JPH0463136B2 - - Google Patents

Info

Publication number
JPH0463136B2
JPH0463136B2 JP60295977A JP29597785A JPH0463136B2 JP H0463136 B2 JPH0463136 B2 JP H0463136B2 JP 60295977 A JP60295977 A JP 60295977A JP 29597785 A JP29597785 A JP 29597785A JP H0463136 B2 JPH0463136 B2 JP H0463136B2
Authority
JP
Japan
Prior art keywords
oxide
weight
contact
dispersed
metal component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60295977A
Other languages
Japanese (ja)
Other versions
JPS62151537A (en
Inventor
Hironobu Yamamoto
Takashi Nara
Sadao Sato
Yasuhiro Sagara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuriki Honten Co Ltd
Original Assignee
Tokuriki Honten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuriki Honten Co Ltd filed Critical Tokuriki Honten Co Ltd
Priority to JP60295977A priority Critical patent/JPS62151537A/en
Publication of JPS62151537A publication Critical patent/JPS62151537A/en
Publication of JPH0463136B2 publication Critical patent/JPH0463136B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/021Composite material
    • H01H1/023Composite material having a noble metal as the basic material
    • H01H1/0237Composite material having a noble metal as the basic material and containing oxides
    • H01H1/02372Composite material having a noble metal as the basic material and containing oxides containing as major components one or more oxides of the following elements only: Cd, Sn, Zn, In, Bi, Sb or Te

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Contacts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

