JPH0850838A - Contact material for vacuum valve - Google Patents

Contact material for vacuum valve

Info

Publication number
JPH0850838A
JPH0850838A JP6184469A JP18446994A JPH0850838A JP H0850838 A JPH0850838 A JP H0850838A JP 6184469 A JP6184469 A JP 6184469A JP 18446994 A JP18446994 A JP 18446994A JP H0850838 A JPH0850838 A JP H0850838A
Authority
JP
Japan
Prior art keywords
contact
contact material
vacuum valve
treatment
surface treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6184469A
Other languages
Japanese (ja)
Inventor
Keisei Seki
経世 関
Isao Okutomi
功 奥冨
Atsushi Yamamoto
敦史 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6184469A priority Critical patent/JPH0850838A/en
Publication of JPH0850838A publication Critical patent/JPH0850838A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/0203Contacts characterised by the material thereof specially adapted for vacuum switches

Landscapes

  • Manufacture Of Switches (AREA)
  • Contacts (AREA)

Abstract

PURPOSE:To provide a contact material for a vacuum valve which can improve a withstand voltage characteristic including a large-cutoff characteristic and the suppression of the restrike generation frequency. CONSTITUTION:A material for at least one of the fixed contact 13a of a fixed electrode 7 separably operated inside a cutoff chamber 1 and the moving contact 13b of a movable electrode 8 has a conductive component having a volume rate of 40 to 75% and comprising at least one kind of Cu or Ag and the remainder of an arc-resistance metal group having the melting point of 1600K or higher. Surface treatment for consuming the surface of a contact is applied thereto.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は真空バルブ用接点材料に
関する。
FIELD OF THE INVENTION The present invention relates to a contact material for a vacuum valve.

【0002】[0002]

【従来の技術】真空バルブ用接点材料に要求される特性
としては、耐溶着・耐電圧・遮断に対する各性能で示さ
れる基本三要件と、この他に温度上昇・接触抵抗が低く
安定していることが重要な要件となっている。しかしな
がら、これらの要件のなかには相反するものがある関係
上、単一の金属種によって全ての要件を満足させること
は不可能である。このため、実用化されている多くの接
点材料においては、不足する性能を相互に補えるような
2種以上の元素を組合せ、大電流用または高電圧用等の
ように特定の用途に合った接点材料の開発が行われ、そ
れなりに優れた特性を有するものが開発されているが、
更に強まる高耐圧化・大電流化の要求を充分満足する真
空バルブ用接点材料は未だ得られていないのが実状であ
る。
2. Description of the Related Art The characteristics required for a contact material for a vacuum valve are three basic requirements shown by performances such as welding resistance, withstand voltage, and breaking, and in addition, temperature rise and contact resistance are low and stable. Is an important requirement. However, it is impossible to satisfy all the requirements with a single metal species because some of these requirements conflict with each other. For this reason, in many practically used contact materials, two or more kinds of elements that complement each other in insufficient performance are combined to form a contact suitable for a specific application such as for large current or high voltage. Materials have been developed, and those with excellent characteristics have been developed.
The reality is that no contact material for vacuum valves has yet been obtained that fully satisfies the requirements for higher breakdown voltage and higher current.

【0003】例えば、大電流化・耐容着特性を改良した
接点材料としては、CuBi接点(特公昭41-12131
号)、CuTe接点(特公昭44-23751号)が知られてい
る。大電流化・高耐圧化を指向した接点としては、Cu
Cr接点が知られている(特公昭45-35101)。また、C
uCr接点の耐溶着特性を改良した接点としては、Cu
CrBi接点が知られている(特公昭61-41091号)。し
かしながら、CuCrBi接点を用いても、例えばコン
デンサ回路等の様な高電圧を発生する回路の開閉におい
ては、CuCr接点と比較して耐電圧特性が充分とは言
えず、再点弧も度々発生している。このことは、CuC
rBi接点に種々の熱処理を施したり(特開4-43521
)、Cr粒の形状を制御すること(特開5-2955)によ
りある程度改善できるが、更に改良の余地が残されてい
るのが実状である。
For example, a CuBi contact (Japanese Examined Patent Publication No. 41-12131) is used as a contact material having a large current and improved resistance to adhesion.
No.) and CuTe contacts (Japanese Patent Publication No. 44-23751). Cu is used as a contact for high current and high breakdown voltage.
Cr contacts are known (Japanese Patent Publication No. 45-35101). Also, C
As a contact with improved welding resistance of uCr contact, Cu
CrBi contacts are known (Japanese Patent Publication No. 61-41091). However, even if the CuCrBi contact is used, in opening and closing a circuit that generates a high voltage such as a capacitor circuit, the withstand voltage characteristic is not sufficient as compared with the CuCr contact, and re-ignition frequently occurs. ing. This means that CuC
Various heat treatments may be applied to the rBi contacts (Japanese Patent Laid-Open No. 4-43521)
), But it can be improved to some extent by controlling the shape of the Cr grains (Japanese Patent Laid-Open No. 5-2955), but there is still room for improvement.

【0004】[0004]

【発明が解決しようとする課題】上述したように、大電
流を遮断できる能力を有し、且つコンデンサ回路等の高
電圧回路をも高い確率で遮断できる接点材料は、未だ必
ずしも満足できるものではなかった。本発明の目的は、
大電流を遮断でき、且つ再点弧発生頻度の抑制を含む耐
電圧特性を改善した真空バルブ用接点材料を提供するこ
とにある。
As described above, a contact material capable of interrupting a large current and capable of interrupting a high voltage circuit such as a capacitor circuit with a high probability is not always satisfactory. It was The purpose of the present invention is to
Another object of the present invention is to provide a contact material for a vacuum valve, which is capable of interrupting a large current and has improved withstand voltage characteristics including suppression of the frequency of re-ignition.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に第1の発明は、体積率が40〜75%であってCu又はA
gの少なくとも1種から成る導電成分と、残部が1600K
以上の融点を有する耐弧金属成分群とを有し、引っ張り
強さが15 Kgf/mm2 以上であることを要旨とする。
In order to achieve the above object, the first aspect of the present invention is to provide Cu or A having a volume ratio of 40 to 75%.
Conductive component consisting of at least one of g and the balance of 1600K
The gist of the present invention is to have an arc resistant metal component group having the above melting point and a tensile strength of 15 Kgf / mm 2 or more.

