JP2878718B2 - Contact material for vacuum valve - Google Patents

Contact material for vacuum valve

Info

Publication number
JP2878718B2
JP2878718B2 JP1182715A JP18271589A JP2878718B2 JP 2878718 B2 JP2878718 B2 JP 2878718B2 JP 1182715 A JP1182715 A JP 1182715A JP 18271589 A JP18271589 A JP 18271589A JP 2878718 B2 JP2878718 B2 JP 2878718B2
Authority
JP
Japan
Prior art keywords
contact
matrix
crystal grain
contact material
withstand voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1182715A
Other languages
Japanese (ja)
Other versions
JPH0347931A (en
Inventor
経世 関
功 奥富
誠司 千葉
敦史 山本
茂男 相馬
薫旦 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1182715A priority Critical patent/JP2878718B2/en
Publication of JPH0347931A publication Critical patent/JPH0347931A/en
Application granted granted Critical
Publication of JP2878718B2 publication Critical patent/JP2878718B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/302Cu as the principal constituent

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、真空バルブ用接点材料に係り、特に耐溶着
特性及び耐電圧特性を改良した真空バルブ用接点材料に
関する。
The present invention relates to a contact material for a vacuum valve, and more particularly to a contact material for a vacuum valve having improved welding resistance and withstand voltage characteristics.

(従来の技術) 真空バルブ用接点材料に要求される特性としては、耐
溶着、耐電圧、遮断に対する各性能で示される基本三要
件と、この他に温度上昇、接触抵抗が低く安定している
ことが重要な要件となっている。しかしながら、これら
の要件の中には相反するものがある関係上、単一の金属
種によって全ての要件を満足させることは不可能であ
る。このため、実用されている多くの接点材料において
は、不足する性能を相互に補えるような2種以上の元素
を組合せ、かつ大電流用又は高電圧用などのように特定
の用途に合った接点材料の開発が行われ、それなりに優
れた特性を有するものが開発されているが、さらに強ま
る高耐圧化および大電流化の要求を充分満足する真空バ
ルブ用接点材料は未だ得られていないのが実状である。
(Prior art) The characteristics required for the contact material for a vacuum valve are the three basic requirements indicated by the performances for welding resistance, withstand voltage, and breaking, and in addition, the temperature rise and contact resistance are low and stable. Is an important requirement. However, because some of these requirements are conflicting, it is impossible to satisfy all requirements with a single metal species. For this reason, in many contact materials that are in practical use, a combination of two or more elements that can mutually compensate for the insufficient performance, and a contact suitable for a specific application such as for large current or high voltage Materials have been developed, and materials with excellent properties have been developed.However, the contact materials for vacuum valves that sufficiently satisfy the demands for higher withstand voltage and higher current have not yet been obtained. It is a fact.

例えば、大電流化を指向した接点材料としてBiのよう
な溶着防止成分を5%以下の量で含有するCu−Bi合金材
料が知られている(特公昭41−12131号公報)がCu母相
に対するBiの溶解度が極めて低いため、しばしば偏析を
生じ、遮断後の表面荒れが大きく、加工成形が困難であ
るなどの問題点を有している。
For example, a Cu-Bi alloy material containing a welding prevention component such as Bi in an amount of 5% or less as a contact material aimed at increasing the current is known (Japanese Patent Publication No. 41-12131). Since the solubility of Bi in water is extremely low, segregation often occurs, the surface roughness after interruption is large, and there is a problem that working and forming are difficult.

また、大電流化を指向した他の接点材料として、Cu−
Te合金材料も知られている(特公昭44−23751号公
報)。この合金は、Cu−Bi系合金材料が持つ上記問題点
を緩和してはいるが、Cu−Bi系合金材料に比較して雰囲
気に対し、より敏感なため接触抵抗などの安定性に欠け
る。
In addition, Cu-
Te alloy materials are also known (JP-B-44-23751). Although this alloy mitigates the above problems of the Cu-Bi alloy material, it is more sensitive to the atmosphere than the Cu-Bi alloy material and thus lacks stability such as contact resistance.

さらに、これらCu−Te、Cu−Bi等の接点材料の共通的
特徴として、耐溶着性に優れているものの、耐電圧特性
が従来の中電圧クラスへの適用には充分であるとして
も、これ以上高い電圧分野への適用に対しては、必ずし
も満足でないことが明らかとなってきた。
Furthermore, as a common feature of these contact materials such as Cu-Te and Cu-Bi, even though they have excellent welding resistance, even if their withstand voltage characteristics are sufficient for application to the conventional medium-voltage class, this is not the case. It has become clear that application to the high voltage field is not always satisfactory.

一方、Crを含有したCu−Cr合金材料が真空バルブ用接
点材料として、知られている。この接点材料は、高温下
でのCrとCuとの熱特性が好ましい状態で発揮されるため
高耐圧大電流用として優れた特性を有している。すなわ
ち、Cu−Cr合金材料は、高耐圧特性と、大容量遮断とを
両立させ得る接点として多用されている。
On the other hand, a Cu-Cr alloy material containing Cr is known as a contact material for a vacuum valve. This contact material exhibits excellent thermal characteristics of Cr and Cu at high temperatures, and thus has excellent characteristics for high withstand voltage and large current. That is, the Cu-Cr alloy material is frequently used as a contact capable of achieving both high withstand voltage characteristics and high capacity breaking.