《産業上の利用分野》 本発明はAgを主成分とし、その中に金属酸化
物を分散した銀−酸化物系の接点材料に関するも
のである。 《従来の技術》 従来、電気接点材料としては、いろいろなもの
が用いられているが、とりわけAg−CdO接点が
広く使用されている。 AgにCdOを10%程度分散させた接点は、耐溶
着性、耐アーク性、耐消耗性、接触安定性などの
諸接点特性が優れているため各種スイツチ、コン
タクター、ブレーカーなど小から大電流領域まで
広く用いられている。 AgマトリツクスにCdOを分散させることは、
接点表面の清浄作用や溶着力の軽減などの電気的
諸特性を改善するものとして確かに効果的であ
る。 しかしこのような効果を充分果してきたのは特
に交流回路であり、極性の変化しない直流回路で
使用したときは一方の極から他方の極へ転移が起
こり易くなり接触状態が非常に不安定になる。 また、近時各産業分野における合理化、自動化
は目覚ましい発達を遂げているが、これに伴ない
装置は大型化、複雑化する傾向にある一方、これ
ら装置の制御系はむしろ高い精密度を要求される
ため、急速に電子化制御に移行している。 電気回路の断続において、電子化された正確な
制御は制御角が一定となり、接点のONの時期と
OFFの時期がずれることなく常に一定の状態に
コントロールされることから、接点開閉時には疑
似的な直流現象が起こることにより、一方の極か
ら他方の極へ接点材質が層上に維持し始め、(別
表1)の比較例における層状堆積の項から理解さ
れるように、104回の接点開閉後、層状に移転堆
積する量が0.82〜1.85mm3の如く大となり、従つ
て、それ以上開閉回数が増加して行つた場合に
は、堆積物はさらに成長し、遂に、当該堆積物が
なんらかの要因により脱落してしまうことが予測
され、このような状態となつた際には、接点の総
体的な消耗量が大となり、その接触安定性も著し
く損なわれることとなる。 そして、上記の如き堆積物の脱落が生ずること
のないまま接点の開閉作動が進行したときは、接
点のロツキングあるいは溶着といつた事故につな
がなることにもなる。 そこで、本願人は、電気接点の表面の清浄作用
やアークに対する諸現象、たとえば消弧作用など
が添加する酸化物の物性、特にその蒸気圧の温度
特性に最も関係が深いとする思考基盤に基づい
て、既に次のような研究をすすめてきている。 即ち、当該蒸気圧に関し、約500〜1500℃の温
度範囲でCdOの蒸気圧より高いSb酸化物に着目
し、これをAg中に分散させることによりAg−
CdO系のものと同等以上の接点表面清浄作用が発
揮し得たことは、特願昭48−61188(特公昭53−
18165)で確認されており、更にSn酸化物を分散
させた系においても特願昭48−86006,86007(特
公昭52−34247,34248)で効果を確認されてい
る。 ところが、このAgにSb酸化物あるいはSb酸化
物とSn酸化物を分散させた電気接点材料につい
て種々な回路条件で試験を行つたところ、前記の
ように制御角の一定な電子化制御により、接点の
開閉を長時間行つた場合にあつては、どちらか一
方の極に接点材料が堆積し始め、当該堆積物にア
ークが集中して異常消耗に発展することが確認さ
れた。 《発明が解決しようとする問題点》 そこで、上記の異常消耗につき、その原因を追
求した。 ここで、通常電気接点を開閉すると、接点間に
は激しいアークが発生し、接点表面はかなりの高
温にさらされる。 このとき接点表面は、接点特性に有効な成分が
逸散することで消耗するのであり、この際失われ
た効果的な成分が接点内部から表層部へ間断なく
補われるのが理想的な接点材料といえる。 ところで、前掲のAg−Sb−Sn系ついては、こ
の効果的成分が順調に供給されないため前述のよ
うな現象が起こつたものと考えられる。 これらについて詳細な検討を進めた結果、接点
内部から表層への順調な有効成分の供給力は、ア
ークによる表層成分の揮発によつて促がされる点
に着目し酸化物の蒸気圧と深い関係があると推定
した。 そこでSb酸化物の蒸気圧を基準とし、それよ
り高い蒸気圧を有する各種酸化物とSb酸化物と
を共存した系で実験を繰り返した結果、別途、特
願昭60−295976に明示の如く、Agに当該SbとTe
の酸化物を複合添加することによつて有効成分の
表層への供給が順調になり層状堆積防止に極めて
大きい効果があることを見い出したのであるが、
本願の第1の発明では、さらに約1500〜4000℃の
温度範囲でCdOより高い蒸気圧をもつSnの酸化
物をも適量分散させることによつて、上記のよう
に、単に種々な回路条件に適合し、層状の堆積物
や欠落などによる異常な消耗のないようにするだ
けでなく、アーク消耗量を低減し、接点の溶着回
路特性をも改善しようとするものである。 そして、第2発明では、さらに適当量のFe,
Ni,Co酸化物を一種以上添加することで、その
特性の向上を意図している。 《問題点を解決するための手段》 本発明は上記の目的を達成するために、第1の
発明では、Agを主成分とし、これにSbが0.2〜
6.2重量%,Snが0.05〜5重量%と、Teが0.02〜
2重量%である夫々Sb酸化物、Sn酸化物、Te酸
化物を分散させることにあり、第2発明では、更
に第族元素のFe族であるFe,Ni,Coから選定
した一種以上の金属元素0.02〜0.5重量%である
当該元素の酸化物とを分散させるのである。 《実施例》 本発明を後記具体例を示して、さらに詳記する
と、先づこのような電気接点材料を製造するには
既知のように、焼結法によつても内部酸化法によ
つてもよいが、溶製内部酸化法ではSbとTeおよ
びSnを添加したAg合金を酸化雰囲気中で高温で
保持してその表面より酸素を侵入させ、Sb,Te,
Snその他の元素を選択的に酸化するものであり、
長時間該酸化を続けることにより、Agマトリツ
クス中に当該酸化物を分散せしめて電気接点材料
を製するものである。 ここで、AgへのSbとTeおよびSnの添加量の
上限を夫々6.2重量%と2重量%および5重量%
に限定しなければならない理由は、Ag−Sb合金
のa固溶体におけるSbの最大固溶限が、300℃で
6.2重量%であり、この添加量を超過するSbを添
加した場合には著しく加工性を阻害することとな
り、量産的加工が不能となるからである。 Snの上限を5重量%に限定した理由は、これ
以上添加すると、当該Ag合金に対する酸素の侵
入力が鈍り、溶質元素が侵入した酸素と結合して
酸化される内部酸化の進み方が遅くなり、この結
果、接点表面にスケール(酸化皮膜)を形成する
だけで、接点深層部までの内部酸化が困難となつ
てしまい、従つて、量産性の点でも問題が残つて
しまうからである。 またTeの上限を2重量%に限定した理由は、
TeのAgに対する溶解度が低いことに加え、これ
以上の添加では塑性加工が極めて困難なためであ
る。 一方、Sb,Te,Snの添加量が夫々0.2重量%,
0.02重量%,0.05重量%未満の場合は後述する添
加効果が得られない。 Fe族元素の添加量を0.02〜0.5重量%に限定し
た理由は、Agに対するFe族元素の固溶度が0.5重
量%を超えると急激に減少するため、Agマトリ
ツク中に偏在、偏析して加工性を阻害し0.02重量
%未満の添加では内部酸化組織の調整に対する効
果が低いためである。 また第2発明にあつて、第族元素であるFe,
Ni,Coの一種または二種以上の添加は、Agマト
リツク中に析出するSbとTeおよびSn酸化物を均
一に分散せしめると共に、結晶粒を微細化するの
に効果がある。 ここで具体例を示せば、99.5重量%以上の純度
を有するSb,Te,SnおよびFe,Ni,Coを原料
とし、(別表1)に示す組成合金を次の工程で製
作した。 高周波誘導溶解炉で、溶解、鋳造したインゴツ
トを熱間鍛造表面切削後、その一面にAg板を熱
圧着して、ろう付用のAg層を形成する。 次に当該素材を冷間圧延して厚さ2mmの板にし
た後、直径6mmの円盤状に打抜き、これを720℃
の酸化雰囲気中でSb,TeおよびFe,Ni,Coを
内部酸化して夫々本発明合金((A)(B)(C)(D)(E)(F)(G)(
H)
(I)(J))を得た。 比較のためAg−10重量%Cd,Ag−3重量%
Sd−2重量%Sn,Ag−2重量%Te合金をつく
り実験に供した。 接点試験は、接触抵抗とアーク消耗量および層
状堆積の傾向について、夫々ASTM接点試験機
(AC200V,50A)とアーク消耗試験機
(AC200V,10A)および市販スイツチによる実
機テスト(AC200V,35A)を行つて評価した。 《発明の効果》 (別表1)のようにAg−10Cdの層状堆積物は
1.05mm3,Ag−3Sd−2Snの層状堆積物は0.82mm3
そしてAg−2Teの層状体積物が1.85mm3であるのに
対し、本発明による(A)(B)(C)(D)(E)(F)(G)(H)(I)(J)合
金は
何れも0.1mm3以下の極く微小であり、SbとTeの複
合添加が極めて効果的であることを示している。 しかし、これはAgに対するSbとTeの複合添加
が前提条件であり、Te酸化物のみの添加では層
状堆積物防止に対する効果が著しく低いことを念
のため述べておく。 さらに、本発明合金では、AgにSbとTeの酸化
物だけでなく、Snの酸化をも分散するようにし
たので、アーク消耗量と接点の溶着回数について
も、可成りの改善をみることができ、このこと
は、前掲AgにSbとTeの酸化物を複合添加したも
の(特願昭60−295976)が、(別表2)の如き試
験結果であつたのと対比することで、確認するこ
とができた。
<<Industrial Application Field>> The present invention relates to a silver-oxide contact material containing Ag as a main component and having a metal oxide dispersed therein. <<Prior Art>> Conventionally, various materials have been used as electrical contact materials, but Ag-CdO contacts have been particularly widely used. Contacts made with approximately 10% CdO dispersed in Ag have excellent contact properties such as welding resistance, arc resistance, wear resistance, and contact stability, so they can be used in various switches, contactors, breakers, etc. in small to large current ranges. It is widely used. Dispersing CdO in Ag matrix is
It is certainly effective in improving electrical properties such as cleaning the contact surface and reducing welding force. However, this effect has been particularly effective in AC circuits, and when used in DC circuits where the polarity does not change, transition easily occurs from one pole to the other, making the contact state extremely unstable. . Furthermore, although rationalization and automation in various industrial fields have made remarkable progress in recent years, equipment has tended to become larger and more complex, and the control systems for these equipment are required to have higher precision. Therefore, there is a rapid shift to electronic control. When electrical circuits are connected and disconnected, accurate electronic control keeps the control angle constant and the timing of contact ON and
Since the OFF timing is always controlled to a constant state without any deviation, a pseudo direct current phenomenon occurs when the contact opens and closes, and the contact material begins to stay on the layer from one pole to the other. As can be understood from the layered deposition section in the comparative example in Attached Table 1), after 10 4 contact openings and closings, the amount of layered transfer and accumulation becomes as large as 0.82 to 1.85 mm 3 , and therefore, the number of openings and closings is greater than that. If the amount increases, the deposit will grow further, and it is predicted that the deposit will eventually fall off due to some factor. In such a situation, the overall The amount of wear will be large, and the contact stability will be significantly impaired. If the opening and closing operations of the contacts proceed without the deposits falling off as described above, accidents such as locking or welding of the contacts may occur. Therefore, the applicant has based on the idea that the cleaning effect on the surface of electrical contacts and various phenomena against arcs, such as arc-extinguishing effects, are most closely related to the physical properties of the added oxide, especially the temperature characteristics of its vapor pressure. We are already promoting the following research. In other words, we focused on Sb oxide, which has a vapor pressure higher than that of CdO in the temperature range of approximately 500 to 1500°C, and by dispersing it in Ag, Ag-
The fact that it was able to exhibit a contact surface cleaning effect equal to or higher than that of CdO-based products was demonstrated in Japanese Patent Application No. 48-61188.
18165), and the effect was further confirmed in Japanese Patent Applications No. 48-86006 and No. 86007 (Japanese Patent Publications No. 52-34247 and No. 34248) in systems in which Sn oxide was dispersed. However, when we tested this electrical contact material in which Sb oxide or Sb oxide and Sn oxide were dispersed in Ag under various circuit conditions, we found that the contact It has been confirmed that when the contact material is opened and closed for a long period of time, contact material begins to accumulate on one of the poles, and the arc concentrates on the deposit, leading to abnormal wear. <<Problems to be solved by the invention>> Therefore, the cause of the above-mentioned abnormal wear was investigated. When electrical contacts are normally opened and closed, a strong arc is generated between the contacts, and the contact surfaces are exposed to considerably high temperatures. At this time, the contact surface wears out as the components effective for the contact characteristics dissipate, and the ideal contact material would be such that the effective components lost at this time are continuously replenished from the inside of the contact to the surface layer. It can be said. By the way, with respect to the Ag-Sb-Sn system mentioned above, it is thought that the above-mentioned phenomenon occurs because this effective component is not supplied smoothly. After conducting detailed studies on these issues, we found that the smooth supply of active ingredients from the inside of the contact to the surface layer is facilitated by the volatilization of the surface layer components due to the arc, and found that there is a deep relationship with the vapor pressure of the oxide. It is estimated that there is. Therefore, using the vapor pressure of Sb oxide as a standard, we repeated experiments in systems in which Sb oxide and various oxides with higher vapor pressures coexisted. Ag concerned Sb and Te
It was discovered that by adding a combination of oxides, the supply of active ingredients to the surface layer becomes smooth and has an extremely large effect on preventing layered deposition.
In the first invention of the present application, by further dispersing an appropriate amount of Sn oxide, which has a vapor pressure higher than CdO in the temperature range of approximately 1500 to 4000°C, it is possible to simply adapt to various circuit conditions as described above. The purpose is not only to prevent abnormal wear due to layered deposits and chipping, but also to reduce arc wear and improve the welding circuit characteristics of the contacts. Further, in the second invention, an appropriate amount of Fe,
By adding one or more types of Ni and Co oxides, it is intended to improve its properties. <<Means for Solving the Problems>> In order to achieve the above-mentioned object, the present invention has a first invention in which Ag is the main component, and Sb is added to the main component from 0.2 to 0.2.
6.2% by weight, Sn 0.05~5% by weight, Te 0.02~
2% by weight of Sb oxide, Sn oxide, and Te oxide, respectively, and in the second invention, one or more metals selected from Fe, Ni, and Co, which are Fe group of group elements, are dispersed. 0.02 to 0.5% by weight of the oxide of the element is dispersed therein. <<Example>> The present invention will be described in more detail with reference to specific examples below. First, in order to manufacture such an electrical contact material, it is possible to use a sintering method or an internal oxidation method, as is known in the art. However, in the melt internal oxidation method, an Ag alloy to which Sb, Te, and Sn are added is held at high temperature in an oxidizing atmosphere to allow oxygen to enter from the surface.
It selectively oxidizes Sn and other elements,
By continuing the oxidation for a long time, the oxide is dispersed in the Ag matrix to produce an electrical contact material. Here, the upper limits of the amounts of Sb, Te, and Sn added to Ag are set at 6.2% by weight, 2% by weight, and 5% by weight, respectively.
The reason why it must be limited to is that the maximum solid solubility limit of Sb in the a solid solution of Ag-Sb alloy is
The amount of Sb added is 6.2% by weight, and if Sb is added in excess of this amount, the processability will be significantly inhibited, making mass production processing impossible. The reason for limiting the upper limit of Sn to 5% by weight is that if more than this is added, the ability of oxygen to penetrate into the Ag alloy becomes weaker, and the progress of internal oxidation, in which solute elements combine with the invading oxygen and oxidize, slows down. As a result, only scale (oxide film) is formed on the surface of the contact, making it difficult to internally oxidize the contact to the deep layer, and therefore, problems remain in terms of mass production. The reason for limiting the upper limit of Te to 2% by weight is as follows.
This is because, in addition to the low solubility of Te in Ag, adding more than this makes plastic working extremely difficult. On the other hand, the amounts of Sb, Te, and Sn added were 0.2% by weight each,
If the amount is less than 0.02% or 0.05% by weight, the effects of addition described below cannot be obtained. The reason why the amount of Fe group elements added is limited to 0.02 to 0.5% by weight is that the solid solubility of Fe group elements in Ag decreases rapidly when it exceeds 0.5% by weight. This is because the addition of less than 0.02% by weight has a low effect on adjusting the internal oxidation structure. Further, in the second invention, Fe, which is a group element,
Addition of one or more of Ni and Co is effective in uniformly dispersing Sb, Te, and Sn oxides precipitated in the Ag matrix, and in refining crystal grains. To give a specific example, Sb, Te, Sn, Fe, Ni, and Co having a purity of 99.5% by weight or more were used as raw materials, and an alloy with the composition shown in Attached Table 1 was manufactured in the following steps. An ingot is melted and cast in a high-frequency induction melting furnace, and after hot forging the surface is cut, an Ag plate is thermocompression bonded to one surface to form an Ag layer for brazing. Next, the material was cold rolled into a plate with a thickness of 2 mm, punched into a disc shape with a diameter of 6 mm, and then heated at 720°C.
The alloys of the present invention ((A)(B)(C)(D)(E)(F)(G)(
H)
(I)(J)) were obtained. For comparison, Ag-10wt%Cd, Ag-3wt%
Sd-2wt%Sn and Ag-2wt%Te alloys were made and used for experiments. Contact tests were conducted using an ASTM contact tester (AC200V, 50A), an arc consumption tester (AC200V, 10A), and a commercially available switch (AC200V, 35A) to check contact resistance, arc consumption, and layered deposition trends. I evaluated it. 《Effect of the invention》 As shown in (Appended Table 1), the layered deposit of Ag-10Cd is
1.05mm 3 , Ag-3Sd-2Sn layered deposit is 0.82mm 3 ,
And while the layered volume of Ag-2Te is 1.85 mm 3 , the size of (A)(B)(C)(D)(E)(F)(G)(H)(I)(J ) The alloys are all extremely small, less than 0.1 mm 3 , indicating that the combined addition of Sb and Te is extremely effective. However, it should be noted that this requires the combined addition of Sb and Te to Ag, and that the addition of only Te oxide has a significantly low effect on preventing layered deposits. Furthermore, in the alloy of the present invention, not only the oxides of Sb and Te but also the oxidation of Sn are dispersed in the Ag, so a considerable improvement can be seen in the amount of arc consumption and the number of times of welding of the contacts. This can be confirmed by comparing the above-mentioned Ag with combined addition of Sb and Te oxides (Japanese Patent Application No. 60-295976), which had test results as shown in (Appended Table 2). I was able to do that.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 Agを主成分とし、これに金属成分が0.2〜6.2
重量%となるSb酸化物と、金属成分が0.05〜5重
量%となるSn酸化物と、さらに金属成分が0.02〜
2重量%となるTe酸化物とが分散されているこ
とを特徴とする銀−酸化物系の接点材料。 2 Agを主成分とし、これに金属成分が0.2〜6.2
重量%となるSb酸化物と、金属成分が0.05〜5重
量%となるSn酸化物と、金属成分が0.02〜2重量
%となるTe酸化物と、金属成分として0.02〜0.5
重量%となるFe,Ni,Co酸化物の一種以上とが
分散されていることを特徴とする銀−酸化物系の
接点材料。
[Claims] 1 Ag is the main component, and the metal component is 0.2 to 6.2
Sb oxide with a weight% of weight%, Sn oxide with a metal component of 0.05 to 5% by weight, and a further metal component of 0.02 to 5% by weight.
A silver-oxide contact material characterized in that 2% by weight of Te oxide is dispersed therein. 2 The main component is Ag, and the metal component is 0.2 to 6.2
Sb oxide with a metal component of 0.05 to 5 weight%, Te oxide with a metal component of 0.02 to 2 weight%, and 0.02 to 0.5 as a metal component.
A silver-oxide contact material characterized in that at least one of Fe, Ni, and Co oxides is dispersed in the weight percent.
JP60295977A 1985-12-26 1985-12-26 Contact point material of silver oxide series Granted JPS62151537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60295977A JPS62151537A (en) 1985-12-26 1985-12-26 Contact point material of silver oxide series

