JP2002309326A - Attrition-resistant copper alloy - Google Patents

Attrition-resistant copper alloy

Info

Publication number
JP2002309326A
JP2002309326A JP2001115920A JP2001115920A JP2002309326A JP 2002309326 A JP2002309326 A JP 2002309326A JP 2001115920 A JP2001115920 A JP 2001115920A JP 2001115920 A JP2001115920 A JP 2001115920A JP 2002309326 A JP2002309326 A JP 2002309326A
Authority
JP
Japan
Prior art keywords
weight
copper
conductivity
copper alloy
components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001115920A
Other languages
Japanese (ja)
Other versions
JP4244528B2 (en
Inventor
Yoshinori Yamamoto
佳紀 山本
Hajime Sasaki
元 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2001115920A priority Critical patent/JP4244528B2/en
Publication of JP2002309326A publication Critical patent/JP2002309326A/en
Application granted granted Critical
Publication of JP4244528B2 publication Critical patent/JP4244528B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Contacts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a copper alloy having excellent resistance integrating discharge attrition resistance and mechanical attrition resistance required for the contact material of switches. SOLUTION: The attrition resistant copper alloy consists of an alloy to which electric conductivity of >=70% IACS has been imparted by performing heat treatment to copper containing one or more kinds of components selected from, by weight, 0.1 to 2.4% Fe, 0.1 to 0.5% Co and 0.1 to 0.5% Ni, and containing 0.05 to 0.2% P so as to control the weight of the above one or more kinds of components to the one 3 to 12 times the weight of P.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐損耗性銅合金に
関し、特に、スイッチ類の接点材等として必要な耐放電
損耗性および耐機械的損耗性に優れる銅合金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wear-resistant copper alloy, and more particularly to a copper alloy excellent in discharge wear resistance and mechanical wear resistance required as contact materials for switches and the like.

【0002】[0002]

【従来の技術】各種電気機器のスイッチ部においては、
ON・OFFの切り替え時にアーク放電が発生し、スイ
ッチ部を構成する接点材に損耗が生ずる。特に、ONよ
りOFFへの移行時には、接点間の離反による接触面積
の減少のために電流密度が上昇し、これにより生ずるジ
ュール熱によって構成材が溶融され、接点間にブリッジ
が形成されるようになる。
2. Description of the Related Art In a switch section of various electric devices,
An arc discharge occurs at the time of ON / OFF switching, and the contact material constituting the switch unit is worn. In particular, at the time of transition from ON to OFF, the current density increases due to the decrease in the contact area due to the separation between the contacts, and the component material is melted by the Joule heat generated thereby, so that a bridge is formed between the contacts. Become.

【0003】形成されたブリッジは、接点間の離反によ
って切断されるとともに、切断個所の接点材が蒸発イオ
ン化して接点間を移動し、アーク放電を招く。そしてア
ーク放電が生ずると、一方の側から他方の側への材料の
移動が発生し、一方の側の接点の構成材に損耗を招く。
構成材の損耗は、接点間の安定した接触を阻害するよう
に作用し、接点故障の原因となる。
[0003] The formed bridge is cut by the separation between the contacts, and the contact material at the cut portion is evaporated and ionized and moves between the contacts, causing arc discharge. When the arc discharge occurs, the material moves from one side to the other side, and the components of the contact on one side are worn.
The wear of the components acts to hinder stable contact between the contacts, causing contact failure.

【0004】ところで、電気スイッチの用途には、一般
に、タフピッチ銅、無酸素銅あるいは微量の銀を含む銅
合金等が使用されている。これらの銅をベースとした材
料は、表面に酸化膜を形成されやすい問題を有している
が、なにより安価であることと、良好な導電性および熱
伝導性を有していることから、家庭電器の接点材あるい
は自動車用の接点材などとして多用されている。
[0004] In general, tough switches are used for electric switches such as tough pitch copper, oxygen-free copper, and copper alloys containing a small amount of silver. Although these copper-based materials have a problem that an oxide film is easily formed on the surface, they are more inexpensive and have good electrical and thermal conductivity. It is widely used as a contact material for home appliances or a contact material for automobiles.