しかしながら、Cu−Cr合金材料は、遮断器用接点材料
として一般に多用されている前述したBiを5%程度以下
添加したCu−Bi合金材料と比較して、耐溶着特性が大幅
に劣っている。
However, the Cu-Cr alloy material is significantly inferior in the welding resistance to the Cu-Bi alloy material to which Bi is added in an amount of about 5% or less, which is generally used as a contact material for circuit breakers.

溶着現象とは、接点同士の接触面に発生するジュール
熱により接点材料が溶融し、その後に凝固する場合、開
閉の瞬間に発生するアーク放電により接点材料が気化し
その後に凝固する場合の2通りに於いて発生する。Cu−
Cr合金材料に於いて、何れも場合も凝固する段階でCrと
Cuが1μm以下の微粒子となり互いに入り乱れた状態で
数μm〜数百μm程度の層を形成する。
The welding phenomenon means that the contact material is melted by the Joule heat generated at the contact surfaces of the contacts and then solidified, and the contact material is vaporized by the arc discharge generated at the moment of opening and closing and then solidified. Occurs at Cu−
In any of the Cr alloy materials, Cr and
Cu forms fine particles of 1 μm or less and forms a layer of several μm to several hundred μm in a state where they are disturbed with each other.

一般に、組織の超微細化は、材料の強度向上に寄与す
る要因の一つであり、この場合も例外ではない。しかし
て、この超微細Cu−Cr層の強度がCu−Cr合金材料のマト
リクスの強度に優れ、かつ、マトリクス強度が設計され
た引外し力を超えた時にも溶着が発生する。
Generally, ultra-fine structure is one of the factors contributing to the improvement of the strength of a material, and this case is no exception. Thus, even when the strength of the ultrafine Cu-Cr layer is excellent in the strength of the matrix of the Cu-Cr alloy material and the matrix strength exceeds the designed tripping force, welding occurs.

したがって、Cu−Cr材料を用いた真空バルブを駆動さ
せる操作機構は、Cu−Biに比べ引外し力を大きく設計す
る必要があり、小形化や経済性の点で困難である。
Therefore, an operating mechanism for driving a vacuum valve using a Cu-Cr material needs to be designed to have a larger tripping force than Cu-Bi, and is difficult in terms of miniaturization and economy.

また、Cu−Cr材料の耐溶着性を改良した接点として、
Cu−Cr接点にBiを添加したCu−Cr−Bi接点が知られてい
る(特公昭61−41091号公報)。この接点は、一般的にC
u−Cr材料の耐溶着性の改善には効果を示すが、Bi添加
の影響の為、素材が著しく脆化し、耐圧特性の低下及び
再点孤発生確率の増加を再発させる欠点を有する。
Also, as a contact with improved welding resistance of Cu-Cr material,
A Cu-Cr-Bi contact in which Bi is added to a Cu-Cr contact is known (Japanese Patent Publication No. 61-41091). This contact is typically C
Although effective in improving the welding resistance of the u-Cr material, it has the disadvantage that the material is significantly embrittled due to the effect of Bi, causing a reduction in the pressure resistance and an increase in the probability of occurrence of re-arcing.

(発明が解決しようとする課題) 上記した様に、Cu−Cr−Bi接点材料は一般的に従来の
Cu−Cr接点材料に比較して、耐溶着性は改善されるが、
耐電圧及び再点孤発生の面で問題が残っている。
(Problems to be Solved by the Invention) As mentioned above, Cu-Cr-Bi contact materials are generally
Compared to Cu-Cr contact materials, the welding resistance is improved,
Problems remain in terms of withstand voltage and occurrence of re-arcing.

そこで、本発明は、真空バルブ用Cu−Cr−Bi接点材料
の耐溶着性を維持したまま、耐電圧の低下及び再点孤発
生確率の低下を極力抑えた真空バルブ用接点材料を提供
することを目的とする。
Accordingly, the present invention provides a vacuum valve contact material that minimizes a decrease in withstand voltage and a reduction in the probability of occurrence of re-ignition while maintaining the welding resistance of the Cu-Cr-Bi contact material for a vacuum valve. With the goal.

[発明の構成] (課題を解決するための手段) 本発明は上記目的を達成するため、CuとBiならびにCr
からなり、該Crの含有量が20〜60重量%であり、かつ該
Biの含有量(Biに対してCuとBiを加えたものの比)が0.
05〜1.0重量%であり、 Cuマトリクスの結晶粒界に存在する前記Biを制御する
ための構成として、Cr粒子を包含するよう前記Cuマトリ
クスの平均結晶粒径を0.7mm以上としたことを特徴とす
る真空バルブ用接点材料である。
[Constitution of the Invention] (Means for Solving the Problems) In order to achieve the above object, the present invention provides Cu, Bi and Cr.
Comprising 20 to 60% by weight of Cr, and
Bi content (ratio of Cu plus Bi to Bi) is 0.
0.05 to 1.0% by weight, and as an arrangement for controlling the Bi present at the crystal grain boundaries of the Cu matrix, the average crystal grain size of the Cu matrix is set to 0.7 mm or more so as to include Cr particles. Material for a vacuum valve.

また、Cr粒子を包含したCuを主成分とするCuマトリク
スの結晶粒内に、Bi単体又は/及びBiを主成分とするBi
合金が存在することを特徴する請求項1記載の真空バル
ブ用接点材料である。
Further, in the crystal grains of the Cu matrix containing Cu as a main component containing Cr particles, Bi alone or / and Bi containing Bi as a main component are contained.
2. The vacuum valve contact material according to claim 1, wherein an alloy is present.