【0006】また、第2の発明は、体積率が40〜75%で
あってCu又はAgの少なくとも1種から成る導電成分
と、残部が1600K以上の融点を有する耐弧金属成分群と
を有し、接点表面を消耗させる表面処理を施したことを
要旨とする。
The second aspect of the present invention has a conductive component having a volume ratio of 40 to 75% and made of at least one of Cu and Ag, and a balance of arc-resistant metal components having a melting point of 1600K or more. However, the gist is that the surface treatment that consumes the contact surface is applied.

【0007】[0007]

【作用】まず、接点の基本組成として、現有接点材料で
あるCuCr接点材料と同程度の遮断能力と耐電圧特性
を有することが基本条件である。従って、Crと同程
度、或いはそれ以上のゲッター作用を有するV,Nb,
Ta,Y,Ti,Zr,Fe,Ni,Co,W,Moの
少なくとも一種を耐弧成分とする。また、導電材料であ
る関係上、Cu,Agをベースとした導電成分も不可欠
な構成元素である。更に、この導電成分は一定体積%の
添加を施さなければ導電率の低下、或いは遮断能力の低
下を招いてしまう恐れがある。このようにして、大電流
遮断・高耐電圧化に適した接点組成とすることが、接点
組成の基本である。
First, the basic condition of the contact is that the contact has the same breaking ability and withstand voltage characteristics as the existing CuCr contact material. Therefore, V, Nb, which has a getter action comparable to or higher than that of Cr,
At least one of Ta, Y, Ti, Zr, Fe, Ni, Co, W and Mo is used as the arc resistant component. Further, since it is a conductive material, a conductive component based on Cu or Ag is also an essential constituent element. Further, if the conductive component is not added in a constant volume%, the conductivity may be lowered, or the blocking ability may be lowered. In this way, it is the basis of the contact composition that the contact composition is suitable for large current interruption and high withstand voltage.

【0008】次に、更に再点弧発生頻度の抑制を含有し
た高電圧化を達成することが重要になる。ここで、再点
弧の発生メカニズムについて説明する。この発生メカニ
ズムは、未だ不明な点が多々あるが、本発明者等の研究
により、ほぼ2つのタイプに大別されることが判明し
た。
Next, it is important to achieve higher voltage including suppression of the frequency of re-ignition. Here, the mechanism of occurrence of restriking will be described. Although there are still many unclear points regarding the mechanism of this occurrence, it has been found by research by the inventors of the present invention that they are roughly classified into two types.

【0009】すなわち、1つは開閉初期に多く認められ
るものであり、初期の接点表面状態に依存するところが
大きいと思われる要因である。また、1つは開閉回数の
増加に伴う接点表面の荒れによる電界集中、或いは微粒
子発生に起因すると思われる要因である。
That is, one is often observed at the initial stage of opening and closing, and is a factor that is largely dependent on the initial contact surface state. One is a factor that is considered to be caused by the concentration of an electric field due to the roughness of the contact surface or the generation of fine particles as the number of times of opening and closing increases.

【0010】前者に対しては、接点表面に対して消耗処
理を主体とした表面処理を施すことによって、良好な表
面状態を得られることがわかった。また、後者に対して
は、接点母材強度を向上させることにより接点間に発生
する微溶着による接点母材の引き外しを抑制し、その結
果、開閉回数の増加に伴う接点表面の荒れを抑制できる
ことがわかった。
With respect to the former, it has been found that a good surface condition can be obtained by subjecting the contact surface to a surface treatment mainly consisting of wear treatment. For the latter, the strength of the contact base metal is improved to prevent the contact base metal from being tripped due to slight welding that occurs between the contacts, and as a result, the contact surface is prevented from becoming rough as the number of times of opening and closing increases. I knew I could do it.

【0011】[0011]

【実施例】以下、本発明の実施例を詳細に説明する。ま
ず、本発明の真空バルブ用接点材料が適用される真空バ
ルブについて、図1及び図2を参照して説明する。図1
は、本発明の真空バルブ用接点材料を適用する真空バル
ブの構成図である。同図において、1は遮断室であり、
絶縁材料により略円筒状に形成された絶縁容器2を、両
端に封止金具3a,3bを介して設けた金属性の蓋体4
a,4bで真空気密にして構成されている。遮断室1内
には、導電棒5,6の対向する端部に取り付けられた一
対の電極7,8が配設され、上部の電極7を固定電極、
下部の電極8を可動電極としている。また、可動電極8
の導電棒6にはベローズ9が取り付けられ、遮断室1内
を真空気密に保持しながら電極8の軸方向の移動を可能
にしている。ベローズ9の上部には、金属性のアークシ
ールド10が設けられ、ベローズ9がアーク蒸気で覆わ
れることを防止している。11は電極7,8を覆うよう
にして遮断室1内に設けられた金属性のアークシールド
で、絶縁容器2がアーク蒸気で覆われることを防止して
いる。
EXAMPLES Examples of the present invention will be described in detail below. First, a vacuum valve to which the contact material for a vacuum valve of the present invention is applied will be described with reference to FIGS. 1 and 2. FIG.
FIG. 3 is a configuration diagram of a vacuum valve to which the contact material for a vacuum valve of the present invention is applied. In the figure, 1 is a shut-off chamber,
A metallic lid 4 in which an insulating container 2 formed of an insulating material in a substantially cylindrical shape is provided at both ends via sealing metal fittings 3a and 3b.
A and 4b are vacuum-tight. A pair of electrodes 7, 8 attached to opposite ends of the conductive rods 5, 6 are arranged in the shutoff chamber 1, and the upper electrode 7 is fixed electrode,
The lower electrode 8 is a movable electrode. In addition, the movable electrode 8
A bellows 9 is attached to the conductive rod 6 to enable the electrode 8 to move in the axial direction while keeping the shut-off chamber 1 vacuum-tight. A metallic arc shield 10 is provided above the bellows 9 to prevent the bellows 9 from being covered with arc vapor. Reference numeral 11 denotes a metallic arc shield provided in the interruption chamber 1 so as to cover the electrodes 7 and 8 and prevents the insulating container 2 from being covered with arc vapor.