【0005】良好な導電性および熱伝導性(以下、単に
導電性という)は、ON・OFF切り替え時に生ずるジ
ュール熱を抑制し、あるいは発生熱を外部へ伝導放出す
る効果につながるため、前述したアーク放電を原因とし
た放電損耗を効果的に減ずるように作用する。従って、
良好な導電性を有することによって特徴づけられる銅あ
るいは銅合金は、スイッチ類の接点材として好適な材料
といえる。
[0005] Good electric conductivity and thermal conductivity (hereinafter simply referred to as electric conductivity) suppress the Joule heat generated at the time of ON / OFF switching or lead to the effect of conducting and releasing the generated heat to the outside. It works to effectively reduce discharge wear caused by discharge. Therefore,
Copper or a copper alloy characterized by having good conductivity can be said to be a suitable material as a contact material for switches.

【0006】[0006]

【発明が解決しようとする課題】しかし、従来知られて
いる接点用銅材によると、耐放電損耗性に優れている反
面において強度面で充分なものがなく、このため、総合
的損耗性において問題を有している。即ち、スイッチ類
の接点には、ON・OFF切り替え時の擦れ合いながら
の接触および離反によって繰り返しの負荷が作用するこ
とになり、従って、これによる機械的損耗への耐性も必
要となるが、耐放電損耗性を満足させると同時にこの特
性も満足させる銅材は、いまだ出現していない。
However, according to the conventionally known copper material for a contact, although it is excellent in discharge wear resistance, it does not have sufficient strength in terms of strength. Have a problem. That is, a repetitive load acts on the contacts of the switches due to the contact and separation while rubbing at the time of ON / OFF switching. Therefore, resistance to mechanical wear due to this is required, A copper material that satisfies this property while satisfying the discharge wear property has not yet emerged.

【0007】機械的損耗に対する耐性増のためには、合
金元素を添加することによって強度の向上を図ることが
有効な手段となるが、合金元素の添加は、導電性の低下
による耐放電損耗性の阻害につながるのが通例のため、
耐放電損耗性および耐機械的損耗性を両立させることは
難しいこととされている。
In order to increase the resistance to mechanical wear, it is effective to increase the strength by adding an alloying element. Because it usually leads to hindrance,
It has been considered difficult to achieve both discharge wear resistance and mechanical wear resistance.

【0008】従って、本発明の目的は、スイッチ類の接
点材等として必要な耐放電損耗性および耐機械的摩耗性
を同時に備えた総合的耐損耗性に優れる銅合金を提供す
ることにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a copper alloy excellent in overall wear resistance, which has both discharge wear resistance and mechanical wear resistance required as contact materials for switches and the like.

【0009】[0009]

【課題を解決するための手段】本発明は、上記の目的を
達成するため、0.1〜2.4重量%のFe、0.1〜
0.5重量%のCo、および0.1〜0.5重量%のN
iより選択される1種以上の成分と0.05〜0.2重
量%のPを前記1種以上の成分がPの3〜12倍の量と
なるように含む不可避的不純物含有の銅に熱処理を施す
ことによって70%以上の導電率を与えた合金より成る
ことを特徴とする耐放耗性銅合金を提供するものであ
る。
According to the present invention, in order to achieve the above object, 0.1 to 2.4% by weight of Fe, 0.1 to 2.4% by weight.
0.5% by weight Co and 0.1-0.5% by weight N
copper containing unavoidable impurities containing one or more components selected from i and 0.05 to 0.2% by weight of P such that the one or more components are 3 to 12 times the amount of P An object of the present invention is to provide a wear-resistant copper alloy comprising an alloy having a conductivity of 70% or more by performing a heat treatment.

