JPS61227330A - Manufacture of contact material for vacuum valve - Google Patents

Manufacture of contact material for vacuum valve

Info

Publication number
JPS61227330A
JPS61227330A JP6684785A JP6684785A JPS61227330A JP S61227330 A JPS61227330 A JP S61227330A JP 6684785 A JP6684785 A JP 6684785A JP 6684785 A JP6684785 A JP 6684785A JP S61227330 A JPS61227330 A JP S61227330A
Authority
JP
Japan
Prior art keywords
cooling
vacuum valve
temperature
contact
reheating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6684785A
Other languages
Japanese (ja)
Other versions
JPH0351250B2 (en
Inventor
功 奥富
千葉 誠司
関口 董旦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6684785A priority Critical patent/JPS61227330A/en
Publication of JPS61227330A publication Critical patent/JPS61227330A/en
Publication of JPH0351250B2 publication Critical patent/JPH0351250B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Switches (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はCu−Cr系およびCLJ−Ti系合金を用い
た真空バルブ用接点材料の製造方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an improvement in a method of manufacturing a contact material for a vacuum valve using a Cu-Cr alloy and a CLJ-Ti alloy.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

真空バルブ用接点材料に要求される特性としては、耐溶
着、耐電圧、しゃ断に対する各性能で示される基本三要
件とこの他に温度上昇、接触抵抗が低く安定しているこ
とが重要な要件となっている。しかしながら、これらの
要件の中には相反するものがある関係上、単一の金属種
によって全ての要件を満足させることは不可能である。
The properties required for contact materials for vacuum valves include three basic requirements: welding resistance, withstand voltage, and cutoff performance, and other important requirements include low and stable temperature rise and contact resistance. It has become. However, since some of these requirements are contradictory, it is impossible to satisfy all requirements with a single metal species.

このため、実用されている多くの接点材料においては、
不足する性能を相互に補えるような2種以上の元素を組
合せ、かつ大電流用あるいは高電圧用等のように特定の
用途に達した接点材料の開発が行なわれ、それなりに優
れた特性を有するものが開発されているが、ざらに強ま
る高耐圧化および大電流化の要求を充分満足する真空バ
ルブ用接点材料は未だ得られていないのが実情である。
For this reason, in many contact materials in practical use,
Contact materials have been developed that combine two or more elements that mutually compensate for the lack of performance, and that are suitable for specific applications such as large current or high voltage applications, and have reasonably excellent properties. However, the reality is that a contact material for vacuum valves that fully satisfies the ever-increasing demands for higher withstand voltages and larger currents has not yet been obtained.

たとえば、大電流化を指向した接点材料として、B1の
ような溶着防止成分を5%以下の量で含有するCu−B
1合金が知られている(特公昭41−12131号公報
)が、Cu母相に対する3iの溶解度が極めて低いため
、しばしば偏析を生じ、しゃ断後の表面荒れが大きく、
加工成形が困難である等の問題点を有している。また、
大電流化を指向した他の接点材料として、Cu−7e合
金も知られている(特公昭44−23751号公報)。
For example, Cu-B containing a welding prevention component such as B1 in an amount of 5% or less is used as a contact material aimed at increasing current.
1 alloy is known (Japanese Patent Publication No. 41-12131), but because the solubility of 3i in the Cu matrix is extremely low, segregation often occurs, and the surface roughness after interruption is large.
It has problems such as difficulty in processing and molding. Also,
A Cu-7e alloy is also known as another contact material aimed at increasing current (Japanese Patent Publication No. 44-23751).

この合金は、CLJ−Bi系合金が持つ上記問題点を緩
和してはいるが、Cu−13i系合金に比較して雰囲気
に対し、より敏感なため接触抵抗等の安定性に欠ける。
Although this alloy alleviates the above-mentioned problems of the CLJ-Bi alloy, it is more sensitive to the atmosphere than the Cu-13i alloy and therefore lacks stability in terms of contact resistance and the like.

さらに、これらCu−Te、Cu−3i等の接点の共通
的特徴として、耐溶着性に優れているものの、耐電圧特
性が従来の中電圧クラスへの適用には充分であるとして
も、これ以上高い電圧分野への応用に対しては、必ずし
も満足でないことが明らかとなってきた。
Furthermore, a common feature of these contacts such as Cu-Te and Cu-3i is that they have excellent welding resistance, but even if their withstand voltage characteristics are sufficient for application to the conventional medium voltage class, It has become clear that this method is not always satisfactory for applications in the field of high voltages.

一方、高耐圧化を指向した接点材料として、Cu(また
はAU>等の高導電成分とCrとの焼結合金が知られて
いる。しかしながら、Crは極めて酸化しやすい金属で
あるため、粉末あるいは成形体の管理が重要であること
はいうまでもないが、仮焼結、溶浸時の雰囲気の条件も
材料特性を左右する。例えば、仮焼結、溶浸時の温度や
時間を充分管理して得られたCU−Cr合金でも、接触
抵抗或いは温度上昇特性にばらつきや不安定性があるの
が実情であり、これらのばらつきをなくし安定性のある
ものが望まれている。
On the other hand, a sintered alloy of Cr and a highly conductive component such as Cu (or AU>) is known as a contact material intended for high voltage resistance.However, since Cr is a metal that is extremely easily oxidized, powder or It goes without saying that controlling the compact is important, but the atmospheric conditions during pre-sintering and infiltration also affect the material properties.For example, the temperature and time during pre-sintering and infiltration must be adequately controlled. The reality is that even the CU-Cr alloys obtained by this process have variations and instability in contact resistance or temperature rise characteristics, and a stable product that eliminates these variations is desired.

〔発明の目的〕[Purpose of the invention]

本発明は、上記事情に鑑みてなされたもので、接触抵抗
特性および温度上昇特性を安定させ得る真空バルブ用接
点材料の製造方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for manufacturing a contact material for a vacuum valve that can stabilize contact resistance characteristics and temperature rise characteristics.

〔発明の概要〕[Summary of the invention]

本発明は、焼結、溶浸工程後の冷却過程中にある真空バ
ルブ用材料に対して前記冷却過程の冷却温度区間のうち
所定温度差間の冷却速度を前記真空バルブ用材料の温度
上昇特性を低下させる値に設定して冷却する冷却手段と
、冷却温度区間における所定温度でもって真空バルブ用
材料の導電率を高くする時間だけ加熱保持する加熱保持
手段と、真空バルブ用材料を冷却過程終了後、前記冷却
温度区間内の所定再加熱温度で真空バルブ用材料を再加
熱する再加熱手段とを有し、これら手段のうち少なくと
も1手段を設けて真空バルブ用材料を製造する真空バル
ブ用接点材料の製造方法である。
The present invention provides a cooling rate for a vacuum valve material in the cooling process after the sintering and infiltration process, in which the cooling rate during a predetermined temperature difference in the cooling temperature range of the cooling process is determined by the temperature rise characteristic of the vacuum valve material. cooling means for cooling the vacuum valve material at a predetermined temperature in the cooling temperature range for a period of time to increase the conductivity of the material for the vacuum valve; and a reheating means for reheating the vacuum valve material at a predetermined reheating temperature within the cooling temperature range, and at least one of these means is provided to produce the vacuum valve material. This is a method of manufacturing the material.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明に係る真空バルブ用接点材料の製造方法に
ついて説明する。ここで実施例の具体的な説明前に本発
明にいたるまでの経緯について簡単に説明する。
Hereinafter, a method for manufacturing a contact material for a vacuum valve according to the present invention will be explained. Before specifically explaining the embodiments, the process leading up to the present invention will be briefly explained.

研究によれば、CLJ−Cr系接点材料の上記不安定性
は、■ Cu−Cr合金中の組成の変動、■ Or粉粒
子粒径、粒度分布、偏析の程度、■合金中に存在する空
孔の程度に依存することが判明した。そして、これらの
解決は原料Crの選択と焼結技術の管理が有効であるこ
とを認めたが、より一層の安定性の維持を向上させるた
めには上記■、■、■に加えて更に細かな焼結技術の管
理が必要でおることが判った。すなわち上記特性の不安
定性はCu中にわずかに含まれるCrの量の差異と相関
性があることを見出だした。つまりcu−Cr合金中の
CLJ部分に含まれるOrの量をX線微小分析法による
判定量法によって推定すると前述特性が不安定な値を示
したQu−Qr金合金は、一般に0.5〜Q、 2wt
%の範囲にばらついているのに対し後述する本発明技術
により、安定して特性を示すCu−Cr合金のそれは、
0゜2%以下代表値として0.1%以下を示していた。
According to research, the above-mentioned instability of CLJ-Cr-based contact materials is caused by: (1) compositional fluctuations in the Cu-Cr alloy, (2) Or powder particle size, particle size distribution, degree of segregation, and (2) vacancies present in the alloy. It was found that it depends on the degree of It was acknowledged that these solutions were effective through the selection of the raw material Cr and the management of the sintering technology, but in order to further improve the maintenance of stability, more detailed measures should be taken in addition to the above ■, ■, and ■. It was found that proper management of sintering technology was required. That is, it has been found that the instability of the above-mentioned properties is correlated with a slight difference in the amount of Cr contained in Cu. In other words, when estimating the amount of Or contained in the CLJ part in the cu-Cr alloy using the decision quantity method using X-ray microanalysis, the Qu-Qr gold alloy, which showed unstable values in the above-mentioned properties, is generally 0.5~ Q, 2wt
% of the Cu-Cr alloy that exhibits stable characteristics using the technology of the present invention, which will be described later.
The typical value was 0.1% or less.

この差異はCu−Qr金合金特に焼結又は溶浸後の熱履
歴に依存することを認めると共に、この条件を細かく管
理することによりcu−cr金合金導電率の改良とその
ばらつき幅の縮小化に効果が大きいことを明らかにした
。なお、ここで言う焼結又は溶浸後の熱履歴とは、実質
的に接点自体が受ける冷却速度特性で代表して表わすこ
とができる。すなわち接点の大きざ、炉の特性によって
ばらついている冷却速度を所定条件に管理することを指
すものである。
It is recognized that this difference depends on the thermal history of the Cu-Qr gold alloy, especially after sintering or infiltration, and by carefully controlling these conditions, it is possible to improve the electrical conductivity of the Cu-Cr gold alloy and reduce its dispersion width. It was revealed that the effect was large. Note that the thermal history after sintering or infiltration referred to herein can be represented by the cooling rate characteristic substantially experienced by the contact point itself. In other words, it refers to controlling the cooling rate, which varies depending on the size of the contact and the characteristics of the furnace, to a predetermined condition.

本発明者らは、このような好ましくない前記特性を軽減
する方法として材料の導電率特性の改良とそのばらつき
幅の縮小化の効果の寄与が、その軽減に有効であること
を確認した。すなわちCu−Cr接点合金の製造プロセ
スに於いて、CU中心のOrの浸入を極力少なかった各
接点間の浸入量のばらつきを少なくすることが好ましい
ことが判った。
The present inventors have confirmed that, as a method for alleviating such undesirable characteristics, it is effective to improve the electrical conductivity characteristics of the material and to reduce the variation thereof. That is, in the manufacturing process of the Cu-Cr contact alloy, it has been found that it is preferable to minimize the intrusion of Or in the CU center and to reduce the variation in the amount of intrusion between the contacts.

次に本発明の製造方法について具体的に説明する。Next, the manufacturing method of the present invention will be specifically explained.

本発明に於いて使用する原料は、充分脱ガスされかつ表
面に清浄化されたCrおよびTi粉の両方またはいずれ
か一方からなる耐弧材料と、CuおよびAgの両方また
はいずれか一方からなる導電性材料とから成る。なお、
これらOr、Ti。
The raw materials used in the present invention are an arc-resistant material made of Cr and/or Ti powder that has been sufficiently degassed and whose surface has been cleaned, and a conductive material made of Cu and/or Ag. The material is made of In addition,
These Or, Ti.

Cu、AQの他に接点用途に応じ10%程度以下のTe
、Bi、Sbなど耐溶着性材料、W、MO。
In addition to Cu and AQ, approximately 10% or less of Te is added depending on the contact application.
, Bi, Sb, etc., welding resistant materials, W, MO.

Vなどの耐弧材料を補助成分として添加してもよい。C
r、l”iの粒径は、250μmを越えると純Cu、A
Q部同志の接触の確率が高くなり溶着問題の点で好まし
くないが、粒径の下限は、本発明方法の効果を発揮させ
る上での粒径の下限は存在しなく、むしろ活性度が増す
など取扱上で決定される。
An arc-resistant material such as V may be added as an auxiliary component. C
If the particle size of r, l”i exceeds 250 μm, pure Cu, A
The probability of contact between the Q parts increases, which is undesirable in terms of welding problems, but there is no lower limit to the particle size for the method of the present invention to exhibit its effects, and rather the activity increases. etc. will be determined based on handling.

また、接点合金を得る為の加熱条件はCu。Further, the heating conditions for obtaining the contact alloy were Cu.

Agの溶融点以下で完了する方式と、CU、AQの溶融
点以上に加熱しこれを溶浸させる方式のいずれに対して
もその冷却過程又は冷却後に本発明方法による条件を適
用することによってその効果を発揮する。拡散速度の大
きい後者の方式によって得た接点に対する寄与が大きい
By applying the conditions according to the method of the present invention in the cooling process or after cooling, both the method of completing the process below the melting point of Ag and the method of heating above the melting point of CU and AQ and infiltrating it. be effective. The latter method, which has a high diffusion rate, makes a large contribution to the contacts obtained.

一方、スケルトンはCu、Tiのみよりなるスケルトン
及びCr、Tiにあらかじめ少量のQu。
On the other hand, the skeleton is made of only Cu and Ti, and a small amount of Qu is added to Cr and Ti in advance.

Agを配合したスケルトンのいずれの場合であっても本
発明条件の適用による効果は同様に得られる。
Regardless of the skeleton containing Ag, the same effects can be obtained by applying the conditions of the present invention.

なお、本発明における接触抵抗特性および温度上昇特性
は次のようにして求めている。接触抵抗特性は、表面荒
さを5μmに仕上げた直径201M&のフラット電極と
同じ表面荒さを持つ曲率半径100Rの凸状電極とを対
向させ、両電極を開閉機構を持つ104Torrの真空
容器内に取付け3に3の荷重を与える。そして両電極1
0Aの交流を与えたときの電位効果から接触抵抗を求め
る。なお、接触抵抗値は測定回路を構成する配線材、開
閉器、測定器などの抵抗又は接触抵抗を回路定数として
含んだ値である。
Note that the contact resistance characteristics and temperature rise characteristics in the present invention are determined as follows. The contact resistance characteristics were determined by placing a flat electrode with a diameter of 201M and a surface roughness of 5μm facing a convex electrode with a radius of curvature of 100R and having the same surface roughness, and installing both electrodes in a 104Torr vacuum container with an opening/closing mechanism. Apply a load of 3 to . and both electrodes 1
The contact resistance is determined from the potential effect when 0A alternating current is applied. Note that the contact resistance value is a value that includes the resistance or contact resistance of wiring materials, switches, measuring instruments, etc. that constitute the measurement circuit as a circuit constant.

一方、温度上昇特性は、上記と同じ電極条件の電極を対
向させ、10′5Torrの真空容器のなかで接触力3
0に’J、開離力20Kyで400Aの電流を20回開
閉俊、固定側電極の側面に・あらかじめ明けである直径
1.5AI11.深さ41WI4測定穴に熱電対を挿入
し測定したものである。尚、温度値は周囲温度約25℃
を含んだものであり、かつ電極を取りつけるホルダーの
熱容量の影響も含んだ比較値である。数値は、試料数3
個の最大と最小を示したものである。
On the other hand, the temperature rise characteristic was determined by placing electrodes facing each other under the same electrode conditions as above and using a contact force of 3 in a vacuum chamber at 10'5 Torr.
0 J, open and close a current of 400 A 20 times with a separating force of 20 Ky, and apply a pre-opened diameter 1.5 AI11. Measurements were taken by inserting a thermocouple into a measurement hole with a depth of 41WI4. The temperature value is based on the ambient temperature of approximately 25℃.
This is a comparative value that also includes the influence of the heat capacity of the holder to which the electrode is attached. The numerical value is the number of samples: 3
This shows the maximum and minimum of .

次に本発明の第1の実施例について第1表を参照して説
明する。
Next, a first embodiment of the present invention will be described with reference to Table 1.

まず、本発明の製造方法を適用する前工程として、平均
125μmのCrを2トン/ cdの圧力で成型して得
られた成型体をカーボン容器に収納し真空中1000℃
1時間で仮焼結を行なう。この仮焼結体の下側にQuか
らなる溶浸材を配置し、この侵、真空1200℃、1時
間で行なう溶浸工程に移す。次に溶浸工程終了後、接点
合金素材を1200℃より冷却する。
First, as a pre-process to which the manufacturing method of the present invention is applied, Cr with an average thickness of 125 μm is molded at a pressure of 2 tons/cd, and the molded body obtained is stored in a carbon container and heated at 1000°C in a vacuum.
Temporary sintering is performed for 1 hour. An infiltration material made of Qu is placed on the underside of this pre-sintered body, and the infiltration process is carried out under vacuum at 1200° C. for 1 hour. Next, after the infiltration process is completed, the contact alloy material is cooled from 1200°C.

さて、この冷却工程では、冷却温度区間800℃から4
00℃のうち所定温度差間100℃を冷却速度毎分0.
6℃から6℃でもって冷却し、Qu−Qrの温度上昇特
性を低下させる。この方法で冷却した結果を他の条件で
冷却した結果とを比較してみると、比較例1,2に示す
ように、冷却温度区間1200℃より800℃間を3.
5℃/分で冷却後700℃より500℃の間を冷却速度
80℃/分〜24°C/分で冷却すると、後述する条件
で測定した温度上昇特性が100℃近傍に上昇している
のに対し、本発明のように冷却速度60℃/分〜0.6
℃/分で冷却(効果例1,2)すると、温度上昇特性は
80℃近傍からそれ以下で前者より低いことが分る。こ
の傾向は冷却温度区間1200℃より800℃間の冷却
速度が著しく速い40℃/分としても同じ状態を示す(
効果例3.4)。更に1200℃より800℃に冷却し
、それ以降の冷却が700℃〜500℃間(効果例5)
でも有効な傾向を示すことから、冷却温度区間800℃
から400℃間を任意に選んだ100℃の温度差間を通
過する冷却速度に依存していることを示している。また
接触抵抗特性も60μΩ近傍のグループ(効果例1〜5
)と70μΩ以上のグループ(比較例1,2)に区分さ
れ温度上昇抵抗と対応している。なお、冷却速度が0゜
6℃/分より遅い場合には生産性が劣る。
Now, in this cooling process, the cooling temperature range is from 800℃ to 4℃.
The cooling rate is 0.0°C per minute between the predetermined temperature difference of 100°C.
It is cooled from 6°C to 6°C to reduce the temperature increase characteristics of Qu-Qr. Comparing the results of cooling using this method with the results of cooling under other conditions, we find that the cooling temperature range from 1200°C to 800°C is 3.
After cooling at 5°C/min, when cooling between 700°C and 500°C at a cooling rate of 80°C/min to 24°C/min, the temperature rise characteristics measured under the conditions described below rose to around 100°C. On the other hand, as in the present invention, the cooling rate is 60°C/min to 0.6°C.
It can be seen that when cooling at a rate of .degree. C./min (Effect Examples 1 and 2), the temperature rise characteristic is lower than the former at around 80.degree. C. and below. This tendency remains the same even if the cooling rate in the cooling temperature range of 800°C is significantly faster than 40°C/min (
Effect example 3.4). Further cooling from 1200°C to 800°C, and subsequent cooling between 700°C and 500°C (Effect Example 5)
However, since it shows an effective tendency, the cooling temperature range is 800℃.
This shows that it depends on the cooling rate passing through a temperature difference of 100°C arbitrarily selected between 400°C and 400°C. In addition, the contact resistance characteristics are in the group around 60 μΩ (effect examples 1 to 5).
) and 70 μΩ or more groups (Comparative Examples 1 and 2), which correspond to the temperature rise resistance. Note that when the cooling rate is slower than 0°6°C/min, productivity is poor.

次に本発明の第2の実施例について第2表を参照して説
明する。
Next, a second embodiment of the present invention will be described with reference to Table 2.

この方法は、冷却温度区間800℃から400℃におけ
る所定温度でもって真空バルブ用材料の導電率を高くす
る時間すなわち0.25時間だけ加熱保持するものであ
る。具体的には、平均粒径74μ而のCrをカーボン容
器に自然充填し、水素中900℃1時間で仮焼結を行う
。この仮焼結体の上側に0.1%の81を含有するCu
からなる溶浸材を配置した後、真空中1150℃、1時
間で行う溶浸工程に移す。次に溶浸工程の終った接点合
金素材を1150°Cより各保持温度まで13゜3℃/
分の速度で冷却する。
In this method, the vacuum valve material is heated and held at a predetermined temperature in the cooling temperature range of 800° C. to 400° C. for a period of time to increase the conductivity of the vacuum valve material, that is, 0.25 hours. Specifically, Cr having an average particle size of 74 μm is naturally filled into a carbon container, and pre-sintered in hydrogen at 900° C. for 1 hour. Cu containing 0.1% of 81 is on the upper side of this pre-sintered body.
After placing the infiltration material, the infiltration process is carried out in vacuum at 1150° C. for 1 hour. Next, the contact alloy material after the infiltration process is heated from 1150°C to each holding temperature at 13°3°C/
Cool at a rate of 1 minute.

さて、この冷却の後、所定の時間保持した各接点片の温
度上昇特性および接触抵抗特性を求めた。
After this cooling, the temperature rise characteristics and contact resistance characteristics of each contact piece were determined after being maintained for a predetermined period of time.

これは本発明の方法が最良であることを示すためである
。比較例3に示すように保持温度が1000℃の場合、
CLJ中へのCrの固溶量が多く導電率が20〜25%
lAC3程度であるのに対し効果例6,7.8に示すよ
うに保持温度が800℃。
This is to show that the method of the present invention is the best. When the holding temperature is 1000°C as shown in Comparative Example 3,
The amount of solid solution of Cr in CLJ is large and the conductivity is 20-25%.
While the temperature is about lAC3, the holding temperature is 800°C as shown in Effect Examples 6 and 7.8.

600℃、400℃ではCLJ中へのCrの固溶量の減
少が主因となって導電率が30%lAC3近傍又はそれ
以上に向上する。また、実施例9.10に示すように保
持温度を700℃に一定として保持時間の影響を考察す
ると効果例9.10のよ7うに、1〜0.25時間では
30%lAC3近傍又はそれ以上の導電率を示している
のに対して比較例4に示すように保持時間0.1時間で
はCu中へのCrの固溶状態が未だ維持されていること
により導電率30%lAC3以下である。温度上昇特性
も導電率の差異と対応し80°C以下のグループ(実施
例6〜10)と90℃以上のグループ(比較例3〜4)
に区分される。また、接触抵抗特性も同様に60μΩ以
下のグループ(実施例6〜10)と70μΩ以上のグル
ープに区分された。
At 600° C. and 400° C., the electrical conductivity increases to around 30% lAC3 or more, mainly due to a decrease in the amount of solid solution of Cr in the CLJ. In addition, as shown in Example 9.10, when considering the effect of holding time while keeping the holding temperature constant at 700°C, as shown in Effect Example 9.10, it is found that for 1 to 0.25 hours, it is close to 30% lAC3 or more. However, as shown in Comparative Example 4, at a holding time of 0.1 hour, the solid solution state of Cr in Cu is still maintained, so the conductivity is less than 30%lAC3. . The temperature rise characteristics also correspond to the difference in conductivity, with groups below 80°C (Examples 6 to 10) and groups above 90°C (Comparative Examples 3 to 4).
It is divided into Further, the contact resistance characteristics were similarly divided into a group of 60 μΩ or less (Examples 6 to 10) and a group of 70 μΩ or more.

保持温度が400℃より低い場合には一層の長い保持時
間を要するため得策でない。
If the holding temperature is lower than 400°C, it is not a good idea because a longer holding time is required.

次に本発明の第3の実施例について第3表を参照して説
明する。
Next, a third embodiment of the present invention will be described with reference to Table 3.

この方法は、真空パルプ用材料の冷却過程終了後冷却温
度区間400℃から800℃までのうちいずれかの再加
熱温度で少なくとも0.25時間再加熱するものである
。具体的に説明すると、平均粒径44μmのCu粉の上
部にCu塊を設置し一体としてカーボン容器に収納し、
′真空中950℃、3時間の仮焼結後、冷却せず引続き
真空中125℃に昇温し1時間の溶浸作業を行う。次に
常温まで24℃/分の平均冷却速度で冷却し接点素材を
得る。
In this method, after the cooling process of the vacuum pulp material is completed, the material is reheated for at least 0.25 hours at a reheating temperature within the cooling temperature range of 400°C to 800°C. To explain specifically, a Cu lump was placed on top of Cu powder with an average particle size of 44 μm, and the whole was stored in a carbon container.
'After preliminary sintering at 950°C in vacuum for 3 hours, the temperature was raised to 125°C in vacuum without cooling, and infiltration work was performed for 1 hour. Next, it is cooled to room temperature at an average cooling rate of 24° C./min to obtain a contact material.

この接点素材を常温から第3表に示すように各所定の保
持温度まで再加熱したところ再加熱温度400℃以上8
00℃の間での再加熱によって、再加熱前の導電率が2
6.0〜30.9%lAC3程度であったものがCuか
らのCrの析出によって40%lAC3近傍に増加した
(実施例14〜16)。しかしざらに再加熱温度を90
0.1000℃に増加すると、若干の増加は示すものの
導電率は30%lAC3近傍に止まった(比較例6〜7
)。なお、比較例8に示すように再加熱温度が200℃
ではCu中からのOrの移動が未だ十分行なわれず本実
験加熱時間内では効果が認められなかった。以上のこと
は前述したようにCu中のcrの存在量とよく対応して
いる。温度上昇特性は、70℃近傍又はそれ以下のグル
ープと80℃近傍又はそれ以上のグループに分別され、
それぞれ導電率の挙動と対応している。また、接触抵抗
特性も同様に50μΩ近傍のグループ(実施例14〜1
6)と60μΩ近傍又はそれ以上のグループ(比較例6
〜8)に分別され、夫々導電率の挙動と対応している。
When this contact material was reheated from room temperature to each predetermined holding temperature as shown in Table 3, the reheating temperature exceeded 400°C8.
By reheating between 00°C and
What was about 6.0 to 30.9% lAC3 increased to around 40% lAC3 due to the precipitation of Cr from Cu (Examples 14 to 16). However, the reheating temperature is roughly 90
When the temperature was increased to 0.1000°C, the conductivity remained at around 30%lAC3 although it showed a slight increase (Comparative Examples 6-7
). In addition, as shown in Comparative Example 8, the reheating temperature was 200°C.
In this case, the transfer of Or from Cu was not yet sufficiently performed, and no effect was observed within the heating time of this experiment. As mentioned above, the above corresponds well to the amount of cr present in Cu. The temperature rise characteristics are divided into a group near 70°C or below and a group near 80°C or above,
Each corresponds to the behavior of conductivity. In addition, the contact resistance characteristics were also in the group around 50 μΩ (Examples 14 to 1).
6) and a group near or above 60 μΩ (Comparative Example 6)
~8), each corresponding to the conductivity behavior.

再加熱中の保持時間は効果例11,12.13に示すよ
うに0.25時間以上ならば37%lAC3以上の導電
率で70℃近傍又はそれ以上の温度上昇特性ざらに50
μΩ以下の接触抵抗特性を維持するのに対し、比較例5
のように保持時間0.1時間では十分な前記特性が得ら
れない。
As shown in Effect Examples 11 and 12.13, if the holding time during reheating is 0.25 hours or more, the temperature rise characteristic will be around 70℃ or higher with a conductivity of 37% lAC3 or more.
Comparative example 5 maintains contact resistance characteristics of μΩ or less.
As shown in FIG.

以上から冷却終了後の再加熱処理によって特性の改善が
可能であるが、その温度は400 ’C〜800℃の間
で、かつその保持時間は0.25時門以上を要すること
が判明した。
From the above, it has been found that the properties can be improved by reheating treatment after cooling, but the temperature must be between 400'C and 800C and the holding time must be 0.25 hours or more.

次に本発明の第4の実施例について第4表を参照して説
明する。
Next, a fourth embodiment of the present invention will be described with reference to Table 4.

この製造方法は、溶浸工程終了後の真空バルブ用材料に
対して加熱保持工程および再加熱工程を加えたものであ
る。すなわち、149μmCr粉と同一径のCu粉を9
5:5の割合で混合したものを1.5トン/ciで成型
して真空中1150℃で仮焼結を行ない、この後アルミ
ナボートに0゜1%のsbを含有したCLJ合金塊と共
に挿入し真空中1200℃で溶浸を行う。この溶浸終了
後1200℃から800℃までを24℃/分で冷却後、
冷却温度区間800℃〜600℃の間を効果例3のよう
に冷却速度3.5℃/分により更に600℃まで冷却す
る。この冷却のとき効果例7に示したように保持温度6
00℃を用いて作製したところ、効果例17に示すよう
に安定した緒特性が得られた。この後、上記の試料を冷
却後500℃で再加熱したが同様に安定した特性が得ら
れた(実施例18)。以上の結果から溶浸工程終了後の
冷却速度を所定条件に調節した上で、更に加熱保持工程
および再加熱処理工程を重畳させることは、特性の一層
の向上・安定に有効であった。・以上説明したように本
発明の実施例においては冷却温度区間800℃から40
0℃のうち所定温度差間100℃を冷却速度毎分0.6
℃でもって冷却する冷却手段、冷却温度区間800℃か
ら400℃のうちいずれかの温度で少なくとも0.25
時間だけ加熱保持する加熱保持手段および冷却温度区f
1400℃から800℃のうちいずれかの温度で少なく
とも0.25時間だけ再加熱を行なう再加熱手段とを有
し、これら各手段のうちいずれか1手段または組合わせ
て製造を行なうので、QU−(::r合金の温度上昇特
性および接触抵抗特性を向上させ、かつ安定性をも向上
させることができる。この結果、真空パルプ用接点材料
として要求される特性を全て満足することができ最良の
接点材料を得ることができる。
This manufacturing method adds a heating holding step and a reheating step to the vacuum valve material after the infiltration step. In other words, Cu powder with the same diameter as 149 μm Cr powder was
The mixture at a ratio of 5:5 was molded at 1.5 tons/ci, pre-sintered in vacuum at 1150°C, and then inserted into an alumina boat together with a CLJ alloy ingot containing 0°1% SB. Infiltration is carried out at 1200°C in vacuum. After this infiltration is completed, after cooling from 1200℃ to 800℃ at 24℃/min,
The cooling temperature range from 800°C to 600°C is further cooled to 600°C at a cooling rate of 3.5°C/min as in Effect Example 3. During this cooling, as shown in Effect Example 7, the holding temperature is 6.
When fabricated at 00°C, stable properties were obtained as shown in Effect Example 17. Thereafter, the above sample was cooled and then reheated at 500°C, but similarly stable characteristics were obtained (Example 18). From the above results, adjusting the cooling rate after the infiltration step to a predetermined condition and then superimposing the heating holding step and reheating treatment step was effective in further improving and stabilizing the properties. -As explained above, in the embodiment of the present invention, the cooling temperature range is from 800°C to 40°C.
Cooling rate 0.6 per minute between 100°C and the specified temperature difference of 0°C
Cooling means for cooling at ℃, at least 0.25 at any temperature in the cooling temperature range 800℃ to 400℃
Heating and holding means for heating and holding for a certain amount of time and cooling temperature zone f
QU- (::r) The temperature rise characteristics and contact resistance characteristics of the alloy can be improved, and the stability can also be improved.As a result, it is possible to satisfy all the characteristics required as a contact material for vacuum pulp, and is Contact materials can be obtained.

なお、本発明は上記実施例に限定されるものではない。Note that the present invention is not limited to the above embodiments.

例えばCuの一部または全部をAgにに換えても上記実
施例と同一の効果を奏することができる。
For example, even if part or all of Cu is replaced with Ag, the same effect as in the above embodiment can be achieved.

また、Crの一部または全部をTiで置換してもよい。Further, part or all of Cr may be replaced with Ti.

すなわち約5%に相当するCLIをあらかじめ74μm
の7i粉に配合し2.5トン/dで成型体を得て、真空
中1100℃、2時間の仮焼結して得たスケルトンの上
部にCuを配置し真空中1250℃、1時間で溶浸作業
を行う。溶浸工程終了後の冷却過程に於ける700℃か
ら500℃までの温度区間を特に3.5℃/分の冷却速
度で冷却したとき、同区域を24℃/分の冷却速度で冷
却して得たCu−Ti素材と比較して導電率が1.35
〜1.47倍向上したものが得られた。
In other words, the CLI, which corresponds to about 5%, is set to 74 μm in advance.
7i powder to obtain a molded body at 2.5 tons/d, pre-sintered in vacuum at 1100°C for 2 hours, placed Cu on top of the obtained skeleton, and sintered in vacuum at 1250°C for 1 hour. Perform infiltration work. When the temperature range from 700°C to 500°C in the cooling process after the infiltration process was cooled at a cooling rate of 3.5°C/min, the same area was cooled at a cooling rate of 24°C/min. The conductivity is 1.35 compared to the obtained Cu-Ti material.
An improvement of ~1.47 times was obtained.

このように上記実施例と同様に導電率の向上と対応し温
度特性の向上が得られた。
As described above, similar to the above examples, an improvement in temperature characteristics was obtained corresponding to an improvement in electrical conductivity.

なお、本発明の効果はCu (AO>とCr(Ac[と
の比率が極めて広範囲の合金に対して奏することが判明
された。これに対して真空バルブ用接点材料の他の特徴
、例えばしゃ断性能の面から90%以上のOr (Ac
1>、耐溶着性の面から90%以上のCu (AQ)の
合金は避けるのが良い。
It has been found that the effects of the present invention can be applied to alloys with a very wide range of ratios of Cu (AO> and Cr (Ac).On the other hand, other characteristics of the contact material for vacuum valves, such as breaking In terms of performance, more than 90% Or (Ac
1> From the viewpoint of welding resistance, it is best to avoid alloys containing 90% or more of Cu (AQ).

〔発明の効果〕〔Effect of the invention〕

以上詳記したように本発明によれば、接触抵抗特性およ
び温度上昇特性を安定させ得る真空パルプ用接点材料の
製造方法を提供できる。
As detailed above, according to the present invention, it is possible to provide a method for producing a contact material for vacuum pulp that can stabilize contact resistance characteristics and temperature rise characteristics.

Claims (1)

【特許請求の範囲】 1)焼結、溶浸工程後の冷却過程中にある真空バルブ用
材料に対して前記冷却過程の冷却温度区間のうち所定温
度差間の冷却速度を前記真空バルブ用材料の温度上昇特
性を低下させる値に設定して冷却する冷却手段と、前記
冷却温度区間における所定温度でもって前記真空バルブ
用材料の導電率を高くする時間だけ加熱保持する加熱保
持手段と、前記真空バルブ用材料を冷却過程終了後、前
記冷却温度区間内の所定再加熱温度で前記真空バルブ用
材料を再加熱する再加熱手段とを有し、これら手段のう
ち少なくとも1手段を設けて前記真空バルブ用材料を製
造することを特徴とする真空バルブ用接点材料の製造方
法。 (2)冷却手段は、冷却温度区間800℃から400℃
のうち所定温度差間100℃を冷却速度毎分0.6℃か
ら6℃でもって冷却する特許請求の範囲第(1)項記載
の真空バルブ用接点材料の製造方法。 (3)加熱保持手段は、冷却温度区間800℃から40
0℃のうちいずれかの温度で少なくとも0.25時間加
熱保持する特許請求の範囲第(1)項記載の真空バルブ
用接点材料の製造方法。 (4)再加熱手段は、冷却温度区間400℃から800
℃のうちいずれかの温度で少なくとも0.25時間再加
熱する特許請求の範囲第(1)項記載の真空バルブ用接
点材料の製造方法。
[Claims] 1) For the vacuum valve material in the cooling process after the sintering and infiltration process, the cooling rate during a predetermined temperature difference in the cooling temperature section of the cooling process is determined for the vacuum valve material. a cooling means that cools the vacuum valve material by setting it to a value that lowers the temperature rise characteristic of the vacuum valve; and reheating means for reheating the vacuum valve material at a predetermined reheating temperature within the cooling temperature range after the cooling process of the valve material is completed, and at least one of these means is provided to cool the vacuum valve material. A method for manufacturing a contact material for a vacuum valve, the method comprising manufacturing a contact material for a vacuum valve. (2) The cooling means has a cooling temperature range of 800°C to 400°C.
The method for manufacturing a contact material for a vacuum valve according to claim 1, wherein the predetermined temperature difference of 100°C is cooled at a cooling rate of 0.6°C to 6°C per minute. (3) The heating holding means has a cooling temperature range from 800°C to 40°C.
The method for producing a contact material for a vacuum valve according to claim 1, wherein the material is heated and maintained at a temperature of 0° C. for at least 0.25 hours. (4) The reheating means has a cooling temperature range of 400°C to 800°C.
The method for producing a contact material for a vacuum valve according to claim 1, wherein the method comprises reheating at a temperature of at least 0.25 hours.
JP6684785A 1985-03-30 1985-03-30 Manufacture of contact material for vacuum valve Granted JPS61227330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6684785A JPS61227330A (en) 1985-03-30 1985-03-30 Manufacture of contact material for vacuum valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6684785A JPS61227330A (en) 1985-03-30 1985-03-30 Manufacture of contact material for vacuum valve

Publications (2)

Publication Number Publication Date
JPS61227330A true JPS61227330A (en) 1986-10-09
JPH0351250B2 JPH0351250B2 (en) 1991-08-06

Family

ID=13327644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6684785A Granted JPS61227330A (en) 1985-03-30 1985-03-30 Manufacture of contact material for vacuum valve

Country Status (1)

Country Link
JP (1) JPS61227330A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4777335A (en) * 1986-01-21 1988-10-11 Kabushiki Kaisha Toshiba Contact forming material for a vacuum valve
JP2010061935A (en) * 2008-09-03 2010-03-18 Hitachi Ltd Electrical contacts, methods of manufacturing the same, and switchgear for electric power

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4777335A (en) * 1986-01-21 1988-10-11 Kabushiki Kaisha Toshiba Contact forming material for a vacuum valve
JP2010061935A (en) * 2008-09-03 2010-03-18 Hitachi Ltd Electrical contacts, methods of manufacturing the same, and switchgear for electric power

Also Published As

Publication number Publication date
JPH0351250B2 (en) 1991-08-06

Similar Documents

Publication Publication Date Title
US5021105A (en) Copper alloy for electronic instruments
JPS62170121A (en) Contact alloy for vacuum bulb
JP3663038B2 (en) Vacuum valve
JPS61227330A (en) Manufacture of contact material for vacuum valve
JPH04311543A (en) Ag-sno-ino electrical contact material and production thereof
US5246512A (en) Contact for a vacuum interrupter
GB2027449A (en) Electrodes of vaccum circuit breaker
US4091248A (en) Vacuum-type circuit breaker
GB2055398A (en) Electrical contact materials of internally oxidized Ag-Sn-Bi alloy
JP2831834B2 (en) Manufacturing method of contact material for vacuum valve
JP2878718B2 (en) Contact material for vacuum valve
JP2878787B2 (en) Contact for vacuum valve
JP7087741B2 (en) A method for manufacturing a resistor material, a sputtering target for forming a resistance thin film, a resistance thin film and a thin film resistor, and a method for manufacturing a sputtering target for forming a resistance thin film and a method for manufacturing a resistance thin film.
JPS6386836A (en) Contact alloy for vacuum valve
JP2659716B2 (en) Alloy having low temperature coefficient of electric resistance and low melting point, method for producing the same, and highly stable electric resistor or eddy current displacement sensor using the same
JPH0463137B2 (en)
US3383204A (en) Nickel-lithium alloy preparation
JPH0193018A (en) Contact material for vacuum bulb
JPH0463136B2 (en)
JPS6386835A (en) Contact alloy for vacuum valve
JPH07111857B2 (en) Contact material for vacuum valve and manufacturing method thereof
JPH0465135B2 (en)
JPS6031889B2 (en) Electrical contact material and its manufacturing method
JPH01186716A (en) Contact material
JPH05140675A (en) Silver-manganese oxide electric contact material