【0012】一方、電極8は、図2に拡大して示すよう
に、導電棒6にロウ付け部12によって固定されるか、
また、かしめによって圧着接続される。接点13aは、
電極8にロウ付け14で固着されている。なお、図1に
おける電極7もほぼ同じ構成であり、13bは固定側接
点である。
On the other hand, the electrode 8 is fixed to the conductive rod 6 by a brazing portion 12 as shown in an enlarged view in FIG.
Also, crimping is performed by caulking. The contact 13a is
It is fixed to the electrode 8 by brazing 14. The electrode 7 in FIG. 1 has almost the same structure, and 13b is a fixed contact.

【0013】本発明に係わる接点材料は、上記したよう
な接点13a,13bの双方または何れか一方を構成す
るのに適したものである。次に、各接点の評価方法を述
べる。 (1)耐電圧特性 各接点材料の基本的な耐電圧特性という観点から、表面
処理の影響を考慮せず、接点母材の耐電圧評価とした。
評価した接点は、後述する比較例1,3,5,6と実施
例2,4,6−15である。
The contact material according to the present invention is suitable for forming both or either of the contacts 13a and 13b as described above. Next, the evaluation method of each contact will be described. (1) Withstand voltage characteristics From the viewpoint of the basic withstand voltage characteristics of each contact material, the withstand voltage of the contact base material was evaluated without considering the influence of the surface treatment.
The evaluated contact points are Comparative Examples 1, 3, 5, 6 and Examples 2, 4, 6-15 described later.

【0014】各接点合金について、バフ研磨により鏡面
仕上げをした平版電極と針電極にて両電極間を0.5mm 一
定とし、10−4Paのオーダーの真空雰囲気において徐
々に電圧を上昇しスパークを発生した時の電圧値を測定
し、静耐圧値を求めた。表1に示す測定データは3回の
繰り返しテストを行った時の平均値であり、後述する比
較例1に示すCuCrBi接点の値を1.0 としたときの
相対的な値で示した。 (2)再点弧特性 径30mm、厚さ5mmの円板上接点片をディマンタブル型真
空バルブに装着し、6KVx500 Aの回路にて開閉を行
った。全体で5000回の開閉を実施し、表1に示す初期再
点弧発生率は1−1000回の開閉から求めた再点弧発生確
率であり、後期再点弧発生率は4001−5000回の開閉から
求めた再点弧発生確率である。なお、発生確率は、2台
の遮断器(バルブとしては6本)のばらつき幅(最大お
よび最小)で示した。
For each contact alloy, a lithographic electrode and a needle electrode, which were mirror-finished by buffing, kept the distance between the electrodes constant at 0.5 mm, and gradually increased the voltage in a vacuum atmosphere of the order of 10-4 Pa to generate sparks. The voltage value at that time was measured to obtain the static withstand voltage value. The measurement data shown in Table 1 is an average value after three repeated tests, and is shown as a relative value when the value of the CuCrBi contact shown in Comparative Example 1 described later is 1.0. (2) Re-ignition characteristics A disc-shaped contact piece with a diameter of 30 mm and a thickness of 5 mm was mounted on a demantable vacuum valve and opened / closed with a 6 KVx500 A circuit. After opening and closing 5,000 times as a whole, the initial re-ignition occurrence rate shown in Table 1 is the re-ignition occurrence probability obtained from the opening and closing of 1-1000 times, and the late re-ignition occurrence rate is 4001-5000 times. It is the probability of re-ignition occurring from opening and closing. The probability of occurrence is shown by the variation width (maximum and minimum) of two circuit breakers (six valves as valves).

【0015】[0015]

【表1】 [Table 1]