【0010】本発明による銅合金の特徴は、Fe、Co
およびNiより選択され、あるいはこれらを組み合わせ
て使用される添加成分に熱処理を施すことによってPと
の間に化合物Fe2P、Co2P、Ni5P2あるいはNi
2Pを形成し、この化合物による析出物を銅中に形成さ
せることにある。
The features of the copper alloy according to the present invention are Fe, Co
And heat treatment of an additive component selected from the group consisting of Ni and Ni, or a combination thereof, to form a compound Fe2P, Co2P, Ni5P2 or Ni
The purpose is to form 2P and form precipitates of this compound in copper.

【0011】Pとの化合物が銅中に析出される結果、分
散強化による硬さ向上を図ることが可能になるととも
に、母相の銅に固溶状態で存在する合金成分量を少なく
することでの導電性の向上も可能になり、従って、上記
した成分は、強度向上による耐放電損耗性と導電性向上
による耐機械的損耗性を両立させるうえにおいて重要な
因子となる。
As a result of precipitation of the compound with P in the copper, it is possible to improve the hardness by dispersion strengthening, and to reduce the amount of alloy components existing in a solid solution state in the copper of the matrix. Therefore, the above-mentioned components are important factors in achieving both the discharge wear resistance due to the strength improvement and the mechanical wear resistance due to the conductivity improvement.

【0012】そして、以上の効能を最良のものとするた
めには、各成分の添加量を上記したように以下の範囲に
規定する必要がある。即ち、Feを0.1〜2.4重量
%、CoとNiをそれぞれ0.1〜0.5重量%に設定
する必要があり、また、添加されるこれらの成分量とP
の比率を前者がPの3〜12倍となるように設定する必
要がある。
In order to optimize the above-mentioned effects, it is necessary to define the amount of each component added in the following range as described above. That is, it is necessary to set Fe to 0.1 to 2.4% by weight and Co and Ni to 0.1 to 0.5% by weight, respectively.
Must be set so that the former is 3 to 12 times P.

【0013】Fe、CoおよびNiより選択される成分
の添加量が、上記範囲を下廻ると、充分な強度向上が得
られず、逆に、上記範囲を超える場合には、熱処理をし
ても導電性の向上効果が現れないとともに、表面酸化が
発生しやすくなる。また、これらの成分がPとの間に設
定される上記比率がずれると、ずれた成分が母相の銅中
に固溶状態で存在するようになり、このため、導電性を
低下させて耐放電損耗性を阻害するようになる。
If the amount of the component selected from the group consisting of Fe, Co and Ni is below the above range, a sufficient improvement in strength cannot be obtained. The effect of improving conductivity is not exhibited, and surface oxidation is apt to occur. Further, if the above-mentioned ratio set between these components and P deviates, the deviated components will be present in a solid solution state in the copper of the mother phase. Discharge abrasion is impaired.

【0014】本発明において、Pとともに添加される各
成分は、強度および導電性の向上効果において相対的な
違いを有している。FeとCoには、低強度および高導
電性付与の特質があり、一方、Niには、高強度および
低導電性付与の特質があるとともにその比率が多くなっ
たとき、導電性を低下させる傾向がある。従って、より
高度の強度および導電性を実現するためには、これらの
特質をバランスよく組み合わせることが望ましく、この
意味から、各成分を以下のように設定するとき、最良の
結果が得られるようになる。
In the present invention, each component added together with P has a relative difference in the effect of improving strength and conductivity. Fe and Co have characteristics of imparting low strength and high conductivity, while Ni has characteristics of imparting high strength and low conductivity and tend to decrease the conductivity when the ratio increases. There is. Therefore, in order to achieve higher strength and conductivity, it is desirable to combine these characteristics in a well-balanced manner. In this sense, when each component is set as follows, the best results can be obtained. Become.