(作用) 上記した手段の様に、Cu−Cr−Bi接点材料に於いて、
Cr粒子を包含した導電材料の平均結晶粒径を0.7mm以上
とする事によって、Cu−Cr−Bi接点の耐溶着特性を維持
したまま、Cu−Cr接点材料とほぼ同等の耐電圧、再点孤
発生確率とする事ができる。
(Operation) As described above, in the Cu-Cr-Bi contact material,
By setting the average crystal grain size of the conductive material containing Cr particles to 0.7 mm or more, the withstand voltage and re-pointing almost the same as the Cu-Cr contact material while maintaining the welding resistance of the Cu-Cr-Bi contact. Can be the probability of spawning.

すなわち、その作用について具体的に述べる。 That is, the operation is specifically described.

Cu−Cr−Bi接点材料に於いてBiの存在形態は次の4つ
に分類される。Cuへの固溶Cr粒子とCuを主成分とす
る導電材料(Cuマトリクス)界面への存在Cuマトリク
ス結晶粒界への存在Cuマトリクス結晶粒内への存在で
ある。これら存在形態のうち接点強度に一番強い影響を
与えるのは、Cuマトリクス結晶粒界へのBiの存在であ
り、ここへのBi量が多い程接点強度が脆く結果として耐
電圧の低下及び再点孤発生確率の助長を促す事を本発明
者らはつきとめた。
Bi exists in the Cu-Cr-Bi contact material in the following four forms. It exists at the interface between the solid-dissolved Cr particles in Cu and the conductive material (Cu matrix) containing Cu as a main component. It exists at the Cu matrix crystal grain boundaries. It exists in the Cu matrix crystal grains. The presence of Bi in the crystal grain boundaries of Cu matrix has the strongest effect on the contact strength among these existing forms. The present inventors have found that encouraging the probability of the occurrence of ignition is promoted.

本発明者らの実験によれば、Cuへの固溶及びCr粒子と
Cuマトリクス界面に存在するBi量は、同一原料使用の場
合、ほぼ一定であるが、Cuマトリクスの結晶粒径の大き
さにより、BiのCuマトリクス結晶粒界への存在量とCuマ
トリクス結晶粒内への存在量が異なってくる。即ち、Cu
マトリクス結晶粒径が細い場合、BiはCuマトリクス結晶
粒界に存在し易くなり、逆にCuマトリクス結晶粒径が大
きい場合は、Cuマトリクス結晶粒内に存在するBi量が多
く、結晶粒界への存在は少ない。
According to the experiments of the present inventors, solid solution in Cu and Cr particles
The amount of Bi present at the Cu matrix interface is almost constant when the same raw material is used, but the amount of Bi present at the Cu matrix grain boundaries and the amount of Abundances to the different. That is, Cu
When the matrix crystal grain size is small, Bi tends to be present at the Cu matrix crystal grain boundaries. Conversely, when the Cu matrix crystal grain size is large, the amount of Bi present in the Cu matrix crystal grains is large, There are few.

上述の要因により、接点母材強度はCuマトリクス結晶
粒径が大きい方が強く、耐電圧特性及び再点孤発生確率
も従来のCu−Cr接点並みとなる。
Due to the above factors, the strength of the contact base material is stronger when the crystal grain size of the Cu matrix is larger, and the withstand voltage characteristics and the probability of occurrence of re-arcing are comparable to those of the conventional Cu-Cr contact.

(実施例) 以下、本発明の実施例を具体的実施態様に基づいて説
明するが、はじめに本発明の接点材料が適用される真空
バルブの構成を第1図および第2図を参照して説明す
る。
(Example) Hereinafter, an example of the present invention will be described based on a specific embodiment. First, the configuration of a vacuum valve to which the contact material of the present invention is applied will be described with reference to FIGS. 1 and 2. I do.

第1図は、本発明の接点材料を適用する真空バルブの
構成例を示すもので、同図に於いて、1は遮断室を示
し、この遮断室1は、絶縁材料によりほぼ円筒状に形成
された絶縁容器2と、この両端に封止金具3a,3bを介し
て設けた金属性の蓋体4a,4bとで真空気密に構成されて
いる。しかして、上記遮断室1内には、導電棒5,6の対
向する端部に取付けられた1対の電極7,8が配設され、
上部の電極7を固定電極、下部の電極8を可動電極とし
ている。また、この可動電極8の電極棒6には、ベロー
ズ9が取付けられ遮断室1内を真空気密に保持しながら
電極8の軸方向の移動を可能にし、このベローズ9上部
には金属性のアークシールド10が設けられ、ベローズ9
がアーク蒸気で覆われることを防止している。11は、上
気電極7,8を覆うようにして遮断室1内に設けられた金
属性のアークシールドで、絶縁容器2がアーク蒸気で覆
われることを防止している。さらに、電極8は、第2図
に拡大して示すように、導電棒6にろう付部12によって
固定されるか、また、かしめによって圧着接続されてい
る。接点13aは、電極8にろう付け14で固着されてい
る。なお、第1図における13bは固定側接点である。
FIG. 1 shows an example of the configuration of a vacuum valve to which the contact material of the present invention is applied. In FIG. 1, reference numeral 1 denotes a shut-off chamber, and this shut-off chamber 1 is formed in a substantially cylindrical shape from an insulating material. The insulated container 2 and the metallic lids 4a and 4b provided at both ends thereof with sealing fittings 3a and 3b are formed in a vacuum-tight manner. Thus, a pair of electrodes 7, 8 attached to opposing ends of the conductive rods 5, 6 are arranged in the shut-off chamber 1,
The upper electrode 7 is a fixed electrode, and the lower electrode 8 is a movable electrode. A bellows 9 is attached to the electrode rod 6 of the movable electrode 8 to enable the electrode 8 to move in the axial direction while keeping the inside of the shutoff chamber 1 vacuum-tight. Shield 10 is provided and bellows 9
Is prevented from being covered with arc vapor. Reference numeral 11 denotes a metallic arc shield provided in the shut-off chamber 1 so as to cover the upper air electrodes 7 and 8, and prevents the insulating container 2 from being covered with the arc vapor. Further, as shown in an enlarged manner in FIG. 2, the electrode 8 is fixed to the conductive rod 6 by a brazing portion 12, or is connected by crimping by crimping. The contact 13a is fixed to the electrode 8 by brazing. In FIG. 1, reference numeral 13b denotes a fixed contact.

本発明に係る接点材料は、上記したような接点13a,13
bの双方または何れか一方を構成するのに適したもので
ある。
The contact material according to the present invention includes the contacts 13a, 13 as described above.
It is suitable for constituting both or any one of b.

次に、本発明に係る接点材料の製造方法について説明
する。本発明のCu−Cr−Bi接点材料の製造方法は大きく
2つに大別され、その1つは溶浸法であり、もう1つは
固相法である。
Next, a method for manufacturing a contact material according to the present invention will be described. The method for producing a Cu-Cr-Bi contact material according to the present invention is roughly classified into two, one of which is an infiltration method and the other is a solid phase method.

まず溶浸法の一例について記す。 First, an example of the infiltration method will be described.

所定粒径のCr粉末を加圧成形して粉末成形体を得る。
次いで、この粉末成形体を露点が−50℃以下の水素雰囲
気または真空度が1×10-3Torr以下で、所定温度例えば
950℃×1時間にて仮焼結し、仮焼結体を得る。
A powder compact is obtained by press-molding a Cr powder having a predetermined particle size.
Next, this powder compact is subjected to a hydrogen atmosphere having a dew point of −50 ° C. or less or a vacuum degree of 1 × 10 −3 Torr or less at a predetermined temperature, for example.
Temporarily sintered at 950 ° C. × 1 hour to obtain a temporarily sintered body.

次いで、この仮焼結体の残存空孔中に予め所定のBi%
を含有したCu−Bi合金材料を例えば1100℃×30分で溶浸
した後、所定の冷却方法で冷却凝固し、Cu−Cr−Bi合金
材料を得る。溶浸は主として真空中で行うが、水素中で
も行い得る。
Next, a predetermined Bi%
Is infiltrated at, for example, 1100 ° C. for 30 minutes, and then cooled and solidified by a predetermined cooling method to obtain a Cu—Cr—Bi alloy material. The infiltration is performed mainly in vacuum, but can also be performed in hydrogen.

ここで、焼結熱処理又は/及び溶浸熱処理温度を高め
に選択すると、Cu及びBiの蒸発が激しく、その成分量の
制御が重要となる。しかし、炉の性能、または一度に熱
処理する素材の量、大きさ、熱容量などによって熱処理
温度は変動するので、その温度を普遍的に表現すること
は無理であり、実際には残存するCu量を、例えばX線法
によって直接的に決定し管理する方法が取られ得るが、
概して1300℃以上の温度の選択はCuの存在を少なくし、
好ましくないことが明らかになっている。
Here, when the sintering heat treatment and / or the infiltration heat treatment temperature is selected to be higher, the evaporation of Cu and Bi is intense, and it is important to control the amounts of the components. However, since the heat treatment temperature varies depending on the furnace performance or the amount, size, heat capacity, etc. of the material to be heat treated at one time, it is impossible to express that temperature universally. For example, a method of directly determining and managing by X-ray method can be adopted,
Generally, the choice of temperature above 1300 ° C reduces the presence of Cu,
It has proven unfavorable.

一方、下限温度は、焼結熱処理に於いては、原料また
は成形体の脱ガスの観点から600℃以上、好ましくは900
℃以上を必要とし、また溶浸熱処理に於いては、スケル
トンを脱ガスし、かつCuを溶融する必要性から少なくと
も1100℃を必要とする。
On the other hand, the lower limit temperature is 600 ° C. or more, preferably 900 ° C. in the sintering heat treatment, from the viewpoint of degassing of the raw material or the compact.
C. or higher, and in the infiltration heat treatment, at least 1100 ° C. is required due to the need to degas the skeleton and melt Cu.

更にCuマトリクスの結晶粒度の面から溶浸後の冷却速
度がポイントとなる。本発明者らの知見によれば、溶浸
時のポート下方に水冷機構を設け、その冷却水温度及び
水の流量によって溶浸材の冷却速度を調整し、Cuマトリ
クスの結晶粒度を調整する事は可能であった。
Further, the cooling rate after infiltration is important in terms of the crystal grain size of the Cu matrix. According to the findings of the present inventors, a water cooling mechanism is provided below the port during infiltration, and the cooling rate of the infiltrant is adjusted by the cooling water temperature and the flow rate of water to adjust the crystal grain size of the Cu matrix. Was possible.

次いで、固相焼結法の一例について記す。 Next, an example of the solid phase sintering method will be described.

所定のCr粉末Cu粉末およびBi粉末を混合した後、プレ
ス機にて圧粉体を成形し、次いで露点が−50℃以下の水
素雰囲気または1×10-3Torr以下の真空雰囲気にて焼結
する。このプレス工程と焼結工程を複数回繰り返し、目
的とするCu−Cr−Bi接点材料を得る。
After mixing the specified Cr powder Cu powder and Bi powder, the green compact is formed by a press machine, and then sintered in a hydrogen atmosphere having a dew point of -50 ° C or less or a vacuum atmosphere of 1 × 10 -3 Torr or less. I do. This pressing step and sintering step are repeated a plurality of times to obtain the desired Cu-Cr-Bi contact material.

ここで、注意を要するのは、焼結後のプレス圧力によ
る加工率であり、更に焼結条件である。本発明者らの研
究によれば、本発明の特徴であるCuマトリクスの結晶粒
度を決定する因子は、最終工程のプレス及び焼結条件で
あり、例えば最終工程でのプレスによる加工歪(堆積変
化)は数%程度であり、焼結条件は1000℃×2Hr(時
間)保持によってCuマトリクスの結晶粒度を0.7mmとす
ることができる。
What should be noted here is the working ratio by the pressing pressure after sintering, and the sintering conditions. According to the study of the present inventors, the factor that determines the crystal grain size of the Cu matrix, which is a feature of the present invention, is the pressing and sintering conditions in the final step, for example, processing strain (deposition change) due to pressing in the final step. ) Is about several percent, and the sintering condition is that the crystal grain size of the Cu matrix can be reduced to 0.7 mm by holding at 1000 ° C. × 2 hours (time).

この様にして製造された接点材料はCuマトリクスの結
晶粒径が1mm以上であり、接点中のBiの分布から、耐圧
特性がBi無添加のCu−Cr接点と同等であり、真空バルブ
用接点材料として最適である。
The contact material manufactured in this way has a Cu matrix crystal grain size of 1 mm or more, and from the distribution of Bi in the contacts, the pressure resistance characteristics are equivalent to those of the Cu-Cr contacts without Bi added. Ideal as a material.

次に、以上のようにして製造された各接点材料の比較
例と対比して示す。なお、その各例において評価したと
きの条件、方法は、次の通りである。
Next, each contact material manufactured as described above is shown in comparison with a comparative example. The conditions and methods for evaluation in each of the examples are as follows.

(1)耐溶着性 外径25mmφの一対の円板状試料に外径25mmφ先端が10
0Rの球面をなす加圧ロッドを対向させ、100kgの荷重を
加え10-5mmHgの真空中において50Hz,20KAの電流を20ミ
リ秒間通電し、その時の試料−ロッド間の引外しに必要
な力を測定し耐溶着性の判断をした。なお、評価は、比
較例2に示した溶浸上りのCu−Cr合金材料の溶着引外し
力を1.00としたときの相対的な値で比較した。各表には
上記接点数3個の測定値におけるばらつき幅を示す。
(1) Welding resistance A pair of disk-shaped specimens with an outer diameter of 25 mmφ has a tip with an outer diameter of 25 mmφ of 10
A pressure rod having a spherical surface of 0R is opposed, a load of 100 kg is applied, a current of 50 Hz, 20 KA is applied in a vacuum of 10 -5 mmHg for 20 milliseconds, and the force required for tripping between the sample and the rod at that time Was measured to determine the welding resistance. The evaluation was made based on a relative value when the welding and peeling force of the Cu-Cr alloy material after infiltration shown in Comparative Example 2 was 1.00. Each table shows the variation width in the measured values of the three contact points.

(2)耐電圧特性 各接点合金についてバフ研磨により鏡面仕上をしたNi
針を陽極とし、同じように鏡面仕上をした各試料を陰極
とし、両極間のギャップを0.5mmとし、10-6mmHgの真空
において徐々に電圧を上昇しスパークを発生したときの
電圧値を測定し、静耐圧値を求めた。第2表に示す測定
データは、3回の繰返しテストを行ったときのばらつき
値を含めて、溶浸上りのCu−Cr合金の静耐圧値を1.00
(第1表に示す比較例1)としたときの相対的な値で示
した。
(2) Withstand voltage characteristics Ni that is mirror-finished by buffing for each contact alloy
The needle is used as the anode, each mirror-finished sample is used as the cathode, the gap between the two electrodes is set to 0.5 mm, and the voltage is gradually increased in a vacuum of 10 -6 mmHg to measure the voltage value when spark is generated Then, a static withstand voltage value was obtained. The measurement data shown in Table 2 indicates that the static withstand voltage of the infiltrated Cu-Cr alloy was 1.00, including the variation when three repetitive tests were performed.
(Comparative Example 1 shown in Table 1) is shown as a relative value.

(3)再点孤特性 径30mm、厚さ5mmの円板状接点片を、ディマウンタブ
ル形真空バルブに装着し、6KV×500Aの回路を2000回し
ゃ断した時の再点孤発生頻度を測定し、2台のしゃ断器
(バルブとして6本)のばらつき幅(最大および最小)
で示した。接点の装着に際しては、ベーキング加熱(45
0℃、30分)のみを行い、ろう材の使用ならびにこれに
伴う加熱は行わなかった。
(3) Re-ignition characteristics A disk-shaped contact piece with a diameter of 30 mm and a thickness of 5 mm is attached to a demountable vacuum valve, and the frequency of re-ignition when a circuit of 6 KV x 500 A is cut off 2,000 times is measured. And the variation width (maximum and minimum) of two circuit breakers (six valves)
Indicated by Baking heating (45
(0 ° C., 30 minutes) only, and no brazing material was used and no accompanying heating was performed.

実施例1〜2、比較例−2 Cu量約50wt%、Bi/Cu+Bi量0.5wt%(重量%)、溶浸
温度1100℃一定とし、冷却条件のみを変えCuマトリクス
の平均結晶粒径を3mm、0.7mm、100μmと異なるCu−Cr
−Bi接点を製作した(各々、実施例1,2、比較例−
3)。各々の特性は第1表に示す通り、耐溶着特性はBi
を添加していないCu−Cr接点(比較例−1)に比して大
幅に良好であるが、耐電圧特性並びに再点孤発生確率は
結晶粒径が小さい程低下し、特に100μmのもの(比較
例−3)に於いては、再点孤発生確率が大幅に上昇し、
使用不可と判断される状態であった。以上の結果よりCu
マトリクスは0.7mm以上の結晶粒が望ましい。
Examples 1-2, Comparative Example-2 Cu content about 50 wt%, Bi / Cu + Bi content 0.5 wt% (wt%), infiltration temperature constant at 1100 ° C, only cooling conditions were changed, and the average crystal grain size of the Cu matrix was 3 mm. , 0.7mm, Cu-Cr different from 100μm
-Bi contacts were manufactured (Examples 1 and 2, Comparative Example-
3). As shown in Table 1, the characteristics of the welding resistance were Bi
Is significantly better than the Cu-Cr contact to which Cu is not added (Comparative Example-1), but the withstand voltage characteristics and the probability of occurrence of re-dotting decrease as the crystal grain size becomes smaller. In Comparative Example-3), the probability of occurrence of re-incarnation greatly increased,
The status was determined to be unusable. From the above results, Cu
The matrix is desirably a crystal grain of 0.7 mm or more.

実施例2〜4、比較例3〜4 Cu量50wt%、溶浸温度、冷却条件を一定とし、Bi含有
量を0.01,0.05,0.48,1.0,5.3と変化させCu−Cr−Bi接点
を製作した(各々比較例−3、実施例−3,2,4、比較例
−4)。第1表に示す様にBi含有量の少ないもの(比較
例−3)は、耐電圧特性再点孤発生確率は良好であった
が、耐溶着性の改善はほとんど見られなかった。一方Bi
含有量の多いもの(比較例−4)では、Cu結晶粒が細い
ものと同様に再点孤発生確率及び耐電圧特性の低下が著
しかった。以上よりBi/Cu+Bi量は0.05〜1.0が適当であ
ると言える。
Examples 2 to 4 and Comparative Examples 3 to 4 A Cu-Cr-Bi contact was manufactured by changing the Bi content to 0.01, 0.05, 0.48, 1.0 and 5.3 while keeping the Cu content at 50 wt%, the infiltration temperature and the cooling conditions constant. (Comparative Example-3, Examples-3, 2, 4, and Comparative Example-4, respectively). As shown in Table 1, those having a low Bi content (Comparative Example-3) had a good probability of occurrence of re-arcing of the withstand voltage characteristics, but showed little improvement in the welding resistance. Bi
In the case where the content was large (Comparative Example-4), the probability of occurrence of restriking and the decrease in withstand voltage characteristics were remarkable as in the case where the Cu crystal grains were thin. From the above, it can be said that the Bi / Cu + Bi amount is suitably 0.05 to 1.0.

実施例−5 溶浸温度と冷却条件の相互効果について検討する。溶
浸温度1300℃、冷却条件を10℃×3/分の冷却として
0.7mmの平均結晶粒径を得た。この特性は、耐溶着特性
・耐電圧特性、再点孤発生確率のいずれも良好な特性を
得られるものであった。
Example 5 The mutual effect of the infiltration temperature and the cooling condition is examined. Infiltration temperature 1300 ° C, cooling condition is 10 ° C x 3 / min.
An average crystal grain size of 0.7 mm was obtained. As for these characteristics, favorable characteristics were obtained in all of the welding resistance characteristics, the withstand voltage characteristics, and the probability of occurrence of re-arcing.

この結果から、耐溶着特性・耐電圧特性・再点孤発生
確率のいずれも満足するには、Bi量及びCuマトリクスの
結晶粒径の制御が必要である事が再確認できた。
From these results, it was reconfirmed that it is necessary to control the amount of Bi and the crystal grain size of the Cu matrix in order to satisfy all of the welding resistance characteristics, the withstand voltage characteristics, and the probability of occurrence of re-arcing.

今まで実施例として溶浸法を取扱ってきた。溶浸法の
場合、Cu結晶粒径へ最も影響を及ぼす因子はCu凝固時の
冷却条件であり、これは熱源を切断した事による自然冷
却を考えれば、炉内の熱容量の他に炉自体の特性と見る
ところも有る。しかし仮に熱源の切断によって得られる
Cuマトリクスの平均結晶粒径が0.7mmに満たない様な特
性をもった炉であれば、冷却条件を熱源の切断ではな
く、熱入力を徐々に低下させる事によってCuマトリクス
結晶粒径を制御する事が可能である。
Up to now, the infiltration method has been used as an example. In the case of the infiltration method, the most influential factor on the Cu crystal grain size is the cooling conditions during solidification of Cu, which, in consideration of natural cooling by cutting off the heat source, besides the heat capacity inside the furnace, There is also a place to see it as a characteristic. But suppose it is obtained by cutting off the heat source
If the furnace has characteristics such that the average crystal grain size of the Cu matrix is less than 0.7 mm, the cooling condition is controlled by gradually lowering the heat input rather than cutting off the heat source. Things are possible.

固相焼結法の実施例について記す。 An example of the solid phase sintering method will be described.

比較例−5〜6、実施例−6 最終工程の加工率及び焼結条件によって100μmのCu
結晶粒径を得たBiを含まないCu−Cr接点(比較例−5)
及び100μmのCu結晶粒径を得たCu−Cr−Bi接点(比較
例−6)、1mmのCu−Cr−Bi接点(実施例−6)につい
て比較検討する。
Comparative Example-5-6, Example-6 100 μm Cu depending on the processing rate and sintering conditions in the final step
Bi-free Cu-Cr contacts with crystal grain size obtained (Comparative Example-5)
And a Cu-Cr-Bi contact (Comparative Example-6) having a Cu crystal grain size of 100 µm and a 1-mm Cu-Cr-Bi contact (Example-6).

Biを含有しない固相Cu−Cr接点(比較例−5)は溶浸
法Cu−Cr接点と比較して、若干の耐溶着性の改善を示す
が、まだ満足できる値ではない。Cuマトリクス平均結晶
粒径が100μmのCu−Cr−Bi接点(比較例−6)は、耐
溶着性の改善はされるものの、耐電圧・再点孤発生確率
に欠点を有している。これに対し、Cuマトリクス平均結
晶粒径が1mmのCu−Cr−Bi接点(実施例−6)は、いず
れも良好な特性を示した。
The solid-state Cu-Cr contacts containing no Bi (Comparative Example-5) show a slight improvement in welding resistance as compared with the infiltrated Cu-Cr contacts, but are still not satisfactory. The Cu—Cr—Bi contact having a Cu matrix average crystal grain size of 100 μm (Comparative Example-6) has a defect in the withstand voltage and the probability of occurrence of re-crossing, although the welding resistance is improved. On the other hand, the Cu-Cr-Bi contact having a Cu matrix average crystal grain size of 1 mm (Example-6) showed good characteristics.

以上より本発明は溶浸法のみならず、固相焼結法にも
適用できる事が証明された。
From the above, it has been proved that the present invention is applicable not only to the infiltration method but also to the solid phase sintering method.

実施例7〜8、比較例7〜8 Cr含有量の有効範囲について検討する。Bi量及びCuマ
トリクス平均結晶粒径を一定としてCr含有量を10.6,20.
5,39.3,85.6wt%となるCu−Cr−Bi接点を製作した(比
較例−7、実施例−7,8、比較例−8)。諸特性を評価
したところ、耐溶着特性は全て良好であった。
Examples 7 to 8 and Comparative Examples 7 to 8 The effective range of the Cr content is examined. Cr content is 10.6, 20.
5,39.3,85.6 wt% Cu-Cr-Bi contacts were manufactured (Comparative Example-7, Examples-7,8, Comparative Example-8). When the various properties were evaluated, the welding resistance properties were all good.

しかし、耐電圧の面では、Cr量10.6wt%(比較例−
7)なる接点はCu量が多すぎたため著しい耐電圧の低下
が認められた。但し再点孤発生の面では問題がなかっ
た。また85.6wt%Cr量の接点(比較例−8)ではCrが多
量の為、素材の脆化がさらに進み、耐電圧特性、再点孤
発生確率とも良好な結果を得られなかった。一方、Cr量
20.5,59.3wt%の接点は全て良好な結果を示した。
However, in terms of withstand voltage, the Cr content was 10.6 wt% (Comparative Example-
Contact point 7) had a remarkable decrease in withstand voltage because the amount of Cu was too large. However, there was no problem in terms of re-incarnation. In the contact with 85.6 wt% Cr (Comparative Example-8), the material was further embrittled due to the large amount of Cr, and good results were not obtained with respect to the withstand voltage characteristic and the probability of occurrence of re-arcing. On the other hand, Cr content
20.5,59.3wt% contacts all showed good results.

以上の結果よりCr%は20〜60wt%が望ましい。 From the above results, it is desirable that the Cr% is 20 to 60 wt%.

以上述べた実施例では、溶浸法および固相焼結法に於
けるCuマトリクスの平均結晶粒径が0.7mm以上のCu−Cr
−Bi接点の製造例を示したが、ここに記述していない他
の方法を用いて同様な接点を製作しても得られる諸特性
は同等である事は明らかである。
In the embodiment described above, the average crystal grain size of the Cu matrix in the infiltration method and the solid phase sintering method is 0.7 mm or more Cu-Cr
Although a manufacturing example of a -Bi contact is shown, it is clear that the same characteristics can be obtained even if a similar contact is manufactured using another method not described here.

[発明の効果] 以上述べた本発明によれば、真空バルブ用Cu−Cr−Bi
接点材料の耐溶着性を維持したまま、耐電圧特性および
再点孤発生確率が低下しない真空バルブ用接点材料を提
供する事ができる。
[Effects of the Invention] According to the present invention described above, Cu-Cr-Bi for vacuum valves is used.
It is possible to provide a contact material for a vacuum valve in which the withstand voltage characteristics and the probability of occurrence of restriking do not decrease while maintaining the welding resistance of the contact material.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明が適用される真空バルブの断面図、第2
図は接点部の拡大断面図である。 1……遮断室、2……絶縁容器、3a……封着金具、3b…
…封着金具、4a……蓋体、4b……蓋体、5……導電棒、
6……導電棒、7……固定電極、8……固定電極、9…
…ベローズ、10……アークシールド、11……アークシー
ルド、12……ロウ付部、13a……可動側接点、13b……固
定側接点、14……ロウ付部。
FIG. 1 is a sectional view of a vacuum valve to which the present invention is applied, and FIG.
The figure is an enlarged sectional view of the contact portion. 1 ... shut-off room, 2 ... insulating container, 3a ... sealing fitting, 3b ...
... Seal fitting, 4a ... Lid, 4b ... Lid, 5 ... Conductive rod,
6 ... conductive rod, 7 ... fixed electrode, 8 ... fixed electrode, 9 ...
... bellows, 10 ... arc shield, 11 ... arc shield, 12 ... brazing part, 13a ... movable side contact, 13b ... fixed side contact, 14 ... brazing part.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 敦史 東京都府中市東芝町1番地 株式会社東 芝府中工場内 (72)発明者 相馬 茂男 東京都府中市東芝町1番地 株式会社東 芝府中工場内 (72)発明者 関口 薫旦 神奈川県横浜市磯子区新杉田町8番地 株式会社東芝横浜事業所内 (56)参考文献 特公 昭61−41091(JP,B2) (58)調査した分野(Int.Cl.6,DB名) C22C 9/00 - 9/10 C22C 27/06 H01H 33/66 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Atsushi Yamamoto 1 Toshiba-cho, Fuchu-shi, Tokyo Inside the Toshiba Fuchu Plant, Inc. (72) Inventor Shigeo Soma 1-Toshiba-cho, Fuchu-shi, Tokyo (72) Inventor Kadan Sekiguchi 8 Shinsugita-cho, Isogo-ku, Yokohama-shi, Kanagawa Prefecture Inside Toshiba Yokohama Office (56) References JP-B-61-41091 (JP, B2) (58) Fields surveyed (Int. Cl. 6 , DB name) C22C 9/00-9/10 C22C 27/06 H01H 33/66

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】CuとBiならびにCrからなり、該Crの含有量
が20〜60重量%であり、かつ該Biの含有量(Biに対して
CuとBiを加えたものの比)が0.05〜1.0重量%であり、 Cuマトリクスの結晶粒界に存在する前記Biを制御するた
めの構成として、Cr粒子を包含するよう前記Cuマトリク
スの平均結晶粒径を0.7mm以上としたことを特徴とする
真空バルブ用接点材料。
(1) It comprises Cu, Bi and Cr, wherein the content of Cr is 20 to 60% by weight, and the content of Bi (based on Bi)
The ratio of the sum of Cu and Bi) is 0.05 to 1.0% by weight. As a configuration for controlling the Bi present at the crystal grain boundary of the Cu matrix, the average crystal grain of the Cu matrix is included so as to include Cr particles. Contact material for vacuum valves characterized in that the diameter is 0.7 mm or more.
【請求項2】Cr粒子を包含したCuを主成分とするCuマト
リクスの結晶粒内に、Bi単体又は/及びBiを主成分とす
るBi合金が存在することを特徴する請求項1記載の真空
バルブ用接点材料。
2. The vacuum according to claim 1, wherein the single crystal of Bi and / or the Bi alloy containing Bi as a main component are present in the crystal grains of the Cu matrix containing Cu as a main component and containing Cr particles. Contact material for valves.
JP1182715A 1989-07-17 1989-07-17 Contact material for vacuum valve Expired - Lifetime JP2878718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1182715A JP2878718B2 (en) 1989-07-17 1989-07-17 Contact material for vacuum valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1182715A JP2878718B2 (en) 1989-07-17 1989-07-17 Contact material for vacuum valve

Publications (2)

Publication Number Publication Date
JPH0347931A JPH0347931A (en) 1991-02-28
JP2878718B2 true JP2878718B2 (en) 1999-04-05

Family

ID=16123172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1182715A Expired - Lifetime JP2878718B2 (en) 1989-07-17 1989-07-17 Contact material for vacuum valve

Country Status (1)

Country Link
JP (1) JP2878718B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3441331B2 (en) * 1997-03-07 2003-09-02 芝府エンジニアリング株式会社 Manufacturing method of contact material for vacuum valve
JP4621336B2 (en) * 2000-06-29 2011-01-26 株式会社東芝 Contact material for vacuum circuit breaker, manufacturing method thereof, and vacuum circuit breaker

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0672675B2 (en) * 1984-07-31 1994-09-14 松下電器産業株式会社 Hot water mixing controller

Also Published As

Publication number Publication date
JPH0347931A (en) 1991-02-28

Similar Documents

Publication Publication Date Title
US5420384A (en) Contact material for a vacuum interrupter
EP0385380B1 (en) Contact forming material for a vacuum interrupter
JPH0561338B2 (en)
JP2908071B2 (en) Contact material for vacuum valve
JP3663038B2 (en) Vacuum valve
EP0929088A2 (en) Contact material
JP2878718B2 (en) Contact material for vacuum valve
JP3441331B2 (en) Manufacturing method of contact material for vacuum valve
KR950006738B1 (en) Contact point for a vacuum interrupter
JP2878787B2 (en) Contact for vacuum valve
JP4515696B2 (en) Contact materials for vacuum circuit breakers
JP2911594B2 (en) Vacuum valve
JP2692945B2 (en) Contact material for vacuum valve
JP4619821B2 (en) Contact material and vacuum valve
JP2831834B2 (en) Manufacturing method of contact material for vacuum valve
JP2001236865A (en) Vacuum valve
JP3688473B2 (en) Manufacturing method of contact material for vacuum valve
JP3068880B2 (en) Contact for vacuum valve
JPH0850838A (en) Contact material for vacuum valve
JP2904452B2 (en) Contact material for vacuum valve
JPH0193018A (en) Contact material for vacuum bulb
JP2002256361A (en) Contact material for vacuum valve
JP4156867B2 (en) Contact and vacuum circuit breaker equipped with the same
JPH10241511A (en) Vacuum circuit breaker electrode material and vacuum circuit breaker
JPH07111857B2 (en) Contact material for vacuum valve and manufacturing method thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080122

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090122

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100122

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100122

Year of fee payment: 11