【0016】以下、表1を参照しながら各実施例、比較
例について説明する。 (比較例1,2)C坩堝に平均粒計100 μmのCr粉末
を充填したのち、10−3Paのオーダーの真空雰囲気に
て、1150℃X1Hr.の条件で仮焼結を実施し、Crス
ケルトンを製作した。その後、予め製作しておいた 1.0
(体積%)−Cuブロックを所定の寸法に切断・アセト
ンにて洗浄後、Crスケルトンと共に、10−3Paのオ
ーダーの真空雰囲気中で、1130℃X0.5 Hr.の条件に
て溶浸を行い、所定の組成のCuCrBi接点材料を得
た。所定の形状に機械加工したのちに、比較例1の接点
には表面処理を実施せず、比較例2の接点にのみ、10−
4Paのオーダーの真空雰囲気中にて接点が陽極になる
ように電気回路に組み込んだ後、破壊電圧が一定値にな
るまで放電を複数回繰り返した。この様にして製作した
比較例1,2の接点を前述の方法にて静耐圧・再点弧特
性を評価した。なお、静耐圧値は、比較例1が基準値に
なる。比較例1と2を比較すると、表面処理によって初
期の再点弧発生確率は減少し、改善されるものの、後期
のそれには大差はなく、まだ充分とは言い切れない。 (比較例3,4)平均粒径100 μmのCr粉末と平均粒
径45μmのCu粉末とを1対1の割合で混合したのち、
金型に充填し7Ton /cm2 成形圧力で成形し、10−3P
aのオーダーの真空雰囲気で1000X1Hr.の条件で焼
結した。更に、8Ton /cm2 の成形圧力で再成形し、同
一条件で焼結して接点材料を得た。所定の形状に機械加
工したのち、比較例4のみ比較例2の条件で表面処理を
実施し、比較例1,2の接点の耐圧評価を実施した。比
較例1,2の関係と同様に表面処理を実施した比較例4
は、初期の再点弧抑制に対しては有効であった。初期・
後期ともに、比較例1,2よりも良好な特性を示し、製
品として考慮した場合には、コンデンサを有する回路で
あっても場合によっては使用可能な特性であった。 (比較例5、実施例1)比較例1,2と同一の製造条件
でCrスケルトンを製作したのち、無酸素Cuを用い、
比較例1,2と同一条件にて溶浸して接点材料を得た。
機械加工を施し、所定の接点形状に仕上げたのち、実施
例1に対してのみ比較例2と同一条件の表面処理を実施
した。これらの接点の耐圧特性を評価したところ、比較
例5では、後期の再点弧発生確率は、前述機械特性の向
上によって改善されたが、初期の再点弧発生確率は従来
と同等であった。しかし、表面処理を実施した実施例1
では、後期と共に、初期も良好な特性を示した。 (実施例2−4)Crの体積%が50%になるようなCu
Crの消耗電極をCuとCrの積層板にて製作した。消
耗電極式のアーク溶解炉に電極を固定したのち真空引き
し、0.3PaのAr雰囲気中にてアーク溶解を実施し
た。800 ℃X3Hr.の熱処理を施し、Cuマトリクス
中の過飽和Crを排除したのちに、所定の形状に機械加
工して接点を得た。実施例2の接点に対しては10−4P
aのオーダーの真空雰囲気にて交流放電を実施し、実施
例3の接点に対しては10−4Paのオーダーの真空雰囲
気中でEB照射を実施し、実施例4の接点に対しては10
−1PaのAr雰囲気中で接点が陰極になるように電気
回路に組み込んだのち破壊電圧が一定値になるまで放電
を複数回繰り返した。このように製作・表面処理した接
点の耐電圧特性を評価した。表面処理の効果によって、
初期の再点弧発生確率も抑制され、さらに、開閉回数の
増加に伴う後期の発生確率も減少し、良好な特性であっ
た。機械特性の向上に伴い、後期の再点弧発生確率は、
溶浸法の接点よりも小さかった。 (実施例5,6)比較例3,4と同一条件で製作した固
相焼結法接点に、Arを用いてHIP処理を施した。機
械加工を施して所定の接点形状にしたのち、実施例5に
対しては10−1Paのオーダーの真空雰囲気にて高周波
の放電を実施した。また、実施例6に対しては、10−1
Paのオーダーの真空雰囲気にてレーザーを照射した。
このような処理を施した接点の耐電圧評価を実施したと
ころ、いずれも、再点弧発生確率は、実施例2−4と同
様に、初期・後期ともに、従来接点よりもはるかに良好
な特性を示した。 (実施例7)比較例3,4と同様のCr・Cu粉末をボ
ールミルに投入後Arでシールしたのち、混合・粉砕し
た粉末をHIP処理し、接点材料を得た。所定の形状に
機械加工したのち、大気圧のAr雰囲気中でレーザー照
射を行う表面処理を施した。耐電圧特性を評価したとこ
ろ、実施例1−5と同様に、良好な特性を示した。 (比較例6、実施例8,9、比較例7)比較例3,4と
同様のCr・Cu粉末を使用して、CrとCuの配合比
率が各々、10:90,25:75,60:40,90:10となるよう
に配合したのちに、実施例4,5と同様に、固相焼結と
HIP処理にて接点材料を得た(各々、比較例6、実施
例8,9、比較例7)。接点形状に加工したのち、各々
の接点表面に比較例2と同条件で陽極処理を施した。い
ずれの接点も、耐電圧的には、満足できる結果をえられ
たが、比較例6では、別に評価した遮断能力に、また、
比較例7では、接触抵抗に問題があり、製品レベルでは
適用困難であることが判明した。 (実施例10)平均粒径100 μmのNb粉末とCr粉末
を9:1の配合比率にて混合したのちに、比較例5と同
一条件で仮焼結、さらに、溶浸し、接点材料を得た。機
械加工したのちに、比較例2と同条件で陽極処理を施し
た後、耐電圧評価を実施したところ良好な特性を得られ
た。 (実施例11)平均粒径100 μmのTa粉末とV粉末を
9:1の配合比率にて混合したのちに、比較例5と同一
条件で仮焼結、さらに、溶浸し、接点材料を得た。機械
加工したのちに、比較例2と同条件で陽極処理を施した
後、耐電圧評価を実施したところ良好な特性を得られ
た。 (実施例12)平均粒径100 μmのTi粉末に平均粒径
6μmのW粉末を表面被覆し、10(体積%)W−Tiの
複合粉末を得た。平均粒径が45μmのCu粉末と同体積
ずつ配合混合し、8Ton /cm2 の成形圧力で成形したの
ち、10−3Paのオーダーの真空雰囲気にて800 ℃x1
Hr.の焼結を実施した。このようにして製造した接点
材料を所定の形状に加工し、比較例2と同条件で陽極処
理を施した後、耐電圧評価を実施したところ、従来の接
点よりも良好な特性を示した。 (実施例13)平均粒径100 μmのZr粉末に平均粒径
6μmのMo粉末を表面被覆し、10(体積%)Mo−Z
rの複合粉末を得た。平均粒径が45μmのCu粉末と同
体積ずつ配合混合し、8Ton /cm2 の成形圧力で成形し
たのち、10−3Paのオーダーの真空雰囲気にて800 ℃
x1Hr.の焼結を実施した。このようにして製造した
接点材料を所定の形状に加工し、比較例2と同条件で陽
極処理を施した後、耐電圧評価を実施したところ、従来
の接点よりも良好な特性を示した。 (実施例14)平均粒径100 μmのY粉末に平均粒径6
μmのW粉末を表面被覆し、10(体積%)W−Yの複合
粉末を得た。平均粒径が45μmのCu粉末とAg粉末を
配合比が8:2になるように予め混合しておいたAg/
Cu混合粉末とW−Y複合粉末を同体積ずつ配合混合
し、8Ton /cm2 の成形圧力で成形したのち、10−3P
aのオーダーの真空雰囲気にて800 ℃x1Hr.の焼結
を実施した。このようにして製造した接点材料を所定の
形状に加工し、比較例2と同条件で陽極処理を施した
後、耐電圧評価を実施したところ、Agの添加によると
思われる相対的な耐電圧値の低下は認められたものの、
従来の接点よりも良好な特性を示した。 (実施例15)平均粒径100 μmのHf粉末に平均粒径
6μmのMo粉末を表面被覆し、10(体積%)Mo−H
fの複合粉末を得た。平均粒径が45μmのCu粉末とA
g粉末を配合比が8:2になるように予め混合しておい
たAg/Cu混合粉末とMo−Hf複合粉末を同体積ず
つ配合混合し、8Ton /cm2 の成形圧力で成形したの
ち、10−3Paのオーダーの真空雰囲気にて800 ℃x1
Hr.の焼結を実施した。このようにして製造した接点
材料を所定の形状に加工し、比較例2と同条件で陽極処
理を施した後、耐電圧評価を実施したところ、Agの添
加によると思われる相対的な耐電圧値の低下は認められ
たものの、従来の接点よりも良好な特性を示した。 (実施例16)平均粒径100 μmのCr粉末・平均粒径
25μmのNi・Fe・Co粉末と平均粒径が45μmのA
g粉末を、Cr:Ni:Fe:Co:Ag=35:5:
5:5:50となるように配合・混合したのち、8Ton /
cm2 の成形圧力で成形したのち、10−3Paのオーダー
の真空雰囲気にて900 ℃x1Hr.の焼結を実施した。
さらに8Ton /cm2 の成形圧力で成形したのち、10−3
Paのオーダーの真空雰囲気にて900 ℃x1Hr.の焼
結を実施し、接点材料を得た。所定の形状に機械加工し
たのちに、比較例2と同条件で陽極処理を施した後、耐
電圧評価を実施した。実施例13,14と同様に、Agの添
加によると思われる相対的な耐電圧値の低下は認められ
たものの、従来の接点よりも良好な特性を示した。
Hereinafter, each example and comparative example will be described with reference to Table 1. (Comparative Examples 1 and 2) A C crucible was filled with Cr powder having an average particle size of 100 μm and then, in a vacuum atmosphere of the order of 10 −3 Pa, 1150 ° C. × 1 Hr. Pre-sintering was carried out under the conditions described above to produce a Cr skeleton. After that, 1.0
(Volume%)-Cu block is cut to a predetermined size and washed with acetone, and then, together with a Cr skeleton, in a vacuum atmosphere of the order of 10-3 Pa, 1130 ° C x 0.5 Hr. Was infiltrated under the conditions described above to obtain a CuCrBi contact material having a predetermined composition. After machining into a predetermined shape, the contact of Comparative Example 1 was not subjected to surface treatment, and only the contact of Comparative Example 2 was 10-
After being incorporated into an electric circuit in a vacuum atmosphere of the order of 4 Pa so that the contact serves as an anode, discharge was repeated a plurality of times until the breakdown voltage reached a constant value. The static pressure resistance and re-ignition characteristics of the contacts of Comparative Examples 1 and 2 thus manufactured were evaluated by the method described above. The static withstand voltage value in Comparative Example 1 is the reference value. Comparing Comparative Examples 1 and 2 with each other, although the probability of re-ignition occurring in the initial stage is reduced and improved by the surface treatment, there is not much difference from that in the latter period, and it cannot be said to be sufficient yet. (Comparative Examples 3 and 4) Cr powder having an average particle size of 100 μm and Cu powder having an average particle size of 45 μm were mixed at a ratio of 1: 1 and then,
Was filled in a mold and molded at 7 ton / cm 2 molding pressure, 10-3P
a in a vacuum atmosphere of the order of a. Sintered under the conditions of. Further, it was re-molded at a molding pressure of 8 Ton / cm 2 and sintered under the same conditions to obtain a contact material. After machining into a predetermined shape, only the comparative example 4 was subjected to the surface treatment under the conditions of the comparative example 2, and the breakdown voltage evaluation of the contacts of the comparative examples 1 and 2 was carried out. Comparative example 4 in which the surface treatment was performed in the same manner as in the relationship of comparative examples 1 and 2.
Was effective in suppressing early re-ignition. initial·
In both the latter stages, the characteristics were better than those of Comparative Examples 1 and 2, and when considered as a product, even a circuit having a capacitor could be used in some cases. (Comparative Example 5, Example 1) After a Cr skeleton was manufactured under the same manufacturing conditions as in Comparative Examples 1 and 2, oxygen-free Cu was used.
Contact materials were obtained by infiltration under the same conditions as in Comparative Examples 1 and 2.
After machining and finishing to a predetermined contact shape, only Example 1 was subjected to surface treatment under the same conditions as in Comparative Example 2. When the breakdown voltage characteristics of these contacts were evaluated, in Comparative Example 5, the re-ignition occurrence probability in the latter period was improved by the improvement in the mechanical characteristics described above, but the initial re-ignition occurrence probability was equivalent to the conventional one. . However, Example 1 in which the surface treatment was performed
Then, the good characteristics were shown in the initial stage as well as in the latter stage. (Example 2-4) Cu such that the volume% of Cr is 50%
A consumable electrode of Cr was made of a laminated plate of Cu and Cr. After fixing the electrode in a consumable electrode type arc melting furnace, vacuuming was performed, and arc melting was performed in an Ar atmosphere of 0.3 Pa. 800 ° C x 3 hr. After removing the supersaturated Cr in the Cu matrix, the contact was obtained by machining into a predetermined shape. 10-4P for the contacts of Example 2
AC discharge was performed in a vacuum atmosphere of the order a, EB irradiation was performed on the contacts of Example 3 in a vacuum atmosphere of the order of 10 −4 Pa, and 10 was applied to the contacts of Example 4.
After being incorporated in an electric circuit so that the contact point becomes a cathode in an Ar atmosphere of -1 Pa, discharge was repeated a plurality of times until the breakdown voltage reached a constant value. The withstand voltage characteristics of the contacts thus manufactured and surface-treated were evaluated. By the effect of surface treatment,
The initial probability of re-ignition was also suppressed, and the probability of occurrence in the latter period was also reduced with the increase in the number of times of opening and closing, which was a good characteristic. With the improvement of mechanical characteristics,
It was smaller than the contact point of the infiltration method. (Examples 5 and 6) HIP treatment was performed using Ar on the solid-state sintering method contacts manufactured under the same conditions as in Comparative Examples 3 and 4. After being machined into a predetermined contact shape, high frequency discharge was carried out in Example 5 in a vacuum atmosphere of the order of 10-1 Pa. Also, for Example 6, 10-1
Laser irradiation was performed in a vacuum atmosphere of the order of Pa.
When the contacts subjected to such a treatment were subjected to withstand voltage evaluation, the re-ignition probability was much better than that of the conventional contacts in both the early and late stages, as in Example 2-4. showed that. (Example 7) The same Cr / Cu powder as in Comparative Examples 3 and 4 was put into a ball mill and sealed with Ar, and then the mixed and crushed powder was subjected to HIP treatment to obtain a contact material. After machining into a predetermined shape, a surface treatment was carried out by laser irradiation in an Ar atmosphere at atmospheric pressure. When the withstand voltage characteristics were evaluated, similar to Example 1-5, good characteristics were shown. (Comparative Example 6, Examples 8, 9 and Comparative Example 7) The same Cr / Cu powder as in Comparative Examples 3 and 4 was used, and the compounding ratios of Cr and Cu were 10:90, 25:75 and 60, respectively. : 40, 90:10 and then mixed in the same manner as in Examples 4 and 5 to obtain contact materials by solid phase sintering and HIP treatment (Comparative Example 6, Example 8, 9 respectively). , Comparative Example 7). After processing into contact shapes, each contact surface was anodized under the same conditions as in Comparative Example 2. With respect to all the contacts, satisfactory results were obtained in terms of withstand voltage, but in Comparative Example 6, the breaking ability evaluated separately,
In Comparative Example 7, it was found that there was a problem in contact resistance and it was difficult to apply at the product level. (Example 10) Nb powder and Cr powder having an average particle size of 100 µm were mixed at a mixing ratio of 9: 1, then pre-sintered under the same conditions as in Comparative Example 5 and further infiltrated to obtain a contact material. It was After machining, after anodizing under the same conditions as in Comparative Example 2, a withstand voltage evaluation was carried out, and good characteristics were obtained. (Example 11) Ta powder having an average particle diameter of 100 µm and V powder were mixed at a mixing ratio of 9: 1, then pre-sintered under the same conditions as in Comparative Example 5 and further infiltrated to obtain a contact material. It was After machining, after anodizing under the same conditions as in Comparative Example 2, a withstand voltage evaluation was carried out, and good characteristics were obtained. Example 12 A Ti powder having an average particle size of 100 μm was surface-coated with a W powder having an average particle size of 6 μm to obtain 10 (volume%) W-Ti composite powder. Cu powder with an average particle size of 45 μm was mixed and mixed in the same volume, and molded under a molding pressure of 8 Ton / cm 2 , and then 800 ° C x 1 in a vacuum atmosphere of the order of 10-3 Pa.
Hr. Was carried out. The contact material produced in this manner was processed into a predetermined shape, anodized under the same conditions as in Comparative Example 2, and then subjected to withstand voltage evaluation. As a result, it showed better characteristics than the conventional contact. Example 13 Zr powder having an average particle size of 100 μm was surface-coated with Mo powder having an average particle size of 6 μm, and 10 (volume%) Mo-Z was obtained.
A composite powder of r was obtained. Cu powder with an average particle size of 45 μm was mixed and mixed in the same volume, and molded at a molding pressure of 8 Ton / cm 2 , and then 800 ° C. in a vacuum atmosphere of the order of 10 −3 Pa.
x1Hr. Was carried out. The contact material produced in this manner was processed into a predetermined shape, anodized under the same conditions as in Comparative Example 2, and then subjected to withstand voltage evaluation. As a result, it showed better characteristics than the conventional contact. (Example 14) Y powder having an average particle size of 100 μm had an average particle size of 6
The surface was coated with W powder of μm to obtain 10 (volume%) WY composite powder. Cu powder having an average particle diameter of 45 μm and Ag powder were mixed in advance so that the compounding ratio was 8: 2 Ag /
Cu mixed powder and WY composite powder are mixed and mixed in the same volume and molded under a molding pressure of 8 Ton / cm 2 , then 10-3P
In a vacuum atmosphere of the order of a, 800 ° C x 1 hr. Was carried out. The contact material produced in this manner was processed into a predetermined shape, anodized under the same conditions as in Comparative Example 2, and then subjected to withstand voltage evaluation. Although a decrease in value was observed,
It showed better characteristics than conventional contacts. (Example 15) Hf powder having an average particle size of 100 µm was surface-coated with Mo powder having an average particle size of 6 µm, and 10 (vol%) Mo-H was used.
A composite powder of f was obtained. Cu powder with an average particle size of 45 μm and A
The Ag powder and the Mo-Hf composite powder, which had been mixed in advance so that the compounding ratio was 8: 2, were mixed and mixed in the same volume by the same amount, and the mixture was molded at a molding pressure of 8 Ton / cm 2 , 800 ° C x 1 in a vacuum atmosphere of the order of 10-3Pa
Hr. Was carried out. The contact material produced in this manner was processed into a predetermined shape, anodized under the same conditions as in Comparative Example 2, and then subjected to withstand voltage evaluation. Although a decrease in the value was observed, it showed better characteristics than the conventional contact. (Example 16) Cr powder having an average particle size of 100 μm / average particle size
25 μm Ni / Fe / Co powder and A with an average particle size of 45 μm
g powder to Cr: Ni: Fe: Co: Ag = 35: 5:
After mixing and mixing so as to be 5: 5: 50, 8Ton /
After molding with a molding pressure of cm 2 in a vacuum atmosphere of the order of 10 −3 Pa, 900 ° C. × 1 Hr. Was carried out.
After molding with a molding pressure of 8 Ton / cm 2 , 10-3
In a vacuum atmosphere of the order of Pa, 900 ° C x 1 hr. Was sintered to obtain a contact material. After machining into a predetermined shape, anodization was performed under the same conditions as in Comparative Example 2, and then withstand voltage evaluation was performed. Similar to Examples 13 and 14, although a relative decrease in withstand voltage value, which was thought to be due to the addition of Ag, was recognized, it showed better characteristics than the conventional contacts.

【0017】以上のように、耐弧成分として、V,C
r,W,Mo,Nb,Ta,Y,Ti,Zr,Hf,F
e,Ni,Coを用い、導電成分としてCu,Agを用
いたこれらの如何なる組合せの接点材料においても、引
張強さが15( Kgf/mm2 )このましくは、25( Kgf/mm
2 )を有し、適切な表面処理を施すことによって、開閉
初期のみならず後期においても再点弧発生の抑制を主眼
に置いた耐電圧特性の改良に対して充分な効果をもたら
すことは明白である。
As described above, the arc resistance components V, C
r, W, Mo, Nb, Ta, Y, Ti, Zr, Hf, F
e, Ni, Co, and Cu, Ag as the conductive component, in any combination of these contact materials, the tensile strength is 15 (Kgf / mm 2 ), preferably 25 (Kgf / mm 2
It is clear that by having the above 2 ) and applying an appropriate surface treatment, sufficient effect can be obtained for improving the withstand voltage characteristics with the aim of suppressing re-ignition occurrence not only in the initial stage of switching but also in the latter stage. Is.

【0018】さらに、接点表面に施される表面処理にお
いては、実施例に示されるように、接点表面を消耗させ
る処理を含んでいることにより有効な処理になることは
明かであり、かつ、接点形状にした直後のみならず、真
空バルブに組み込まれる製造工程内で実施されても、ま
た、真空バルブに組み込まれてから実施されてもその効
果に替わりないことは明白である。
Further, in the surface treatment applied to the contact surface, it is obvious that the treatment is effective by including the treatment for consuming the contact surface as shown in the embodiment, and the contact treatment is effective. It is obvious that the effect does not change not only immediately after being formed into a shape, but also when it is carried out in a manufacturing process incorporated in a vacuum valve or when it is carried out after being incorporated in a vacuum valve.

【0019】さらに、本発明の接点材には、固相焼結法
・溶浸法等の粉末冶金法とアーク溶解法・EB溶解法・
連続鋳造法等の溶解法の種々の製造方法が適用できるこ
とも明白である。
Furthermore, for the contact material of the present invention, powder metallurgy such as solid phase sintering, infiltration, arc melting, EB melting, etc.
It is also obvious that various manufacturing methods such as the continuous casting method and the melting method can be applied.

【0020】[0020]

【発明の効果】以上のように第1の発明によれば、体積
率が40〜75%であってCu又はAgの少なくとも1種か
ら成る導電成分と、残部が1600K以上の融点を有する耐
弧金属成分群とを有し、引っ張り強さが15 Kgf/mm2
上にしたので、大電流遮断特性及び再点弧発生頻度の抑
制を含む耐電圧特性を改善することができる。
As described above, according to the first aspect of the present invention, the arc-resistant material has a volume ratio of 40 to 75%, a conductive component of at least one of Cu and Ag, and the balance having a melting point of 1600K or more. Since it has a metal component group and a tensile strength of 15 Kgf / mm 2 or more, it is possible to improve withstand voltage characteristics including a large current interruption characteristic and suppression of the frequency of re-ignition.

【0021】また、第2の発明によれば、体積率が40〜
75%であってCu又はAgの少なくとも1種から成る導
電成分と、残部が1600K以上の融点を有する耐弧金属成
分群とを有し、接点表面を消耗させる表面処理を施した
ので、大電流遮断特性及び再点弧発生頻度の抑制を含む
耐電圧特性を改善することができる。
According to the second invention, the volume ratio is 40 to
It has a conductive component consisting of at least 75% of Cu or Ag and a balance of arc-resistant metal components having a melting point of 1600K or more. It is possible to improve the withstand voltage characteristics including the cutoff characteristics and the suppression of the frequency of re-ignition.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の真空バルブ用接点材料を適用した真空
バルブの構成図。
FIG. 1 is a configuration diagram of a vacuum valve to which a vacuum valve contact material of the present invention is applied.

【図2】[図1]の部分拡大断面図。FIG. 2 is a partially enlarged sectional view of FIG.

【符号の説明】[Explanation of symbols]

7…固定電極、8…可動電極、13a…可動側接点、13b
…固定側接点
7 ... Fixed electrode, 8 ... Movable electrode, 13a ... Movable side contact, 13b
… Fixed contact

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 体積率が40〜75%であってCu又はAg
の少なくとも1種から成る導電成分と、残部が1600K以
上の融点を有する耐弧金属成分群とを有し、引っ張り強
さが15 Kgf/mm2 以上であることを特徴とする真空バル
ブ用接点材料。
1. A Cu or Ag having a volume ratio of 40 to 75%.
A contact material for a vacuum valve, characterized in that it has a conductive component consisting of at least one of the above and a balance of arc-resistant metal components having a melting point of 1600 K or higher and a tensile strength of 15 Kgf / mm 2 or higher. .
【請求項2】 体積率が40〜75%であってCu又はAg
の少なくとも1種から成る導電成分と、残部が1600K以
上の融点を有する耐弧金属成分群とを有し、引っ張り強
さを15 Kgf/mm2 以上とし、接点表面を消耗させる表面
処理を施したことを特徴とする真空バルブ用接点材料。
2. Cu or Ag having a volume ratio of 40 to 75%.
And a balance of arc-resistant metal components having a melting point of 1600K or higher, a tensile strength of 15 Kgf / mm 2 or higher, and a surface treatment that consumes the contact surface. A contact material for a vacuum valve, which is characterized in that
【請求項3】 前記引っ張り強さを25 Kgf/mm2 とした
ことを特徴とする請求項1または請求項2のいずれかに
記載の真空バルブ用接点材料。
3. The contact material for a vacuum valve according to claim 1, wherein the tensile strength is 25 Kgf / mm 2 .
【請求項4】 体積率が40〜75%であってCu又はAg
の少なくとも1種から成る導電成分と、残部が1600K以
上の融点を有する耐弧金属成分群とを有し、接点表面を
消耗させる表面処理を施したことを特徴とする真空バル
ブ用接点材料。
4. Cu or Ag having a volume ratio of 40 to 75%
A contact material for a vacuum valve, characterized in that it has a conductive component consisting of at least one of the above and a balance arc-resistant metal component group having a melting point of 1600 K or more, and has been subjected to a surface treatment that consumes the contact surface.
【請求項5】 前記耐弧金属成分群は、V、Cr、N
b、Mo、Ta、W、Y、Ti、Zr、Hf、Fe、C
o及びNiのうちの少なくとも1種を含有することを特
徴とする請求項1〜請求項4のいずれかに記載の真空バ
ルブ用接点材料。
5. The arc-resistant metal component group is V, Cr, N.
b, Mo, Ta, W, Y, Ti, Zr, Hf, Fe, C
At least 1 sort (s) of o and Ni is contained, The contact material for vacuum valves in any one of the Claims 1-4 characterized by the above-mentioned.
【請求項6】 前記表面処理は、高真空中における陽極
処理であることを特徴とする請求項2〜請求項5のいず
れかに記載の真空バルブ用接点材料。
6. The contact material for a vacuum valve according to claim 2, wherein the surface treatment is an anodic treatment in high vacuum.
【請求項7】 前記表面処理は、中低圧真空中における
陰極処理であることを特徴とする請求項2〜請求項5の
いずれかに記載の真空バルブ用接点材料。
7. The contact material for a vacuum valve according to claim 2, wherein the surface treatment is a cathode treatment in a medium and low pressure vacuum.
【請求項8】 前記表面処理は、交流処理または高周波
処理のいずれかにて行うことを特徴とする請求項2〜請
求項5のいずれかに記載の真空バルブ用接点材料。
8. The contact material for a vacuum valve according to claim 2, wherein the surface treatment is performed by either an alternating current treatment or a high frequency treatment.
【請求項9】 前記表面処理は、溶融処理であることを
特徴とする請求項2〜請求項5のいずれかに記載の真空
バルブ用接点材料。
9. The contact material for a vacuum valve according to claim 2, wherein the surface treatment is a melting treatment.
JP6184469A 1994-08-05 1994-08-05 Contact material for vacuum valve Pending JPH0850838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6184469A JPH0850838A (en) 1994-08-05 1994-08-05 Contact material for vacuum valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6184469A JPH0850838A (en) 1994-08-05 1994-08-05 Contact material for vacuum valve

Publications (1)

Publication Number Publication Date
JPH0850838A true JPH0850838A (en) 1996-02-20

Family

ID=16153708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6184469A Pending JPH0850838A (en) 1994-08-05 1994-08-05 Contact material for vacuum valve

Country Status (1)

Country Link
JP (1) JPH0850838A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011113887A (en) * 2009-11-27 2011-06-09 Toshiba Corp Contact for vacuum valve, and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011113887A (en) * 2009-11-27 2011-06-09 Toshiba Corp Contact for vacuum valve, and its manufacturing method

Similar Documents

Publication Publication Date Title
US3016436A (en) Vacuum circuit interrupters
EP0488083B1 (en) Contact material for a vacuum interrupter
JP2002313196A (en) Electric contact member and manufacturing method for the same
JP2908071B2 (en) Contact material for vacuum valve
EP0929088A2 (en) Contact material
JP3597544B2 (en) Contact material for vacuum valve and manufacturing method thereof
JPH06231658A (en) Contact material for vacuum bulb
JPH0850838A (en) Contact material for vacuum valve
US6346683B1 (en) Vacuum interrupter and vacuum switch thereof
JP2878718B2 (en) Contact material for vacuum valve
JP2695902B2 (en) Contact for vacuum valve
JP3909804B2 (en) Contact material for vacuum valves
JP2003077375A (en) Contact material for vacuum valve and vacuum valve
JP3833519B2 (en) Vacuum circuit breaker
JP4619821B2 (en) Contact material and vacuum valve
JP2001236865A (en) Vacuum valve
JP3790055B2 (en) Contact material for vacuum valves
JP2004192992A (en) Contact material for vacuum valve
JP2911594B2 (en) Vacuum valve
JP2653467B2 (en) Manufacturing method of contact alloy for vacuum valve
JP2937620B2 (en) Manufacturing method of contact alloy for vacuum valve
JP2003331698A (en) Electrode for vacuum circuit breaker and manufacturing method therefor
JP4476542B2 (en) Vacuum circuit breaker
JPH0822734A (en) Manufacture of contact material for vacuum valve
JP4421173B2 (en) Vacuum circuit breaker