【0015】即ち、FeとCoのいずれか一方あるいは
双方を選択してその量をそれぞれ0.1〜0.5重量%
に設定するとともに、Ni量とP量をそれぞれ0.1〜
0.5重量%と0.05〜0.2重量%に設定し、さら
に、Feおよび(あるいは)CoとNiの合計量をPの
3〜10倍に設定するとともに、NiとFeおよび(あ
るいは)Coとの重量比を前者1に対して後者を0.8
以上に設定するとき、強度と導電性は最良のものとな
り、優れた耐機械的損耗性と優れた耐放電損耗性が保証
されることとなる。
That is, one or both of Fe and Co are selected and their amounts are each 0.1 to 0.5% by weight.
And the amount of Ni and the amount of P
0.5% by weight and 0.05 to 0.2% by weight, and the total amount of Fe and / or Co and Ni is set to 3 to 10 times P, and Ni and Fe and / or ) The weight ratio with Co is set to 0.8 for the former and 1 for the former.
With the above settings, the strength and conductivity are the best, and excellent mechanical wear resistance and excellent discharge wear resistance are guaranteed.

【0016】本発明の銅合金に与える導電率としては、
70%IACS以上の水準にあることが必要である。ア
ーク放電による材料の消耗を抑制して優れた耐放電損耗
性を確保するためには、純銅のような良好な導電性を有
することが好ましいこととなるが、一方、強度を高めて
機械的損耗を減らすためには、純銅が有する導電性を維
持したままでは不可能である。
The conductivity given to the copper alloy of the present invention is as follows:
It must be at a level of 70% IACS or higher. In order to suppress the consumption of the material due to arc discharge and to secure excellent discharge wear resistance, it is preferable to have good conductivity such as pure copper, but on the other hand, mechanical strength by increasing the strength It is not possible to reduce the loss while maintaining the conductivity of pure copper.

【0017】従って、相矛盾するこれらの特性を両立さ
せるためには、適切な導電率の設定が必要であり、70
%IACS以上は、そのための好ましい導電率となる。
この導電率が確保されるとき、良好な導電性に基づくア
ーク放電損耗への耐性と、高強度に基づく機械的損耗へ
の耐性とが両立する。そして、この導電率は、銅合金に
対して適度な温度での熱処理を施すことによって実現す
ることが可能であり、そのための温度としては、400
〜600℃が好ましい範囲となる。この範囲の下限およ
び上限のいずれを外れる場合にも、70%IACS以上
の導電率の確保は難しくなる。
Therefore, it is necessary to set an appropriate conductivity in order to make these contradictory characteristics compatible.
% IACS or more is a preferable electric conductivity for that.
When this conductivity is ensured, the resistance to arc discharge wear based on good conductivity and the resistance to mechanical wear based on high strength are compatible. This conductivity can be realized by subjecting the copper alloy to a heat treatment at an appropriate temperature.
~ 600 ° C is a preferred range. It is difficult to secure a conductivity of 70% IACS or more regardless of the lower limit or upper limit of this range.

【0018】本発明の銅合金においては、上記した成分
以外に特定された成分を添加する形態も可能である。M
g、Al、Ti、Cr、Mn、Zn、Zr、Mo、A
g、InあるいはSnが特定成分として好適であり、こ
れらの1種以上がその適量を添加される。これらの成分
は、硬さを向上させるように作用し、その効果は、添加
量が0.001〜0.3重量%のときに最良となる。
In the copper alloy of the present invention, a form in which a specified component other than the above-mentioned components is added is also possible. M
g, Al, Ti, Cr, Mn, Zn, Zr, Mo, A
g, In or Sn is suitable as the specific component, and one or more of these are added in an appropriate amount. These components act to improve the hardness, and the effect is best when the added amount is 0.001 to 0.3% by weight.

【0019】添加量が0.001重量%未満では効果が
不充分であり、逆に、0.3重量%を超えると、これら
の中に導電性を低下させて耐放電損耗性に悪影響を及ぼ
すものがあるので好ましくない。なお、これらを2種以
上併用するときには、耐放電損耗性確保の観点から、合
計量を1重量%以下に設定することが好ましい。
If the added amount is less than 0.001% by weight, the effect is insufficient. On the other hand, if it exceeds 0.3% by weight, the conductivity is reduced in these and the discharge wear resistance is adversely affected. Some things are not desirable. When two or more of these are used in combination, it is preferable to set the total amount to 1% by weight or less from the viewpoint of ensuring discharge resistance.