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60295977A JPS62151537A (en) 1985-12-26 1985-12-26 Contact point material of silver oxide series

Publications (2)

Publication Number Publication Date
JPS62151537A JPS62151537A (en) 1987-07-06
JPH0463136B2 true JPH0463136B2 (en) 1992-10-08

Family

ID=17827541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60295977A Granted JPS62151537A (en) 1985-12-26 1985-12-26 Contact point material of silver oxide series

Country Status (1)

Country Link
JP (1) JPS62151537A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03219032A (en) * 1990-01-22 1991-09-26 Tokuriki Honten Co Ltd Contact material of silver-oxides series

Also Published As

Publication number Publication date
JPS62151537A (en) 1987-07-06

Similar Documents

Publication Publication Date Title
US5160366A (en) Silver-metal oxide composite material and process for producing the same
US5286441A (en) Silver-metal oxide composite material and process for producing the same
JPH0480100B2 (en)
JPH0463137B2 (en)
JPH0463136B2 (en)
JPS6369934A (en) Cupprous metal alloy especially suitable for constitution of electronic parts
JPS58210140A (en) Heat resistant conductive copper alloy
JPH0463135B2 (en)
US7189656B2 (en) Method for manufacturing ag-oxide-based electric contact material and product of the same
JPH03219031A (en) Contact material of silver-oxides series
JPH03215638A (en) Silver-oxides series contact material
JPH03219032A (en) Contact material of silver-oxides series
JPH03215637A (en) Contact material of oxide series
JPH03215641A (en) Silver-oxides series contact material
JPH03215639A (en) Silver-oxides series contact material
JPH03215640A (en) Silver-oxides series contact material
JPH01312046A (en) Silver-oxide electrical contact material
JP2511019B2 (en) Contact material for vacuum valve
JPH04314837A (en) Electrical contact material of silver oxide series
JPH01320712A (en) Silver-oxide electric contact material
JPH05239572A (en) Ag-sn oxide type electrical contact material excellent in internal oxidizability
JPS5925018B2 (en) Silver monoxide-based electrical contact materials
JP2002309326A (en) Attrition-resistant copper alloy
JPS6367536B2 (en)
JPH0257649A (en) Electric contact material made of selectively and internally oxidized silver-tin alloy containing bismuth

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees