JPH0514366B2 - - Google Patents

Info

Publication number
JPH0514366B2
JPH0514366B2 JP61199743A JP19974386A JPH0514366B2 JP H0514366 B2 JPH0514366 B2 JP H0514366B2 JP 61199743 A JP61199743 A JP 61199743A JP 19974386 A JP19974386 A JP 19974386A JP H0514366 B2 JPH0514366 B2 JP H0514366B2
Authority
JP
Japan
Prior art keywords
contact
contact material
resistance
value
cdo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61199743A
Other languages
Japanese (ja)
Other versions
JPS6355821A (en
Inventor
Masayuki Tsuji
Shuji Yamada
Yoshinobu Takegawa
Yoichi Aoyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP61199743A priority Critical patent/JPS6355821A/en
Publication of JPS6355821A publication Critical patent/JPS6355821A/en
Publication of JPH0514366B2 publication Critical patent/JPH0514366B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Switches (AREA)
  • Contacts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔技術分野〕 この発明は、内部酸化法により生成された金属
酸化物がAg中に分散されている接点材料に関す
る。 〔背景技術〕 各種接点材料は電磁接触機、リレー、ブレーカ
ーなどに使用されている。これらの接点材料に
は、消耗が少なく、溶着しにくく、かつ、接触抵
抗が低いと言う特性が要求されるわけであるが、
しかし、現実には、これら3つの特性を同時に満
足する材料を求めることや困難なことである。現
在、リレーが回路や装置の入力・出力の制御に多
用される傾向にあり、そのため、接点に突入電流
が流れても溶着が起きない、すなわち、耐溶着性
に優れた接点材料が強く望まれている。 具体的な接点材料として、Ag−CdO、Ag−
SnO2などが使用されている。このうちAg−CdO
系接点は、酸化物であるCdOが接点の開閉による
アーク熱のため昇華し、接点表面に酸化物が堆積
しないので、接触抵抗の低く安定した材料として
知られている。Ag−SnO2系接点は、接触抵抗は
不安定であるが、耐溶着性に優れたものとして知
られている。 Ag−CdO、Ag−SnO2の両者の長所を取り入
れた材料として、Ag−CdO−SnO2系接点がある
が、耐溶着性については未だ充分でなく、さらな
る改良が求められている。 〔発明の目的〕 前記事情に鑑み、この発明は、耐溶着性に優れ
たAg−CdO−SnO2系内部酸化型の接点材料を提
供することを目的とする。 〔発明の開示〕 上記の課題を解決すべく、発明者らは、耐溶着
性と接点材料の物性に遡つて、様々な角度からの
検討を加えた。その結果、耐溶着性と高温硬化特
性の間に相関関係のあることが明らかになつた。
たとえば、ピーク電流1kAの容量負荷に用いた接
点が溶着してしまうまでの回数と、高温硬度特性
を示すA/B値との間に、正の相関関係があるこ
とを見出したのである。ここで、Aは0Kの硬度
であり、Bは温度による軟化係数をあらわし、
A/B値を温強度係数とする。A/B値が大きい
程、耐溶着性に優れる。そして、さらに深く検討
を行つた結果、接点材料中において、酸化物を微
細化することによりA/B値が向上することを見
出すとともに、そのためには、Ag−CdO−SnO2
系内部酸化型の接点材料にさらに、MnおよびAl
を酸化物の形で含有させればよいことを見出し、
ここに、この発明を完成したのである。 ところで、高温硬度特性(A/B値)が大きい
ほど耐溶着性が向上する理由は、つぎのとおりで
ある。すなわち、接点の溶着は、接点開閉時のア
ーク熱により接点の接触部分が溶融・軟化し、そ
の状態で接点が接合したため、接点の解離が不能
になることにより、起きる。したがつて、高温で
軟化しにくい材料、すなわち、高温での熱安定性
が高い材料は、耐溶着性に優れる、と言える。熱
安定性が大きく耐溶着性に優れた材料、すなわ
ち、A値が大きくB値が小さい材料は、このAを
Bで割つた値、すなわちA/B値が大きくなる。
このため、A/B値は、温度要因を含む強度(温
強度係数)に相関して、材料の高温での熱安定性
を表す指標になるのである。他方、酸化物を微細
化するとA/B値が向上する理由は、以下のとお
りである。一般に、内部酸化法でマトリツクス中
に粒子を分散させたときの強度(硬度)は、下式
で示す分散プレストン・グラント・パラメータと
相関し、 1/γ{(3f/4π)1/3−3f/4} ここに、γ:分散粒子の平均径(μm) f:体積率(%) そのため、体積率(f)が一定のとき、強度
は、1/γに比例する。すなわち、分散粒子が小
さい程、0〓での強度(A)が大きくなる。他
方、温度による軟化係数(B)は、粒子を微細化
すれば変形抵抗が増加するため、粒子微細化によ
り小さくなると考えられる。以上の結果、酸化物
を微細化すると、A/B値が向上することになる
のである。 したがつて、この発明は、内部酸化法により生
成した金属酸化物がAg中に分散されている接点
材料において、前記金属酸化物の金属元素として
Cd、Sn、Mn、およびAlが用いられていること
を特徴とする接点材料を要旨とする。 以下に、この発明にかかる接点材料を詳しく説
明する。 まず、Ag中に含まれる金属酸化物の好ましい
含有量の範囲を示す。なお、含有量をあらわす場
合、金属酸化物は、金属元素に換算して示すよう
にしている。つまり、内部酸化処理がなされる前
の合金における割合で示されているのである。 Cdは1〜20wt%の範囲が望ましく、Snは0.5〜
5wt%が望ましい。Cdが1wt%未満であつたり、
Snが0.5wt%未満であつたりすると、耐溶着性や
耐消耗性が十分でなくなる傾向にある。Cdが
20wt%を越えたり、Snが5wt%を越えたりする
と、内部酸化処理ができにくくなつたり、加工性
が劣化する傾向になる。MnおよびAlは、0.001〜
0.5wt%の範囲が望ましく、効果をより確実なも
のとするには、0.005〜0.2wt%の範囲がより好ま
しい。0.001wt%未満であると金属酸化物の微細
化効果、すなわち、、温強度係数の向上効果が少
なくなり、0.5wt%を越えると、粒界における酸
化物の凝集が顕著となり、導電性や加工性が低下
する傾向にある。 MnおよびAlはそれぞれ単独の含有では、酸化
物微細化効果すなわち温強度係数の向上効果が十
分でなく、両者を同時に含有させることにより、
