し、450℃
で加分間アニールした後しきい値電圧の変化をドーズ量
に対してプロットした図である。明らかにしきい値電圧
のシフトは残留しておシ、電子ビームによって素子に与
えられた放射損傷が、450℃の熱処雅では完全には除
去しきれないことを示している。
Figure 1 shows an example of radiation damage when a MOS transistor is irradiated with an electron beam of 10 to 5 QKV and heated to 450°C.
FIG. 3 is a diagram plotting the change in threshold voltage against the dose amount after additive annealing. Obviously, the threshold voltage shift remained, indicating that the radiation damage caused to the device by the electron beam could not be completely removed by heat treatment at 450°C.

〔発明の目的〕[Purpose of the invention]

本発明は、電子ビームやX線によって素子に与えられた
放射損傷を容易に除去する技術を提供することを目的と
する。
An object of the present invention is to provide a technique for easily removing radiation damage caused to an element by electron beams or X-rays.

〔発明の概要〕[Summary of the invention]

本発明は、シリコンは赤外線に対してほとんど透明であ
るが、8i02膜は、赤外線を吸収するという赤外線に
対する両者の性質の相違をオU用するもので、MO8型
デバイスに対して81基板の裏面から赤外光を照射する
ことを特徴とする。
In the present invention, silicon is almost transparent to infrared rays, but the 8i02 film absorbs infrared rays, which is a difference in the properties of the two. It is characterized by irradiating infrared light from.

〔発明の効果〕〔Effect of the invention〕

Si基板の裏面から赤外光を照射した場合、81基板は
赤外光をほとんど吸収しないため、赤外光はSi/Si
O,界面にまで引」達する。8i/Sin、界面で、5
in2に吸収されSin、の温度が上昇し、ゲート酸化
膜中の正電荷など放射損傷がアニールアウトされる。拡
散層における不純物プロファイルやフィールド下のホウ
素の分布をくずさないためには、パルス型レーザーを用
いて瞬間的に温度を上昇させるのが好ましい。
When infrared light is irradiated from the back side of the Si substrate, the 81 substrate absorbs almost no infrared light, so the infrared light is absorbed by the Si/Si substrate.
O, it reaches the interface. 8i/Sin, at the interface, 5
The temperature of Sin increases as it is absorbed by in2, and radiation damage such as positive charges in the gate oxide film is annealed out. In order not to disrupt the impurity profile in the diffusion layer or the boron distribution under the field, it is preferable to use a pulsed laser to instantaneously raise the temperature.

〔発明の実施例〕[Embodiments of the invention]

以下に本発明の実恭例を図面を用いて説明する。 Practical examples of the present invention will be described below with reference to the drawings.

第2図は、本発明を実証するに当シ用いたMO8沢トラ
ンジスタで、P型(100)’6〜8Ωの基板1を用い
て、選択酸化法により素子分離領域2を形成した。ゲー
ト亀WA3は、気相成長法にょシ堆積した多結晶Si 
 で、膜厚は0.4μmである。多結晶Siはリン拡散
されたものである。パッシベーション膜は、CVD 8
102g14とリンケイ化ガラス膜5との2層構造で、
合計1μmである。拡散層6は、ヒ素のイオンインクラ
ンチ−ジョンで形成され、深さXjは0.25μmであ
る。Aノ膜7はスパッタリングによって形成し、膜厚は
0.8μmである。多結晶S1、パッシベーション膜お
よびA!1llJノ工yチングは、いずれも反応性イオ
ンエツチング方法を用いて行なった。レジスト除去には
02アツシングを使用した。Al配線上には、リンケイ
化ガラス8を12μm堆積した。このチャネル長1.2
μmのMO8型トランジスタのしきい値電圧を測定し、
ついで、該基板を電子ビーム直接描画装置内に入れ、加
速電圧5 QKVで、1 、3.10.30.100,
300μC麿のドーズ量で電子ビームを照射した。EB
照照射多少くとも冴時間放置して、しきい値電圧を再゛
び測定し、初期値からのずれを求めた。次に、TEA−
CO2レーザ−ビームをウェーハ1の裏面から照射した
。ビームサイズは811X2Q1gで、2チツプをカバ
ーする広さである。パルス巾は10〜20nsecで、
パルスエネルギーは2Jである。まず、各チップに1パ
ルスずつ照射した後しきい値電圧を測定し、ついでさら
に2パルスずつ照射した後しきい値電圧を測定した。第
3図は、EBB射後450℃、30分アニール段階(曲
線1)および1パルス及び2パルスのレーザービーム照
射殺菌(曲線2,3)でのしきい値電圧の変化をドーズ
量の関数としてプロットしたものである。EBによるし
きい値の変化が完全に回復していることは明らかである
FIG. 2 shows an MO8 transistor used to demonstrate the present invention, in which element isolation regions 2 were formed by selective oxidation using a P-type (100) 6-8 Ω substrate 1. The gate WA3 is made of polycrystalline Si deposited using a vapor phase growth method.
The film thickness is 0.4 μm. Polycrystalline Si is phosphorus-diffused. Passivation film is CVD 8
With a two-layer structure of 102g14 and phosphoric glass film 5,
A total of 1 μm. The diffusion layer 6 is formed by ion incision of arsenic, and the depth Xj is 0.25 μm. The A film 7 is formed by sputtering and has a thickness of 0.8 μm. Polycrystalline S1, passivation film and A! All 111J etchings were carried out using a reactive ion etching method. 02 Ashing was used to remove the resist. On the Al wiring, phosphorus silicide glass 8 was deposited to a thickness of 12 μm. This channel length is 1.2
Measure the threshold voltage of a μm MO8 type transistor,
Then, the substrate was placed in an electron beam direct lithography device, and an acceleration voltage of 5 QKV was applied to the substrate.
Electron beam irradiation was performed at a dose of 300 μC. EB
After the irradiation was allowed to take place for at least some time, the threshold voltage was measured again and the deviation from the initial value was determined. Next, TEA-
A CO2 laser beam was irradiated from the back side of the wafer 1. The beam size is 811X2Q1g, which is wide enough to cover 2 chips. The pulse width is 10 to 20 nsec,
Pulse energy is 2J. First, each chip was irradiated with one pulse and then the threshold voltage was measured, and then each chip was further irradiated with two pulses and the threshold voltage was measured. Figure 3 shows the change in threshold voltage as a function of dose during the 30-minute annealing step at 450°C after EBB irradiation (curve 1) and during 1-pulse and 2-pulse laser beam sterilization (curves 2 and 3). It is plotted. It is clear that the threshold change caused by EB has been completely recovered.

第4図は、ドレーン電圧6■、ゲート電圧6■でストレ
ステストを行ない、ホットエレクトロンの注入を行なっ
て中性トラップを測定した。明らかに、EB熱照射後5
0°C230分のアニールのみを施した場合(曲線1)
と比べて、2パルスのTE人C02レーザービームを照
射した試料(曲線2)は、しきい値電圧の変化が少なく
、中性トラップがアニールされていることがわかる。
In FIG. 4, a stress test was carried out with a drain voltage of 6 cm and a gate voltage of 6 cm, and neutral traps were measured by injecting hot electrons. Obviously, after EB heat irradiation, 5
When only annealing is performed at 0°C for 230 minutes (curve 1)
In comparison, the sample irradiated with the two-pulse TE human C02 laser beam (curve 2) shows less change in threshold voltage, indicating that the neutral trap is annealed.

本実施例においては、電子ビームによる損傷のアニール
について述べたが、本発明は、反応性イオンエツチング
やX線による損傷についても有効であることはいうまで
もない。
Although this embodiment has described annealing damage caused by electron beams, it goes without saying that the present invention is also effective for damage caused by reactive ion etching and X-rays.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はMOS fi )ランジスタに対する電子ビー
ム照射のドーズ量及び加速電圧としきい値電圧のシフト
の関係を示す特性図、第2図は本発明の効果を実証する
にあたり使用したMO8型トランジスタの概略図、第3
図は電子ビーム照射およびその後のレーザービーム照射
によるしきい値電圧のシフトをドーズ量に対してプロッ
トした特性図、第4図はMOS )ランジスタの信頼性
テストの結果を示す特性図である。 I P屋(100) Si基板、2 素子分離領域、3
  ゲ−)[極、   4 、、、 CVD Sin、
膜、5・ リンケイ化ガラス膜、6・拡散層、7  A
l膜、       8  リンケイ化ガラス膜。 第  1  図
Figure 1 is a characteristic diagram showing the relationship between the dose of electron beam irradiation on a MOS fi ) transistor, the acceleration voltage, and the shift of threshold voltage, and Figure 2 is a schematic diagram of an MO8 type transistor used to demonstrate the effects of the present invention. Figure, 3rd
The figure is a characteristic diagram in which the threshold voltage shift due to electron beam irradiation and subsequent laser beam irradiation is plotted against the dose, and FIG. 4 is a characteristic diagram showing the results of a reliability test of a MOS transistor. IP shop (100) Si substrate, 2 element isolation region, 3
Game) [Polar, 4,, CVD Sin,
Membrane, 5. Phosphoricated glass membrane, 6. Diffusion layer, 7 A
l membrane, 8 phosphorusilicate glass membrane. Figure 1

Claims (3)

【特許請求の範囲】[Claims] (1)素子が形成されるシリコンウェーハの裏面から赤
外光を照射することを特徴とする半導体装置のアニール
方法。
(1) A method for annealing a semiconductor device, characterized by irradiating infrared light from the back side of a silicon wafer on which elements are formed.
(2)前記赤外光が、炭酸ガスレーザー光であることを
特徴とする特許請求の範囲第1項記載の半導体装置のア
ニール方法。
(2) The method of annealing a semiconductor device according to claim 1, wherein the infrared light is carbon dioxide laser light.
(3)前記炭酸ガスレーザーが、TEA−CO_2レー
ザーであることを特徴とする特許請求の範囲第1項記載
の半導体装置のアニール方法。
(3) The method of annealing a semiconductor device according to claim 1, wherein the carbon dioxide laser is a TEA-CO_2 laser.
JP12081184A 1984-06-14 1984-06-14 Annealing method for semiconductor device Pending JPS612323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12081184A JPS612323A (en) 1984-06-14 1984-06-14 Annealing method for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12081184A JPS612323A (en) 1984-06-14 1984-06-14 Annealing method for semiconductor device

Publications (1)

Publication Number Publication Date
JPS612323A true JPS612323A (en) 1986-01-08

Family

ID=14795559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12081184A Pending JPS612323A (en) 1984-06-14 1984-06-14 Annealing method for semiconductor device

Country Status (1)

Country Link
JP (1) JPS612323A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06241550A (en) * 1993-01-30 1994-08-30 Samsung Electronics Co Ltd Wind-direction adjustment device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06241550A (en) * 1993-01-30 1994-08-30 Samsung Electronics Co Ltd Wind-direction adjustment device

Similar Documents

Publication Publication Date Title
JPS6037775A (en) Production of wafer by injection through protective layer
Gdula The effects of processing on radiation damage in SiO 2
JPH03129832A (en) Annealing
JPS647510B2 (en)
JP3202457B2 (en) Method for manufacturing semiconductor device
JPS612323A (en) Annealing method for semiconductor device
JPS633447B2 (en)
JP3143967B2 (en) Method for manufacturing thin film transistor
JPS6125214B2 (en)
JPH0677155A (en) Heat treatment method for semiconductor substrate
JPS5817655A (en) Manufacture of semiconductor device
JP2744022B2 (en) Method for manufacturing semiconductor device
JP2680448B2 (en) Radiation resistant semiconductor device manufacturing method
JPH04155930A (en) Production of semiconductor device
JPH05152227A (en) Manufacture of semiconductor device improved diffusion region formation means
JP3084089B2 (en) Semiconductor device substrate and method of manufacturing the same
JPS624316A (en) Annealing of semiconductor device
JPH0661234A (en) Production of semiconductor device
JPH01259537A (en) Manufacture of semiconductor device
Jacobs et al. Optically induced charge storage in ion implanted SiO2
JPH04721A (en) Manufacture of semiconductor device
JPH10106966A (en) Manufacture of semiconductor device
JPH024134B2 (en)
JPS634346B2 (en)
JPS6364892B2 (en)