【0020】[0020]

【発明の実施の形態】次に、本発明による耐損耗性銅合
金の実施の形態を表1および表2に基づいて説明する。
Next, embodiments of the wear-resistant copper alloy according to the present invention will be described with reference to Tables 1 and 2.

【実施例1〜9】表1に示される組成の無酸素銅をベー
スとした各実施例の銅合金を高周波溶解炉により溶製
し、直径30mmおよび長さ250mmのインゴットに
それぞれ鋳造した。次に、これらのインゴットを熱間に
おいて押出加工し、幅30mmおよび厚さ8mmの板状
に成型した後、厚さが2.0mmとなるように冷間圧延
を施してから500℃において2時間の熱処理を施し、
引き続き、厚さが1.0mmとなるように冷間圧延を施
すことにより実施例1〜9の銅板を製造した。
Examples 1 to 9 Copper alloys based on oxygen-free copper having the compositions shown in Table 1 were melted in a high-frequency melting furnace and cast into ingots having a diameter of 30 mm and a length of 250 mm. Next, these ingots were extruded hot, formed into a plate having a width of 30 mm and a thickness of 8 mm, and then subjected to cold rolling so as to have a thickness of 2.0 mm, and then at 500 ° C. for 2 hours. Heat treatment,
Subsequently, the copper plates of Examples 1 to 9 were manufactured by performing cold rolling so that the thickness became 1.0 mm.

【0021】[0021]

【比較例1〜7】実施例1〜9に示した銅板の製造にお
いて、それぞれ表1に示される無酸素銅ベースの各比較
例の銅合金を使用し、他を同一条件に設定することによ
り比較例1〜7の銅板を製造した。
Comparative Examples 1 to 7 In the production of the copper plates shown in Examples 1 to 9, the copper alloys of Comparative Examples based on oxygen-free copper shown in Table 1 were used, and the other components were set under the same conditions. The copper plates of Comparative Examples 1 to 7 were manufactured.

【0022】[0022]

【従来例】実施例1〜9に示した銅板の製造において、
素材としてタフピッチ銅を使用し、他を同一条件に設定
することにより表1の従来例の銅板を製造した。
2. Description of the Related Art In the production of copper sheets shown in Examples 1 to 9,
A conventional copper plate shown in Table 1 was manufactured by using tough pitch copper as a material and setting other conditions to the same conditions.

【0023】[0023]

【実施例10〜12】実施例1〜9に示した銅板の製造
において、表1の実施例1に示される無酸素銅ベースの
銅合金を使用するとともに、熱処理条件を表2の実施例
に示される各条件に設定し、さらに、他を同一条件に設
定することにより実施例10〜12の銅板を製造した。
Examples 10 to 12 In the production of the copper sheets shown in Examples 1 to 9, the oxygen-free copper-based copper alloy shown in Example 1 in Table 1 was used, and the heat treatment conditions were changed to those in Table 2. The copper plates of Examples 10 to 12 were manufactured by setting the conditions shown and further setting the other conditions the same.

【0024】[0024]

【比較例8、9】実施例1〜9に示した銅板の製造にお
いて、表1の実施例1に示される無酸素銅ベースの銅合
金を使用するとともに、熱処理を表2に示される各条件
に設定し、他を同一条件に設定することにより比較例
8、9の銅板を製造した。
Comparative Examples 8 and 9 In the production of the copper plates shown in Examples 1 to 9, the oxygen-free copper-based copper alloy shown in Example 1 of Table 1 was used, and the heat treatment was performed under the conditions shown in Table 2. , And the other conditions were set to the same conditions, thereby producing the copper plates of Comparative Examples 8 and 9.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【表2】 [Table 2]

【0027】表1および表2に示される特性は、以上の
各実施例、比較例および従来例を対象に実施した試験結
果である。なお、消耗深さの試験方法は以下による。製
造された銅板より3mm×3mmの陰極用接点と10m
m×20mmの陽極用接点を採取し、この両接点間に4
8Vの開放電圧を印加するとともに、接触通電時に1.
0Aの電流が流れるように条件を設定し、接点間の接触
と離反を1サイクル/秒で100,000サイクル繰り
返したときの陽極用接点上に生じた凹部の深さを測定し
た。
The characteristics shown in Tables 1 and 2 are the results of tests performed on the above Examples, Comparative Examples and Conventional Examples. In addition, the test method of a consumption depth is as follows. 3mm x 3mm cathode contact and 10m from manufactured copper plate
An anode contact of mx 20 mm was sampled, and 4
An open voltage of 8 V is applied, and 1.
The conditions were set so that a current of 0 A flows, and the depth of the concave portion formed on the anode contact when contact and separation between the contacts were repeated 100,000 cycles at 1 cycle / second was measured.

【0028】表1によれば、実施例によるものが良好な
耐放電損耗性となる70%IACS以上の導電率を示し
ているとともに、高水準の硬さ(即ち、強度)を示して
いるのに比べ、従来例の場合には、実施例より平均60
ポイント低い硬さにとどまっており、従って、両者が示
す損耗深さには、このことによる耐機械的損耗性の差が
明瞭に現れている。
According to Table 1, the example according to the present invention shows a conductivity of 70% IACS or more, which gives good discharge wear resistance, and also shows a high level of hardness (ie, strength). In comparison, in the case of the conventional example, an average of 60
The point is a low hardness, and thus the wear depths indicated by both clearly show the difference in mechanical wear resistance.

【0029】また、NiとP、CoとNiとPの量が本
発明から外れる比較例1、2、およびFe、Niの合計
量とPの比率が本発明から外れる比較例3、4の場合に
は、導電率が70%IACSに達しておらず、従って、
このことによる耐放電損耗性の低さのために著しい消耗
深さを示している。表1には、本発明におけるFe、N
iおよびP等の添加効果、これらの成分の添加量限定の
理由、およびPとの併用比限定の理由が明確に示されて
いる。
In Comparative Examples 1 and 2 in which the amounts of Ni and P, Co, Ni and P are out of the range of the present invention, and in Comparative Examples 3 and 4 in which the ratio of the total amount of Fe and Ni to P is out of the range of the present invention. Has a conductivity of less than 70% IACS and therefore
Due to the low discharge wear resistance due to this, a significant wear depth is shown. Table 1 shows Fe, N in the present invention.
The effects of addition of i and P, the reason for limiting the amount of addition of these components, and the reason for limiting the combination ratio with P are clearly shown.

【0030】なお、実施例7〜9が高硬度を示している
のは、MgやZn等の特定成分の添加による効果であ
り、従って、本発明の実施に際しては、これらの成分を
加えることが好ましい。但し、比較例5〜7に見られる
ように過剰添加による導電率への影響もあるので、これ
らの成分の添加に当たっては、量についての配慮を行う
べきである。
The high hardness of Examples 7 to 9 is due to the effect of the addition of specific components such as Mg and Zn. Therefore, when implementing the present invention, it is not possible to add these components. preferable. However, as shown in Comparative Examples 5 to 7, there is an effect on the electrical conductivity due to the excessive addition. Therefore, when adding these components, consideration should be given to the amounts.

【0031】一方、熱処理条件の効果を示す表2による
と、熱処理温度を400〜600℃の範囲内に設定した
実施例10〜12によるものが、高レベルの導電率と硬
さを示し、従って、消耗深さにおいて良好な結果を示し
ているのに比べ、熱処理温度が上記範囲を外れる比較例
8および9の場合には、導電率が70%IACSに達し
ておらず、このため、耐放電損耗性の不足から大きな消
耗深さを示している。このことより、本発明の実施に際
しては、熱処理条件にも配慮すべきである。
On the other hand, according to Table 2 which shows the effects of the heat treatment conditions, those according to Examples 10 to 12 in which the heat treatment temperature is set in the range of 400 to 600 ° C. show high levels of conductivity and hardness, and On the other hand, in Comparative Examples 8 and 9 in which the heat treatment temperature was out of the above range, the conductivity did not reach 70% IACS, and the discharge resistance was low. It shows a large wear depth due to lack of wearability. For this reason, in implementing the present invention, consideration should be given to the heat treatment conditions.

