JPH01186716A - Contact material - Google Patents

Contact material

Info

Publication number
JPH01186716A
JPH01186716A JP63006684A JP668488A JPH01186716A JP H01186716 A JPH01186716 A JP H01186716A JP 63006684 A JP63006684 A JP 63006684A JP 668488 A JP668488 A JP 668488A JP H01186716 A JPH01186716 A JP H01186716A
Authority
JP
Japan
Prior art keywords
metallic oxide
dispersed
base
metal oxide
contact material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63006684A
Other languages
Japanese (ja)
Inventor
Masayuki Tsuji
辻 公志
Shuji Yamada
修司 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP63006684A priority Critical patent/JPH01186716A/en
Publication of JPH01186716A publication Critical patent/JPH01186716A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/021Composite material
    • H01H1/023Composite material having a noble metal as the basic material
    • H01H1/0237Composite material having a noble metal as the basic material and containing oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Contacts (AREA)

Abstract

PURPOSE:To proceed with refinement of metallic oxide, and enhance the hardness of a contact material at high temperature so as to improve the melting and adhering resistance thereof by using Mn and Al at the same time other than Zn as metallic elements of metallic oxide dispersed in the base of Ag. CONSTITUTION:Formation of metallic oxide in the base of Ag is performed by so-called internal oxidation. The metallic oxide can be refined and dispersed by producing an ingot including Zn, Mn and Al into Ag, and oxidizing the inside. If Mn or Al is included alone, refinement of the metallic oxide, that is, temperature strength factor cannot be sufficiently improved, however this is improved sufficiently by including Mn and Al at the same time. The metallic oxide is dispersed in the base of Ag accordingly as it is preferably refined and hot hardness characteristic is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、Ag素地中に金属酸化物が分散されている
接点材料に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a contact material in which a metal oxide is dispersed in an Ag matrix.

〔従来の技術〕[Conventional technology]

各種接点材料が電磁接触機、リレー、ブレーカ等に使用
されている。これらの接点材料には、消耗が少なく、溶
着しに<<、接触抵抗が低いという特性が要求されるわ
けであるが、しかし、現実には、これら3つの特性を同
時に満足する材料を求めることは困難なことである。現
在、リレーが回路や装置の入力・出力の制御に多用され
る傾向にあり、その為、接点に突入電流が流れても溶着
が起きない接点材料、すなわち、耐溶着性に優れた接点
材料が強く望まれている。
Various contact materials are used in electromagnetic contactors, relays, breakers, etc. These contact materials are required to have the following characteristics: low wear, low welding resistance, and low contact resistance.However, in reality, it is necessary to find a material that satisfies these three characteristics at the same time. is difficult. Currently, relays are increasingly being used to control the input and output of circuits and devices, and for this reason, contact materials that do not weld even when rush current flows through the contacts, that is, contact materials that have excellent welding resistance, are needed. Highly desired.

具体的な接点材料として、内部酸化法により生成された
金属酸化物がAg素地中に分散されてεする接点材料、
例えば、Ag−ZnO,Ag−3n08等がある。この
うちAg−ZnOは、接触抵抗特性が安定している。例
えば、Ag  Snowは、開閉動作をさせている間に
SnOオが接点表面に堆積してきて接触抵抗が高くなっ
てしまうが、Ag−ZnOは、ZnOが表面に堆積され
にくい傾向があるためである。しかし、Ag−ZnOは
、耐溶着性が十分に満足できるほどには優れていない。
As a specific contact material, a metal oxide produced by an internal oxidation method is dispersed in an Ag base material and has ε,
For example, there are Ag-ZnO, Ag-3n08, etc. Among these, Ag-ZnO has stable contact resistance characteristics. For example, with Ag Snow, SnO accumulates on the contact surface during opening and closing operations, resulting in high contact resistance, but with Ag-ZnO, ZnO tends to be less likely to accumulate on the surface. . However, Ag-ZnO does not have a sufficiently satisfactory welding resistance.

ZnOは、Ag素地中に粗大粒子として析出する傾向が
強いからである。
This is because ZnO has a strong tendency to precipitate as coarse particles in the Ag matrix.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

この発明は、上記事情に鑑み、接触抵抗特性に優れるA
g−ZnO系接点材料の耐溶着性を飛躍的に向上させる
ことを課題とする。
In view of the above circumstances, the present invention provides an A
The objective is to dramatically improve the welding resistance of g-ZnO-based contact materials.

〔課題を解決するための手段〕[Means to solve the problem]

前記課題を解決するため、この発明は、Ag素地中に分
散されている金属酸化物の金属元素として、Znの他に
MnおよびA1を併用するようにしている。
In order to solve the above problems, the present invention uses Mn and A1 in addition to Zn as the metal elements of the metal oxide dispersed in the Ag matrix.

〔作 用〕[For production]

金属酸化物の金属元素として、Znの他にMnおよびA
lを併用するようにしているので、金属酸化物がうまく
微細化された状態でAg素地中に分散され高温硬度特性
が格段に良くなる。
In addition to Zn, Mn and A are also used as metal elements in metal oxides.
Since L is used in combination, the metal oxide is finely dispersed in the Ag matrix, and the high-temperature hardness properties are significantly improved.

〔実 施 例〕〔Example〕

以下、この発明にかかる接点材料を詳しく説明する。 Hereinafter, the contact material according to the present invention will be explained in detail.

耐溶着性は高温硬度特性に密接に関係している。例えば
、ピーク電流1kAの容量性負荷に用いた接点が溶着し
てしまうまでの回数と、高温硬度特性を禾すA/B値と
の間には正の相関関係がある。ここで、AはO’Kにお
ける硬度であり、Bは温度による軟化係数をあられし、
A/B値を温強度係数とする。このA/B値が大きいほ
ど耐溶着性が良くなるのである。A/B値を太き(する
には、Ag素地中の金属酸化物を微細化した状態で分散
させればよい。Ag素地中への金属酸化物の生成は、い
わゆる内部酸化法により行うが、金属酸化物を微細化分
散させるには、AgにZn、MnおよびAlを含有させ
たインゴットを作り、内部酸化するようにすることで達
成できる。MnおよびA1はそれぞれ単独の含有では、
金属酸化物微細化すなわち温強度係数を十分に向上させ
ることができないが、MnとA1の両者を同時に含有さ
せることにより、顕著に向上させることができる。
Welding resistance is closely related to high temperature hardness properties. For example, there is a positive correlation between the number of times a contact used for a capacitive load with a peak current of 1 kA is welded and the A/B value that indicates high temperature hardness characteristics. Here, A is the hardness at O'K, B is the softening coefficient due to temperature,
Let the A/B value be the thermal intensity coefficient. The larger the A/B value, the better the welding resistance. In order to increase the A/B value, the metal oxide in the Ag base should be dispersed in a fine state.The generation of the metal oxide in the Ag base is carried out by the so-called internal oxidation method. , fine dispersion of metal oxides can be achieved by making an ingot containing Zn, Mn and Al in Ag and internally oxidizing it.When Mn and Al are each contained alone,
Although metal oxide refinement, that is, the thermal strength coefficient cannot be sufficiently improved, it can be significantly improved by containing both Mn and A1 at the same time.

Ag素地中に分散している各金属酸化物の好ましい含有
量の範囲は次のとおりである。なお、含有量をあられす
場合、金属酸化物は、金属元素に換算して示すようにし
ている。つまり、内部酸化処理がなされる前の合金にお
ける割合であられしであるのである。
The preferred content range of each metal oxide dispersed in the Ag base material is as follows. When expressing the content of metal oxides, the content is expressed in terms of metal elements. In other words, it is determined by the proportion in the alloy before internal oxidation treatment.

Znは1〜15+st%の範囲が望ましい。1&4t%
未満であると、耐溶着性や耐消耗性が十分でなくなる傾
向にある。15wt%を超えると、内部酸化処理がしに
くくなったり、加工性が劣化する傾向にある。Mnおよ
びAlは、それぞれ、0.001〜0.5wt%の範囲
が望ましく、効果をより確実なものとするには、0.0
05〜0.2wt%の範囲がより好ましい。0.001
wt%未満であると、金属酸化物の微細化、すなわち温
強度係数の向上の程度が少ない傾向にある。0.5wt
%を超えると、粒界における酸化物の凝集が顕著となり
、耐溶着性、導電性や加工性が逆に低下する傾向にある
Zn is desirably in a range of 1 to 15+st%. 1&4t%
If it is less than that, welding resistance and abrasion resistance tend to be insufficient. If it exceeds 15 wt%, internal oxidation treatment becomes difficult and workability tends to deteriorate. Mn and Al are each desirably in the range of 0.001 to 0.5 wt%, and to ensure the effect, 0.0
The range of 0.05 to 0.2 wt% is more preferable. 0.001
If it is less than wt%, the degree of refinement of the metal oxide, that is, the improvement in the thermal strength coefficient tends to be small. 0.5wt
If it exceeds %, agglomeration of oxides at grain boundaries becomes noticeable, and welding resistance, conductivity, and workability tend to deteriorate.

さらに、Agマトリックスの結晶粒を微細化するために
、Fe族元素、すなわち、F e SN t −。
Furthermore, in order to refine the crystal grains of the Ag matrix, an Fe group element, that is, Fe SN t - is added.

COの各元素の少なくともひとつを、0.05〜0゜5
&4t%含有させると、より優れた効果を得ることがで
きる。これらの元素は、内部酸化時に結晶粒界に析出し
結晶粒の成長を妨げる。0.05wt%以下では、結晶
粒微細化の効果が得にくく、0.5wt%を超えると、
偏析して接点性能へ悪影響を及ぼす傾向がみられる。
At least one of each element of CO is 0.05 to 0°5
By containing &4t%, more excellent effects can be obtained. These elements precipitate at grain boundaries during internal oxidation and hinder grain growth. If it is less than 0.05 wt%, it is difficult to obtain the effect of grain refinement, and if it exceeds 0.5 wt%,
There is a tendency for it to segregate and have an adverse effect on contact performance.

つぎに、より具体的な実施例と比較例を示す。Next, more specific examples and comparative examples will be shown.

(実施例1〜6) Ag、Zn、Mn、Aj!、F e s N t %お
よび、COの各元素を適宜選択秤量した。これらの金属
を、アルゴンガス雰囲気中で高周波炉を用いて溶解し、
金型に鋳込み、第1表に示すように、異なる所望の組成
のインゴットを得た。つぎに、このインゴットをアルゴ
ンガス雰囲気中で加熱し焼鈍した。ついで、熱間圧延を
施した後、酸素雰囲気中で600℃の温度下、約100
時間加熱することにより内部酸化処理して板状の接点材
料を得た。
(Examples 1 to 6) Ag, Zn, Mn, Aj! , Fe s N t %, and CO were appropriately selected and weighed. These metals are melted using a high frequency furnace in an argon gas atmosphere,
The ingots were cast into molds to obtain ingots with different desired compositions as shown in Table 1. Next, this ingot was heated and annealed in an argon gas atmosphere. Then, after hot rolling, it was rolled at a temperature of about 100°C in an oxygen atmosphere at a temperature of about 100°C.
A plate-shaped contact material was obtained by internal oxidation treatment by heating for a period of time.

(比較例1〜3) Ag、Zn、Mn、および、AIの各元素を適宜選択秤
量した。これらの金属を、アルゴンガス雰囲気中で高周
波炉を用いて溶解し、金型に鋳込み、第1表に示すよう
に、異なる所望の組成のインゴットを得た。つぎに、こ
のインゴットをアルゴンガス雰囲気中で加熱し焼鈍した
。ついで、熱間圧延を施した後、酸素雰囲気中で600
℃の温度下、約100時間加熱することにより内部酸化
処理して板状の接点材料を得た。
(Comparative Examples 1 to 3) Each element of Ag, Zn, Mn, and AI was appropriately selected and weighed. These metals were melted using a high frequency furnace in an argon gas atmosphere and cast into molds to obtain ingots with different desired compositions as shown in Table 1. Next, this ingot was heated and annealed in an argon gas atmosphere. Then, after hot rolling, it was rolled at 600°C in an oxygen atmosphere.
The material was internally oxidized by heating at a temperature of .degree. C. for about 100 hours to obtain a plate-shaped contact material.

これらの接点材料から高温硬度測定用試料を得て、マイ
クロビッカース高温硬度計によって、各試料の高温硬度
を測定し、この測定結果からAZB値を算出した。結果
を第1表に示す。
Samples for high-temperature hardness measurement were obtained from these contact materials, and the high-temperature hardness of each sample was measured using a micro-Vickers high-temperature hardness meter, and the AZB value was calculated from the measurement results. The results are shown in Table 1.

また、いくつかの試料については、走査型電子顕微鏡に
よる表面観察を行い、金属酸化物の粒径を測定した。実
施例3.4では、金属酸化物の粒径は、約0.6μmで
あったが、比較例1〜3では、金属酸化物の粒径は約1
.5〜1.6μmであった第1表にみるように、実施例
1〜6では、いずれも比較例1〜3よりも温強度係数が
飛躍的に高くなっている。このことは、金属酸化物の粒
径の測定結果からも裏付けられている。そのため、実施
例の接点材料は、耐溶着性に格段に優れたものとなって
いる。
In addition, the surface of some samples was observed using a scanning electron microscope, and the particle size of the metal oxide was measured. In Example 3.4, the particle size of the metal oxide was about 0.6 μm, whereas in Comparative Examples 1 to 3, the particle size of the metal oxide was about 1 μm.
.. As shown in Table 1, which was 5 to 1.6 μm, Examples 1 to 6 had significantly higher thermal strength coefficients than Comparative Examples 1 to 3. This is also supported by the results of measuring the particle size of metal oxides. Therefore, the contact material of the example has extremely excellent welding resistance.

〔発明の効果〕〔Effect of the invention〕

この発明にかかる接点材料は、以上に述べたように、金
属酸化物の微細化が進み高温硬度が高(なっているので
、耐溶着性が著しく向上することとなる。しかも、Ag
素素地マトリックス中分散する金属酸化物が微細なZn
Oであるため、接触抵抗は低く安定している。このよう
に、耐溶着性に優れ、低接触抵抗が維持されているため
、この発明の接点材料は、実用性や信頼性に冨むものと
なっている。
As mentioned above, the contact material according to the present invention has a finer metal oxide and has a high high temperature hardness, so the welding resistance is significantly improved.
Fine Zn metal oxide dispersed in the base matrix
Since it is O, the contact resistance is low and stable. As described above, since the contact material of the present invention has excellent welding resistance and maintains low contact resistance, it is highly practical and reliable.

代理人 弁理士  松 本 武 彦Agent: Patent Attorney Takehiko Matsumoto

Claims (1)

【特許請求の範囲】[Claims] 1 Ag素地中に金属酸化物が分散されてなる接点材料
において、前記金属酸化物の金属元素として、Zn、M
nおよびAlが併用されていることを特徴とする接点材
料。
1 In a contact material formed by dispersing a metal oxide in an Ag base, Zn, M
A contact material characterized in that n and Al are used together.
JP63006684A 1988-01-14 1988-01-14 Contact material Pending JPH01186716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63006684A JPH01186716A (en) 1988-01-14 1988-01-14 Contact material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63006684A JPH01186716A (en) 1988-01-14 1988-01-14 Contact material

Publications (1)

Publication Number Publication Date
JPH01186716A true JPH01186716A (en) 1989-07-26

Family

ID=11645186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63006684A Pending JPH01186716A (en) 1988-01-14 1988-01-14 Contact material

Country Status (1)

Country Link
JP (1) JPH01186716A (en)

Similar Documents

Publication Publication Date Title
SE446991B (en) MATERIAL FOR ELECTRICAL CONTACTS AND PROCEDURES FOR ITS MANUFACTURING
JPH01186716A (en) Contact material
US4502899A (en) Electric joint material
US7189656B2 (en) Method for manufacturing ag-oxide-based electric contact material and product of the same
JPS6048578B2 (en) electrical contact materials
JPS6355822A (en) Contact material
JPH0463137B2 (en)
JPH0514366B2 (en)
JPS61246337A (en) Contact material
JPH0532848B2 (en)
JPS61246336A (en) Contact material
JPH03219031A (en) Contact material of silver-oxides series
JPS5896836A (en) Electric contact material
EP1584696B1 (en) METHOD FOR PRODUCING Ag-OXIDE-BASED ELECTRIC CONTACT MATERIAL AND ITS PRODUCT
JPS5925102A (en) Method of producing electric contact material
JPS58144445A (en) Silver-oxide for contact material
JPS58743B2 (en) electrical contact materials
JPH0153337B2 (en)
JPS5931808B2 (en) electrical contact materials
JPH0463136B2 (en)
JPS58100650A (en) Electrical contact material
JPS60258436A (en) Electrical contact material
JPH0463135B2 (en)
JPS6031889B2 (en) Electrical contact material and its manufacturing method
JPH09312111A (en) Electric contact material and manufacture thereof