JPS61230360A - Manufacture of prom element - Google Patents
Manufacture of prom elementInfo
- Publication number
- JPS61230360A JPS61230360A JP60072870A JP7287085A JPS61230360A JP S61230360 A JPS61230360 A JP S61230360A JP 60072870 A JP60072870 A JP 60072870A JP 7287085 A JP7287085 A JP 7287085A JP S61230360 A JPS61230360 A JP S61230360A
- Authority
- JP
- Japan
- Prior art keywords
- grown
- layer
- type
- impurity region
- contact hole
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 239000012535 impurity Substances 0.000 claims abstract description 16
- 239000000758 substrate Substances 0.000 claims abstract description 15
- 239000010408 film Substances 0.000 claims abstract description 14
- 239000010409 thin film Substances 0.000 claims abstract description 14
- 239000004065 semiconductor Substances 0.000 claims abstract description 10
- 238000000034 method Methods 0.000 claims abstract description 9
- 239000004020 conductor Substances 0.000 claims description 4
- 229910021420 polycrystalline silicon Inorganic materials 0.000 abstract description 10
- 229920005591 polysilicon Polymers 0.000 abstract description 10
- 238000000137 annealing Methods 0.000 abstract description 9
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 abstract description 5
- 229910052782 aluminium Inorganic materials 0.000 abstract description 5
- 229910052710 silicon Inorganic materials 0.000 abstract description 5
- 239000010703 silicon Substances 0.000 abstract description 5
- 230000003647 oxidation Effects 0.000 abstract description 3
- 238000007254 oxidation reaction Methods 0.000 abstract description 3
- 238000007796 conventional method Methods 0.000 abstract description 2
- 239000012808 vapor phase Substances 0.000 abstract description 2
- 150000002500 ions Chemical class 0.000 abstract 2
- 238000007493 shaping process Methods 0.000 abstract 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 230000015556 catabolic process Effects 0.000 description 5
- 238000005468 ion implantation Methods 0.000 description 5
- 230000010354 integration Effects 0.000 description 4
- 238000007664 blowing Methods 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- -1 Boron ions Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B20/00—Read-only memory [ROM] devices
- H10B20/10—ROM devices comprising bipolar components
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B20/00—Read-only memory [ROM] devices
- H10B20/20—Programmable ROM [PROM] devices comprising field-effect components
Landscapes
- Semiconductor Memories (AREA)
Abstract
Description
【発明の詳細な説明】
〔概要〕
誘電体薄膜の絶縁破壊を利用して、書き込みを行うPR
OM素子の製造方法として、ワード線とビット線の交点
に形成されるpn接合、及び誘電体薄膜よりなる素子領
域の形成方法を改善することにより、集積度の向上を図
った。[Detailed Description of the Invention] [Summary] PR that performs writing using dielectric breakdown of a dielectric thin film
As a method of manufacturing an OM element, the degree of integration was improved by improving the method of forming a pn junction formed at the intersection of a word line and a bit line and an element region made of a dielectric thin film.
本発明は、ユーザ側において書き込み可能とするPRO
Mにおいて、集積度の向上を図った製造方法に関する。The present invention provides PRO that is writable on the user side.
M relates to a manufacturing method that aims to improve the degree of integration.
FROMの書き込みには、一般に二種類の方法が主とし
て用いられている。即ち、接合破壊型とヒユーズ溶断型
がある。Two methods are generally used to write FROM. That is, there are two types: a joint breaking type and a fuse blowing type.
接合破壊型は、背中合わせに接続されたpn接合に過電
圧を印加することにより、逆方向にバイアスされた接合
を破壊し、順方向の接合のみを残すことによって情報の
書き込みを行う。The junction destruction type writes information by applying an overvoltage to pn junctions connected back to back to destroy the junction biased in the reverse direction and leaving only the junction in the forward direction.
ヒユーズ溶断型は、トランジスタ、あるいはダイオード
に接続されたヒユーズを溶断することにより、書き込み
を行う構造である。The fuse blowing type has a structure in which writing is performed by blowing a fuse connected to a transistor or a diode.
−チップ当たりの記憶容量の増大を図り、より製作が容
易で、且つ信鎖性の高いFROM開発の要望が大きく、
誘電体の薄膜を形成して、その絶縁破壊を利用して書き
込みを行う構造が提案されている。- There is a strong demand for the development of FROM, which increases the memory capacity per chip, is easier to manufacture, and has higher reliability.
A structure has been proposed in which a dielectric thin film is formed and writing is performed using the dielectric breakdown of the dielectric thin film.
上記に述べた、誘電体薄膜の絶縁破壊を利用したFRO
Mの構造を、更に詳しく図面により説明する。FRO using dielectric breakdown of dielectric thin film mentioned above
The structure of M will be explained in more detail with reference to the drawings.
第2図はFROMのマトリックス・アレイ部を部分的に
拡大した平面図であり、また第4図は、第2図における
ワード線1とビット線2の交点における記憶素子部分の
X−X面での拡大断面図を示す。FIG. 2 is a partially enlarged plan view of the matrix array section of FROM, and FIG. 4 is an XX plane of the storage element section at the intersection of word line 1 and bit line 2 in FIG. An enlarged cross-sectional view is shown.
図面において、3はn型シリコン基板、4はPSG膜あ
るいは二酸化シリコン膜等の絶縁膜、5はアルミニウム
、その他の導電体よりなるワード線の配線層、6はビッ
ト線を形成するp°型不純物領域、7はワード線、ビッ
ト線の交点に形成されるn4型不純物領域、8はドープ
ド・ポリシリコン埋込み層、9は二酸化シリコンの誘電
体薄膜を示す。In the drawing, 3 is an n-type silicon substrate, 4 is an insulating film such as a PSG film or silicon dioxide film, 5 is a word line wiring layer made of aluminum or other conductor, and 6 is a p° type impurity forming a bit line. A region 7 is an n4 type impurity region formed at the intersection of a word line and a bit line, 8 is a doped polysilicon buried layer, and 9 is a dielectric thin film of silicon dioxide.
第2図、第4図の構造は回路図として書き換えると、第
3図のごとくになる。ダイオードlOはp+型領領域6
、n4型領域7によりなるpn接合部よりなり、またキ
ャパシター11は誘電体薄膜9を挟んだ配線層5と、ド
ープド・ポリシリコン8により形成されている。When the structures in FIGS. 2 and 4 are rewritten as a circuit diagram, they become as shown in FIG. 3. Diode lO is p+ type region 6
, n4 type region 7, and a capacitor 11 is formed of a wiring layer 5 with a dielectric thin film 9 sandwiched therebetween and doped polysilicon 8.
書き込み時にはキャパシター11を絶縁破壊することに
よりダイオード10は直接ワード線Iに接続される。During writing, dielectric breakdown of capacitor 11 causes diode 10 to be directly connected to word line I.
上記の構造のFROMの製造工程の概要を簡単に説明す
る。The outline of the manufacturing process of the FROM having the above structure will be briefly explained.
n型基板3上に直線状にビット線領域を開口せるマスク
によりボロンのイオン打ち込み、アニールを行ってp″
領域6の形成を行う。Boron ions are implanted using a mask that opens bit line regions linearly on the n-type substrate 3, and annealing is performed to form p''
Region 6 is formed.
次いで、PSGS複膜全面に積層し、素子形成領域にコ
ンタクト孔12を開口する。Asのイオン打ち込み、ア
ニールを行って、n゛領域7を形成する。Next, the PSGS composite film is laminated over the entire surface, and a contact hole 12 is opened in the element formation region. As ion implantation and annealing are performed to form n' region 7.
次いで、CVD法によりポリシリコンを全面に成長させ
て、Asのイオン打ち込み、アニールを行い、パターン
ニングによりドープド・ポリシリコン層8を形成する。Next, polysilicon is grown over the entire surface by CVD, followed by As ion implantation, annealing, and patterning to form a doped polysilicon layer 8.
更に、ポリシリコン層8を熱酸化することにより二酸化
シリコンの誘電体膜9を250〜300人成長させる。Furthermore, by thermally oxidizing the polysilicon layer 8, 250 to 300 silicon dioxide dielectric films 9 are grown.
次いで、アルミニウムの配線層5を蒸着し、パターンニ
ングを行って、ワード線2が形成される。Next, a wiring layer 5 of aluminum is deposited and patterned to form word lines 2.
上記に述べた、絶縁膜破壊方式のFROMの製造方法で
は、pn接合領域をシリコン基板内に形成していること
である。In the above-mentioned method for manufacturing a FROM using the insulation film breakdown method, a pn junction region is formed within a silicon substrate.
イオン打ち込み後のアニール工程での不純物領域の横方
向プロファイルの拡大を考慮すると、pn接合領域は極
端に狭くすることは出来ない。Considering the expansion of the lateral profile of the impurity region during the annealing process after ion implantation, the pn junction region cannot be made extremely narrow.
ビット線2の間隔は、これを考慮して決定することが必
要であり、これがFROMとしての集積度の向上の障害
となる。The spacing between the bit lines 2 must be determined taking this into consideration, and this becomes an obstacle to improving the degree of integration as a FROM.
上記問題点は、下記の製造方法よりなる本発明の方法に
よって解決される。The above problems are solved by the method of the present invention, which comprises the following manufacturing method.
一導電型半導体基板内に、直線状に反対導電型不純物を
導入してビット線を形成する。A bit line is formed by linearly introducing impurities of an opposite conductivity type into a semiconductor substrate of one conductivity type.
次いで、基板上に絶縁膜を積層した後、コンタクト孔を
開口して、該コンタクト孔を一導電型半導体層を単結晶
または多結晶の形で埋込む。Next, after laminating an insulating film on the substrate, a contact hole is opened, and a semiconductor layer of one conductivity type is filled in the contact hole in the form of a single crystal or polycrystal.
更に、前記埋込み層の表面に、一導電型の多結晶半導体
層を形成して平滑化を行った後、熱酸化を行って多結晶
半導体層上に酸化膜としての誘電体薄膜を形成する。Furthermore, after forming and smoothing a polycrystalline semiconductor layer of one conductivity type on the surface of the buried layer, thermal oxidation is performed to form a dielectric thin film as an oxide film on the polycrystalline semiconductor layer.
該誘電体薄膜上にアルミニウム等の導電体層を形成し、
これら導電体を相互に接続してワード線を形成する。forming a conductive layer such as aluminum on the dielectric thin film;
These conductors are interconnected to form word lines.
上記に説明せるごとく、半導体基板内に形成する不純物
領域は、−導電形を一層形成するのみで済み、熱アニー
ル工程での不純物領域の拡がりを考慮しても、従来の方
法に比して充分小さく形成可能である。As explained above, the impurity region formed in the semiconductor substrate only needs to be formed in one layer of - conductivity type, and even considering the spread of the impurity region during the thermal annealing process, it is sufficient compared to the conventional method. Can be made small.
これによりビット線の間隔は、従来よりも逼かに小さく
設計することが出来る。This allows the bit line spacing to be designed to be much smaller than in the past.
本発明による製造方法の一実施例を図面により詳細説明
する。An embodiment of the manufacturing method according to the present invention will be described in detail with reference to the drawings.
先に第2図、及び第3図にて説明せる回路的な構成は変
わらない。The circuit configuration previously explained in FIGS. 2 and 3 remains unchanged.
第1図(a)〜(0)は、製造方法を工程順に示す断面
図である。第1図(a)は、n型シリコン基板3にイオ
ン打ち込み、アニールによりp゛型不純物領域6を形成
した後、全面にCVD法によりPSG膜4を成長させコ
ンタクト孔12を形成した図を示す。FIGS. 1(a) to 1(0) are cross-sectional views showing the manufacturing method in order of steps. FIG. 1(a) shows a diagram in which a p-type impurity region 6 is formed by ion implantation into an n-type silicon substrate 3 and annealing, and then a PSG film 4 is grown on the entire surface by the CVD method to form a contact hole 12. .
本発明では、ビット線2を形成するp3型不純物領域6
は、基板内に一層のみ形成すれば良いので、充分狭い相
互間隔で形成することが可能である。In the present invention, the p3 type impurity region 6 forming the bit line 2 is
Since only one layer needs to be formed in the substrate, it is possible to form them with sufficiently narrow mutual spacing.
次いで、コンタクト孔12に、選択的にn型エピタキシ
アル層7を約1μm成長させる。この成長は5iHC1
+を500cc/n+in、 Htを2 ffi/l
ll1n、 P H3を20cc/ll1nの流量で
、基板を950℃に加熱させる気相成長により行われる
。Next, an n-type epitaxial layer 7 is selectively grown to a thickness of about 1 μm in the contact hole 12 . This growth is 5iHC1
+ 500cc/n+in, Ht 2 ffi/l
This is carried out by vapor phase growth in which the substrate is heated to 950° C. using 20 cc/ll1n of H3.
次いで、ポリシリコンを約1ooo人、800℃で気相
成長させる。この成長にはS i Ht C1*とH2
ガスが用いられる。Next, polysilicon is grown in a vapor phase at 800° C. for about 100 minutes. This growth requires S i Ht C1* and H2
Gas is used.
更に、成長したポリシリコン層8をイオンミーリング法
によって、コンタクト孔を除いて除去すると共に、コン
タクト部の表面を平滑に仕上げる。Furthermore, the grown polysilicon layer 8 is removed by ion milling, except for the contact hole, and the surface of the contact portion is smoothed.
Asのイオン打ち込みを行った後、約1000℃。After As ion implantation, the temperature was approximately 1000°C.
10分のアニールを行う。この状態を第1図(b)に示
す。Anneal for 10 minutes. This state is shown in FIG. 1(b).
次いで、850℃、ドライ酸素雰囲気中で熱酸化を行っ
て、約250人の酸化膜を成長させ、誘電体薄膜9とす
る。Next, thermal oxidation is performed at 850° C. in a dry oxygen atmosphere to grow an oxide film of about 250 layers to form the dielectric thin film 9.
最後にアルミニウム層5を成長し、ノ々ターンニングを
行うことにより、ワード線1を形成して素子を完成する
。これを第1図(C)に示す。Finally, an aluminum layer 5 is grown and subjected to continuous turning to form word lines 1 and complete the device. This is shown in FIG. 1(C).
以上に説明せる製造方法により、FROMのpn接合領
域の形成を、絶縁膜層に開口せるコンタクト孔部に局限
することが可能となり、PROMの高集積化、記憶容量
の増大に寄与するところ大である。The manufacturing method described above makes it possible to limit the formation of the pn junction region of FROM to the contact hole opened in the insulating film layer, which greatly contributes to higher integration and increased storage capacity of PROM. be.
第1図は本発明にかかわる製造方法を示す工程順の断面
図、
第2図はFROMのマトリックス・アレイの部分的な拡
大平面図、
第3図は記憶素子部の等価回路、
第4図は従来の構造の記憶素子部の断面図、を示す。
図面において、
1はワード線、
2はビット線、
3はn型シリコン基板、
4は絶縁膜、
5は配線層、
6はp゛型不純物領域、
7はn゛型不純物領域、
8はポリシリコン層、
9は誘電体薄膜、
10はダイオード、
11はキャパシター、
12はコンタクト孔、
をそれぞれ示す。
第1図
第2図
吉l擾償竪稟)1トド算イ凸び口B
第3F!!JFig. 1 is a cross-sectional view showing the manufacturing method according to the present invention in the order of steps; Fig. 2 is a partially enlarged plan view of the matrix array of FROM; Fig. 3 is an equivalent circuit of the memory element section; Fig. 4 is A cross-sectional view of a memory element portion having a conventional structure is shown. In the drawing, 1 is a word line, 2 is a bit line, 3 is an n-type silicon substrate, 4 is an insulating film, 5 is a wiring layer, 6 is a p-type impurity region, 7 is an n-type impurity region, and 8 is polysilicon. 9 is a dielectric thin film, 10 is a diode, 11 is a capacitor, and 12 is a contact hole. Fig. 1 Fig. 2 Kichi l Atonement Vertical) 1 Todo calculation i convex mouth B 3rd floor! ! J
Claims (1)
純物(6)を導入してビット線(2)を形成する工程と
、 該基板上に絶縁膜(4)を積層した後、コンタクト孔(
12)を開口する工程と、 該コンタクト孔を一導電型半導体層(7)にて埋込む工
程と、 前記、埋込み層の表面に、一導電型の多結晶半導体層(
8)を形成する工程と、 該多結晶半導体層上に誘電体薄膜(9)を形成する工程
と、 該誘電体薄膜上に導電体層(5)を形成して、これら導
電体を相互に接続してワード線(1)を形成する工程を
含むことを特徴とするPROM素子の製造方法。[Claims] A step of forming a bit line (2) by linearly introducing an impurity of an opposite conductivity type into a semiconductor substrate (3) of one conductivity type, and forming an insulating film (4) on the substrate. ) is laminated, contact holes (
12); burying the contact hole with a semiconductor layer (7) of one conductivity type; and forming a polycrystalline semiconductor layer (7) of one conductivity type on the surface of the buried layer
8), a step of forming a dielectric thin film (9) on the polycrystalline semiconductor layer, and a step of forming a conductor layer (5) on the dielectric thin film to interconnect these conductors. A method for manufacturing a PROM element, comprising the step of connecting to form a word line (1).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60072870A JPS61230360A (en) | 1985-04-05 | 1985-04-05 | Manufacture of prom element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60072870A JPS61230360A (en) | 1985-04-05 | 1985-04-05 | Manufacture of prom element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61230360A true JPS61230360A (en) | 1986-10-14 |
Family
ID=13501786
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60072870A Pending JPS61230360A (en) | 1985-04-05 | 1985-04-05 | Manufacture of prom element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61230360A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006140464A (en) * | 2004-11-10 | 2006-06-01 | Samsung Electronics Co Ltd | Intersection point nonvolatile memory element using two-component system metal oxide film as data storage substance film, and method of manufacturing the same |
WO2010026865A1 (en) * | 2008-09-05 | 2010-03-11 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor memory device and semiconductor device |
-
1985
- 1985-04-05 JP JP60072870A patent/JPS61230360A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006140464A (en) * | 2004-11-10 | 2006-06-01 | Samsung Electronics Co Ltd | Intersection point nonvolatile memory element using two-component system metal oxide film as data storage substance film, and method of manufacturing the same |
WO2010026865A1 (en) * | 2008-09-05 | 2010-03-11 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor memory device and semiconductor device |
US8248833B2 (en) | 2008-09-05 | 2012-08-21 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor memory device and semiconductor device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS58212164A (en) | Bipolar memory cell | |
JPS6321351B2 (en) | ||
JPS60213053A (en) | Semiconductor memory element | |
JPS6243547B2 (en) | ||
JPS61230360A (en) | Manufacture of prom element | |
JPS6286838A (en) | Manufacture of integrated circuit | |
JPH02246264A (en) | Semiconductor device and manufacture thereof | |
JPS6098654A (en) | Manufacture of semiconductor device | |
JP2792089B2 (en) | Method for manufacturing semiconductor memory device | |
JP2679146B2 (en) | Semiconductor memory device and method of manufacturing the same | |
JPS59168675A (en) | Manufacture of semiconductor device | |
JPS5838939B2 (en) | integrated circuit | |
JP2910100B2 (en) | Semiconductor memory | |
JP3247536B2 (en) | Semiconductor memory device and method of manufacturing the same | |
JP2630444B2 (en) | Method for manufacturing semiconductor memory device | |
JPS6240765A (en) | Read-only semiconductor memory and manufacture thereof | |
JPS63224251A (en) | Semiconductor storage device | |
JP2845044B2 (en) | Semiconductor device | |
JPS6345865A (en) | Floating gate type mos semiconductor device | |
JPH03175676A (en) | Semiconductor device | |
JPS60111456A (en) | Semiconductor memory device | |
JPH0237103B2 (en) | ||
JPS6132824B2 (en) | ||
JPS6315755B2 (en) | ||
JPH0474457A (en) | Semiconductor device and its manufacture |