【0032】[0032]

【発明の効果】以上説明したように、本発明によれば、
0.1〜2.4重量%のFe、0.1〜0.5重量%の
Co、および0.1〜0.5重量%のNiより選択され
る1種以上の成分と0.05〜0.2重量%のPを上記
1種以上の成分がPの3〜12倍の量となるように含有
する銅の合金に熱処理を施すことによって70%IAC
S以上の導電率を与え、これにより耐放電損耗性と耐機
械的損耗性を同時に備えた銅合金を提供するものであ
り、その有用性は大である。しかも、この銅合金におい
ては、銅材本来の低廉性を充分に備えており、このこと
による経済的利益も確実に得ることができる。
As described above, according to the present invention,
One or more components selected from 0.1 to 2.4% by weight of Fe, 0.1 to 0.5% by weight of Co, and 0.1 to 0.5% by weight of Ni; A 70% IAC is obtained by heat-treating a copper alloy containing 0.2% by weight of P so that the above-mentioned one or more components are in an amount of 3 to 12 times P.
The present invention provides a copper alloy having a conductivity of at least S and thereby having a resistance to discharge wear and a resistance to mechanical wear at the same time, and its usefulness is great. In addition, this copper alloy is sufficiently provided with the original low cost of the copper material, and it is possible to surely obtain the economic benefits.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】0.1〜2.4重量%のFe、0.1〜
0.5重量%のCo、および0.1〜0.5重量%のN
iより選択される1種以上の成分と0.05〜0.2重
量%のPを前記1種以上の成分がPの3〜12倍の量と
なるように含む不可避的不純物含有の銅に熱処理を施す
ことによって70%IACS以上の導電率を与えた合金
より成ることを特徴とする耐損耗性銅合金。
(1) 0.1 to 2.4% by weight of Fe, 0.1 to
0.5% by weight Co and 0.1-0.5% by weight N
copper containing unavoidable impurities containing one or more components selected from i and 0.05 to 0.2% by weight of P such that the one or more components are 3 to 12 times the amount of P A wear-resistant copper alloy comprising an alloy having a conductivity of 70% IACS or more by heat treatment.
【請求項2】前記合金は、400〜600℃の前記熱処
理を施されることによって前記導電率を与えられている
ことを特徴とする請求項1項記載の耐損耗性銅合金。
2. The wear-resistant copper alloy according to claim 1, wherein said alloy is given the electrical conductivity by being subjected to said heat treatment at 400 to 600 ° C.
【請求項3】前記合金は、0.1〜0.5重量%のFe
および0.1〜0.5重量%のCoの一方あるいは双方
の成分、0.1〜0.5重量%のNi、および0.05
〜0.2重量%のPを、前記一方あるいは双方の成分と
Niの合計がPの3〜10倍の量となるように含むとと
もに、Niと前記一方あるいは双方の成分の重量比が前
者1に対して後者が0.8以上となるように含むことを
特徴とする請求項1項記載の耐損耗性銅合金。
3. The alloy according to claim 1, wherein the alloy contains 0.1 to 0.5% by weight of Fe.
And 0.1 to 0.5% by weight of one or both components of Co, 0.1 to 0.5% by weight of Ni, and 0.05
0.20.2% by weight of P so that the sum of the one or both components and Ni is 3 to 10 times the amount of P, and the weight ratio of Ni to the one or both components is 1 2. The wear-resistant copper alloy according to claim 1, wherein the latter is included so that the latter is 0.8 or more.
【請求項4】前記合金は、Mg、Al、Ti、Cr、M
n、Zn、Zr、Mo、Ag、InあるいはSnより選
択される1種以上の添加成分を含むことを特徴とする請
求項1項記載の耐損耗性銅合金。
4. The alloy according to claim 1, wherein the alloy is Mg, Al, Ti, Cr, M
The wear-resistant copper alloy according to claim 1, further comprising one or more additional components selected from n, Zn, Zr, Mo, Ag, In, and Sn.
【請求項5】前記添加成分は、それぞれ0.001〜
0.3重量%の範囲内で添加されるとともに、その2種
以上が添加されるとき、合計が1重量%以下となるよう
に添加されることを特徴とする請求項4項記載の耐損耗
性銅合金。
5. The composition according to claim 1, wherein
The wear resistance according to claim 4, characterized in that it is added within a range of 0.3% by weight, and when two or more of them are added, the total is 1% by weight or less. Copper alloy.
JP2001115920A 2001-04-13 2001-04-13 Wear resistant copper alloy Expired - Fee Related JP4244528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001115920A JP4244528B2 (en) 2001-04-13 2001-04-13 Wear resistant copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001115920A JP4244528B2 (en) 2001-04-13 2001-04-13 Wear resistant copper alloy