顕著な効果をもたらすことができる。 つぎに、CdOとSnO2の形態であるが、これら
はAgマトリツクス中において、複合酸化物(た
とえば、Cd2SnO4)であつてもよく、単独酸化物
であつてもよい。 さらに、Agマトリツクスの結晶粒を微細化す
るため、Fe族元素、すなわち、Fe、Ni、Coの各
元素を0.05〜0.5wt%含有させると、一層すぐれ
た効果を得ることができる。 つぎに、実施例と比較例を示す。 実施例 1〜11 Ag、Sn、Cd、Al、Mn、Fe、Ni、およびCo
の各元素を適宜選択秤量した。これらの金属を、
アルゴンガス雰囲気中で高周波炉を用いて溶解
し、金型に鋳込み、第1表に示すように、異なる
所望の組成のインゴツトを得た。つぎに、このイ
ンゴツトをアルゴンガス雰囲気中で加熱し焼鈍し
た。ついで、熱間圧延を施した後、酸素雰囲気中
で600℃の温度下、約100時間加熱することにより
内部酸化処理して板状の接点材料を得た。 この接点材料から高温硬度測定用試料を得て、
マイクロビツカース高温硬度計によつて、各試料
の高温硬度を測定し、この測定結果からA/B値
を算出した。結果を第1表に示す。 比較例 1〜3 Ag、Sn、Cd、MnおよびAlの各元素を適宜選
択秤量した。これらの金属を、アルゴンガス雰囲
気中で高周波炉を用いて溶解し、金型に鋳込み、
第1表に示すように、所望の異なる組成のインゴ
ツトを得た。つぎに、このインゴツトをアルゴン
ガス雰囲気中で加熱し焼鈍した。ついで、熱間圧
延を施した後、酸素雰囲気中で、600℃の温度下、
約100時間加熱することにより内部酸化処理して
板状の接点材料を得た。 この接点材料から高温硬度測定用試料を得て、
マイクロビツカース高温硬度計によつて、各試料
の高温硬度を測定し、この測定結果からA/B値
を算出した。結果を第1表に示す。 以上の実施例および比較例の一部の材料につ
き、酸化物粒子の大きさを電子顕微鏡を用いて測
定するとともに、酸化物の形態をX線回折法によ
り測定した。結果を同じく第1表に示す。
[Technical Field] The present invention relates to a contact material in which a metal oxide produced by an internal oxidation method is dispersed in Ag. [Background technology] Various contact materials are used in electromagnetic contactors, relays, breakers, etc. These contact materials are required to have characteristics such as low wear, resistance to welding, and low contact resistance.
However, in reality, it is difficult to find a material that simultaneously satisfies these three properties. Currently, there is a tendency for relays to be frequently used to control the input and output of circuits and devices, and therefore there is a strong demand for contact materials that do not cause welding even when inrush current flows through the contacts, that is, have excellent welding resistance. ing. Specific contact materials include Ag−CdO, Ag−
SnO 2 etc. are used. Of these, Ag−CdO
System contacts are known as a stable material with low contact resistance because the oxide CdO sublimates due to the arc heat generated by the opening and closing of the contacts, and oxides do not accumulate on the contact surfaces. Although Ag-SnO 2 -based contacts have unstable contact resistance, they are known to have excellent welding resistance. Ag-CdO-SnO 2 type contacts are a material that incorporates the advantages of both Ag-CdO and Ag-SnO 2 , but the welding resistance is still insufficient and further improvements are required. [Object of the Invention] In view of the above circumstances, an object of the present invention is to provide an internally oxidized Ag-CdO-SnO 2 -based contact material that has excellent welding resistance. [Disclosure of the Invention] In order to solve the above problems, the inventors conducted studies from various angles, going back to the welding resistance and the physical properties of the contact material. As a result, it was revealed that there is a correlation between welding resistance and high temperature curing properties.
For example, they discovered that there is a positive correlation between the number of times a contact used for a capacitive load with a peak current of 1 kA is welded and the A/B value, which indicates high-temperature hardness characteristics. Here, A is the hardness of 0K, B represents the softening coefficient due to temperature,
Let the A/B value be the thermal intensity coefficient. The larger the A/B value, the better the welding resistance. As a result of further investigation, it was discovered that the A/B value could be improved by making the oxide finer in the contact material, and in order to do so, Ag-CdO-SnO 2
In addition, Mn and Al are added to the internal oxidation type contact material.
discovered that it was sufficient to contain it in the form of an oxide,
This is where we completed this invention. By the way, the reason why the welding resistance improves as the high temperature hardness property (A/B value) increases is as follows. That is, welding of the contacts occurs because the contact portions of the contacts melt and soften due to arc heat during opening and closing of the contacts, and the contacts are joined in this state, making it impossible to separate the contacts. Therefore, it can be said that a material that does not easily soften at high temperatures, that is, a material that has high thermal stability at high temperatures, has excellent welding resistance. A material with high thermal stability and excellent welding resistance, that is, a material with a large A value and a small B value, has a large value obtained by dividing A by B, that is, an A/B value.
Therefore, the A/B value correlates with the strength (thermal strength coefficient) including temperature factors, and serves as an index representing the thermal stability of the material at high temperatures. On the other hand, the reason why the A/B value improves when the oxide is made finer is as follows. Generally, the strength (hardness) when particles are dispersed in a matrix using the internal oxidation method correlates with the dispersion Preston-Grant parameter expressed by the following formula: 1/γ{(3f/4π) 1/3 −3f /4} Here, γ: Average diameter of dispersed particles (μm) f: Volume fraction (%) Therefore, when the volume fraction (f) is constant, the strength is proportional to 1/γ. That is, the smaller the dispersed particles, the greater the strength (A) at 0〓. On the other hand, the softening coefficient (B) due to temperature is thought to decrease as the particles become finer because the deformation resistance increases if the particles become finer. As a result of the above, when the oxide is made finer, the A/B value improves. Therefore, the present invention provides a contact material in which a metal oxide produced by an internal oxidation method is dispersed in Ag, in which the metal element of the metal oxide is
The gist is a contact material characterized by the use of Cd, Sn, Mn, and Al. The contact material according to the present invention will be explained in detail below. First, the preferred content range of metal oxides contained in Ag will be shown. In addition, when expressing the content, metal oxides are expressed in terms of metal elements. In other words, it is expressed as a percentage in the alloy before undergoing internal oxidation treatment. Cd is preferably in the range of 1 to 20 wt%, and Sn is in the range of 0.5 to 20 wt%.
5wt% is desirable. Cd is less than 1wt%,
If Sn is less than 0.5 wt%, welding resistance and abrasion resistance tend to be insufficient. CD is
If it exceeds 20wt% or if Sn exceeds 5wt%, internal oxidation treatment becomes difficult and workability tends to deteriorate. Mn and Al are from 0.001 to
A range of 0.5 wt% is desirable, and a range of 0.005 to 0.2 wt% is more preferred to ensure the effect. If it is less than 0.001wt%, the effect of refining the metal oxide, that is, the effect of improving the thermal strength coefficient, will be reduced, and if it exceeds 0.5wt%, the agglomeration of oxides at grain boundaries will become noticeable, resulting in poor conductivity and processing. There is a tendency for sexual performance to decline. When Mn and Al are contained alone, the oxide refinement effect, that is, the improvement effect on the thermal strength coefficient, is not sufficient, but by containing both at the same time,
It can bring about remarkable effects. Next, regarding the forms of CdO and SnO 2 , these may be a composite oxide (for example, Cd 2 SnO 4 ) or a single oxide in the Ag matrix. Further, in order to refine the crystal grains of the Ag matrix, even better effects can be obtained by containing 0.05 to 0.5 wt % of each Fe group element, that is, Fe, Ni, and Co. Next, examples and comparative examples will be shown. Examples 1-11 Ag, Sn, Cd, Al, Mn, Fe, Ni, and Co
Each element was selected and weighed as appropriate. These metals
The ingots were melted using a high frequency furnace in an argon gas atmosphere and cast into molds to obtain ingots with different desired compositions as shown in Table 1. Next, this ingot was heated and annealed in an argon gas atmosphere. Then, after hot rolling, the material was internally oxidized by heating at a temperature of 600° C. for about 100 hours in an oxygen atmosphere to obtain a plate-shaped contact material. A sample for high temperature hardness measurement was obtained from this contact material,
The high-temperature hardness of each sample was measured using a Micro-Vickers high-temperature hardness meter, and the A/B value was calculated from the measurement results. The results are shown in Table 1. Comparative Examples 1 to 3 Each element of Ag, Sn, Cd, Mn, and Al was appropriately selected and weighed. These metals are melted using a high frequency furnace in an argon gas atmosphere and cast into a mold.
As shown in Table 1, ingots with different desired compositions were obtained. Next, this ingot was heated and annealed in an argon gas atmosphere. Then, after hot rolling, in an oxygen atmosphere at a temperature of 600℃,
A plate-shaped contact material was obtained by internal oxidation treatment by heating for about 100 hours. A sample for high temperature hardness measurement was obtained from this contact material,
The high-temperature hardness of each sample was measured using a Micro-Vickers high-temperature hardness meter, and the A/B value was calculated from the measurement results. The results are shown in Table 1. For some of the materials of the above Examples and Comparative Examples, the size of oxide particles was measured using an electron microscope, and the morphology of the oxides was measured using an X-ray diffraction method. The results are also shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

この発明にかかる接点材料は、以上のような構
成になつているので、高温硬度が高くなり、金属
酸化物粒子の微細化が進行するので、接点材料の
耐溶着性が著しく良くなるのである。しかも、
Agマトリツクス中にCdOが分散しているため、
接触抵抗は低く安定している。このように耐溶着
性が優れ、かつ、接触抵抗の低いAg−CdO−
SnO2系接点材料を得ることができた。
Since the contact material according to the present invention has the above-described structure, the high-temperature hardness is increased and the metal oxide particles become finer, so that the welding resistance of the contact material is significantly improved. Moreover,
Because CdO is dispersed in the Ag matrix,
Contact resistance is low and stable. In this way, Ag−CdO− has excellent adhesion resistance and low contact resistance.
We were able to obtain a SnO 2 -based contact material.

Claims (1)

【特許請求の範囲】 1 内部酸化法により生成した金属酸化物がAg
中に分散されている接点材料において、前記金属
酸化物の金属元素としてCd、Sn、Mn、および
Alが用いられていることを特徴とする接点材料。 2 金属酸化物は、金属元素に換算して、Cdが
1〜20wt%、Snが0.5〜5wt%、Mnが0.001〜
0.5wt%、Alが0.001〜0.5wt%である特許請求の
範囲第1項記載の接点材料。
[Claims] 1. The metal oxide produced by the internal oxidation method is Ag.
In the contact material dispersed in the metal oxide, Cd, Sn, Mn, and
A contact material characterized by the use of Al. 2 The metal oxide contains 1 to 20 wt% of Cd, 0.5 to 5 wt% of Sn, and 0.001 to 0.001 wt% of Mn in terms of metal elements.
The contact material according to claim 1, wherein Al is 0.001 to 0.5 wt%.
JP61199743A 1986-08-26 1986-08-26 Contact material Granted JPS6355821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61199743A JPS6355821A (en) 1986-08-26 1986-08-26 Contact material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61199743A JPS6355821A (en) 1986-08-26 1986-08-26 Contact material

Publications (2)

Publication Number Publication Date
JPS6355821A JPS6355821A (en) 1988-03-10
JPH0514366B2 true JPH0514366B2 (en) 1993-02-24

Family

ID=16412893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61199743A Granted JPS6355821A (en) 1986-08-26 1986-08-26 Contact material

Country Status (1)

Country Link
JP (1) JPS6355821A (en)

Also Published As

Publication number Publication date
JPS6355821A (en) 1988-03-10

Similar Documents

Publication Publication Date Title
JPH04311543A (en) Ag-sno-ino electrical contact material and production thereof
JPS60221541A (en) Copper alloy superior in hot workability
JPH0514366B2 (en)
JP4947850B2 (en) Method for producing Ag-oxide based electrical contact material
JPH0532848B2 (en)
JPS62182238A (en) Cu alloy for continuous casting mold
JPS63213628A (en) Copper alloy for fuse
JPH0532849B2 (en)
JP2575059B2 (en) Material for electric heating element made of Fe-Cr-Al alloy with low temperature coefficient of electrical resistivity
JPH0463137B2 (en)
JPH01186716A (en) Contact material
JPH04210438A (en) Continuous casting mold material made of high strength cu alloy
JPS61246337A (en) Contact material
JPS6031890B2 (en) Electrical contact material and its manufacturing method
US2249136A (en) Electric contacting element
JPH0153337B2 (en)
JPH03219031A (en) Contact material of silver-oxides series
JP2849663B2 (en) Electrical contact material and manufacturing method thereof
JPS61246336A (en) Contact material
JPS5821014B2 (en) High conductivity/high strength copper alloy
JPH05239572A (en) Ag-sn oxide type electrical contact material excellent in internal oxidizability
JPS5896836A (en) Electric contact material
JPS5925102A (en) Method of producing electric contact material
JPS58743B2 (en) electrical contact materials
JPH0463136B2 (en)