Publications (2)

Publication Number Publication Date
JP2002309326A true JP2002309326A (en) 2002-10-23
JP4244528B2 JP4244528B2 (en) 2009-03-25

Family

ID=18966742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001115920A Expired - Fee Related JP4244528B2 (en) 2001-04-13 2001-04-13 Wear resistant copper alloy

Country Status (1)

Country Link
JP (1) JP4244528B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120141057A1 (en) * 2009-05-07 2012-06-07 Holger Schmitt Plain bearing material
JP7483217B2 (en) 2018-08-21 2024-05-15 住友電気工業株式会社 Insulated wires, terminal-attached wires, copper alloy wires, and copper alloy stranded wires

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120141057A1 (en) * 2009-05-07 2012-06-07 Holger Schmitt Plain bearing material
US9468974B2 (en) * 2009-05-07 2016-10-18 Federal-Mogul Wiesbaden Gmbh Plain bearing material
JP7483217B2 (en) 2018-08-21 2024-05-15 住友電気工業株式会社 Insulated wires, terminal-attached wires, copper alloy wires, and copper alloy stranded wires

Also Published As

Publication number Publication date
JP4244528B2 (en) 2009-03-25

Similar Documents

Publication Publication Date Title
CN101246758B (en) Sliding electric contact material for low current
KR20010080447A (en) Stress relaxation resistant brass
KR0121724B1 (en) Silver-oxide based electric contact material
CN107604203A (en) The tin bronze alloys and its solid solution craft of a kind of high-strength high-elasticity
CN102134666A (en) Novel silver-based electric contact elastic material and application thereof
JP4244528B2 (en) Wear resistant copper alloy
JP3886303B2 (en) Copper alloy for electrical and electronic parts
JPH0718355A (en) Copper alloy for electronic appliance and its production
JP2002309325A (en) Attrition-resistant copper alloy
JP2010100912A (en) Silver-oxide-based electric contact material
JP2000063968A (en) Copper alloy for electrical and electronic parts
JP4994144B2 (en) Silver-oxide based electrical contact materials
JPH1053824A (en) Copper alloy for contact material, and its production
JPS6021215B2 (en) electrical contact materials
JP2952289B2 (en) DC contact for engine starter
JPS59107053A (en) Electrothermic alloy
KR0182225B1 (en) Cu-zr-mg-mischemetal alloy and the heat treatment thereof
JPS6036636A (en) Electrical contact point material consisting of silver-tin oxide alloy
JPS60258436A (en) Electrical contact material
KR0182226B1 (en) Cu-cr-mg-mischmetal alloy and the heat treatment thereof
KR0182224B1 (en) Cu-zr-mischmetal alloy and the heat treatment thereof
JPS6120616B2 (en)
KR100531217B1 (en) Compound metal for electric contact
JPH04314837A (en) Electrical contact material of silver oxide series
JP2009030098A (en) Silver-oxide based electrical contact material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081229

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140116

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees