JP2003331698A - Electrode for vacuum circuit breaker and manufacturing method therefor - Google Patents

Electrode for vacuum circuit breaker and manufacturing method therefor

Info

Publication number
JP2003331698A
JP2003331698A JP2002132251A JP2002132251A JP2003331698A JP 2003331698 A JP2003331698 A JP 2003331698A JP 2002132251 A JP2002132251 A JP 2002132251A JP 2002132251 A JP2002132251 A JP 2002132251A JP 2003331698 A JP2003331698 A JP 2003331698A
Authority
JP
Japan
Prior art keywords
electrode
circuit breaker
vacuum circuit
refractory metal
supporting portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002132251A
Other languages
Japanese (ja)
Inventor
Masaya Takahashi
雅也 高橋
Shigeru Kikuchi
菊池  茂
Katsuhiro Komuro
勝博 小室
Noboru Baba
馬場  昇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002132251A priority Critical patent/JP2003331698A/en
Publication of JP2003331698A publication Critical patent/JP2003331698A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low manufacturing cost electrode for a vacuum circuit breaker, which has a fine structure layer consisting of refractory metal whose grain size is 0.1 to 30 μm as an arc-proof material member, wherein the electrode enables the vacuum circuit breaker to have good circuit breaking characteristic, good withstand voltage and good deposition-proof characteristic. <P>SOLUTION: The electrode for the vacuum circuit breaker is manufactured in such processes that the arc-proof material member is formed on an electrode holding portion which contains the refractory metal using a target material which contains the refractory metal and a highly electrically conductive material; and the electrode holding portion on which the arc-proof material member is formed, is machined in reducing atmosphere or atmosphere which does not oxidize into a shape having blades which are separated by a spiral groove and a convex portion in its center. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、真空遮断器用電極
及びその製造方法に関する。
TECHNICAL FIELD The present invention relates to an electrode for a vacuum circuit breaker and a method for manufacturing the same.

【0002】[0002]

【従来の技術】真空遮断器は、真空を絶縁・消弧媒体と
する遮断器であり、安全性の高さや保守点検の容易さ等
の利点を生かして、現在では、小容量遮断器の主流とな
っている。設置場所としては、各種ビル,ホテル,変電
所,地下街,石油コンビナート,各種工場,駅,車両,
病院,会館,公共設備等の高圧受変電設備内であり、他
の受配電機器である断路器,接地開閉器,避雷器,交流
器等とともに用いられている。
2. Description of the Related Art A vacuum circuit breaker is a circuit breaker that uses a vacuum as an insulating / arc-extinguishing medium, and is currently the mainstream of small-capacity circuit breakers due to its advantages such as high safety and easy maintenance and inspection. Has become. Installation places are various buildings, hotels, substations, underground malls, petroleum complex, various factories, stations, vehicles,
It is used in high-voltage power receiving and transforming facilities such as hospitals, halls, and public facilities, and is used together with other power receiving and distributing equipment such as disconnecting switches, grounding switches, lightning arresters, and AC devices.

【0003】真空遮断器は、真空バルブ内で電流,電圧
を遮断する。そのバルブ内には一対の固定側電極と可動
側電極とを対応配置している。両電極は、互いが接する
側にアーク電極を有し、その背面に接続した電極支持部
を有し、さらに電極支持部に接続された電極棒が外部に
延び、外部導体端子に接続される。これらアーク電極,
電極支持部および電極棒は導電性母材により形成され
る。
The vacuum circuit breaker cuts off current and voltage in the vacuum valve. In the valve, a pair of fixed side electrodes and movable side electrodes are arranged correspondingly. Both electrodes have an arc electrode on the side where they contact each other, and have an electrode support portion connected to the back surface thereof, and an electrode rod connected to the electrode support portion extends to the outside and is connected to an external conductor terminal. These arc electrodes,
The electrode supporting portion and the electrode rod are formed of a conductive base material.

【0004】アーク電極は、電流,電圧を遮断する際に
発生するアークに直接さらされる。したがって、アーク
電極に要求される特性は、遮断容量が大きいこと、耐電
圧値が高いこと、接触抵抗値が小さいこと(電気伝導に
優れていること)、耐溶着性に優れていること、電極消
耗量が少ないこと、裁断電流値が小さいことである。
The arc electrode is directly exposed to the arc generated when the current and voltage are cut off. Therefore, the characteristics required for the arc electrode are that the breaking capacity is large, the withstand voltage value is high, the contact resistance value is small (excellent in electrical conduction), the welding resistance is excellent, The consumption amount is small and the cutting current value is small.

【0005】しかし、これらの特性を全て満足させるこ
とは困難であり、一般には用途に応じて特に重要な特性
を重視し、他の特性はある程度犠牲にした材料が使用さ
れている。
However, it is difficult to satisfy all of these characteristics, and in general, a material in which particularly important characteristics are emphasized according to the application and other characteristics are sacrificed to some extent is used.

【0006】アーク電極の製造方法としては、耐火性金
属であるCrと高導電性金属であるCuの成形体にCu
を溶浸させる製造方法が特開昭63−96204号公報
に、また耐火性金属であるCrと高導電性金属であるC
uの成形体にCuを溶浸させ、高導電性金属の残部を電
極支持部,電極棒に加工する製造方法が特許第2874
522号公報に、さらに耐火性金属であるCrと高導電
性金属であるCuの成形体を焼結する製造方法が、特開
平5−101749号公報等に記載されている。
[0006] As a method of manufacturing an arc electrode, a molded body of Cr which is a refractory metal and Cu which is a highly conductive metal is added to Cu.
A manufacturing method of infiltrating a metal is disclosed in JP-A-63-96204, and a refractory metal Cr and a highly conductive metal C are used.
Japanese Patent No. 2874 is a manufacturing method in which Cu is infiltrated into a molded body of u and the remaining portion of the highly conductive metal is processed into an electrode supporting portion and an electrode rod.
Further, Japanese Unexamined Patent Publication No. 5-101749 discloses a manufacturing method in which a molded body of Cr, which is a refractory metal, and Cu, which is a highly conductive metal, is sintered.

【0007】[0007]

【発明が解決しようとする課題】特許2874522号
公報では、耐熱性容器内に多孔質成形体を設置し、その
成形体上に高導電性金属を設置し、耐熱性容器をアルミ
ナ粉で完全に充填した後、高導電性金属を溶浸させるこ
とで、電極製造を行っている。しかしこの製造方法の場
合、アルミナ粉末の充填が均一でなければ溶浸不足等の
不良が発生するため材料歩留まりが低下すること、アル
ミナ粉の充填に時間を費やすため生産効率が低下するこ
と、溶浸後の鋳塊表面にはアルミナ粉末が溶着するため
電極加工に用いる切削バイトの寿命が短いこと等の問題
が生じた。
In Japanese Patent No. 2874522, a porous molded body is placed in a heat resistant container, a highly conductive metal is placed on the molded body, and the heat resistant container is completely filled with alumina powder. After filling, the electrode is manufactured by infiltrating a highly conductive metal. However, in the case of this manufacturing method, if the filling of the alumina powder is not uniform, defects such as insufficient infiltration will occur and the material yield will decrease, and since the time is spent for filling the alumina powder, the production efficiency will decrease. Since the alumina powder was deposited on the surface of the ingot after the immersion, there were problems such as the short life of the cutting tool used for electrode processing.

【0008】また特開昭63−96204号公報では、
離型材を塗布・乾燥した耐熱性容器内に多孔質成形体を
設置し、その成形体上に高導電性金属を設置し、耐熱容
器上に蓄熱材をかぶせた後、高導電性金属を溶浸させる
ことで、電極製造を行っている。この製造方法の場合、
アルミナ粉の充填による生産効率の低下がなく、加工時
の切削バイトの寿命も問題にならない。しかし、離型材
の塗布・乾燥に多くの時間を要する、多孔質成形体上に
設置する高導電性金属が押湯部材としての働きも持つた
め、溶浸の制御が難しく材料歩留まりがさらに低下する
等の問題が生じた。
Further, in JP-A-63-96204,
Place a porous molded body in a heat resistant container coated with a mold release material and dry it, place a highly conductive metal on the molded body, cover the heat resistant container with a heat storage material, and then melt the highly conductive metal. The electrodes are manufactured by dipping. In the case of this manufacturing method,
There is no decrease in production efficiency due to filling with alumina powder, and the life of the cutting tool during machining does not matter. However, since it takes a lot of time to apply and dry the release material, the highly conductive metal installed on the porous molded body also functions as a feeder member, making it difficult to control infiltration and further reducing the material yield. Problems such as occurred.

【0009】特開平5−101749号公報では、多孔
質成形体を焼結することで、電極製造を行っている。こ
の製造方法の場合、成形体を炉内に設置するため、生産
効率が向上し、また電極が焼結体でやわらかいため、加
工時の切削バイトの寿命も長い。しかし、焼結時の変形
や形状のばらつきが多く、遮断特性,耐電圧特性,耐溶
着特性等の電極特性や材料歩留まりに悪影響を及ぼし
た。
In Japanese Patent Laid-Open No. 5-101749, an electrode is manufactured by sintering a porous compact. In the case of this manufacturing method, since the molded body is installed in the furnace, the production efficiency is improved, and since the electrode is a sintered body and is soft, the life of the cutting tool during processing is long. However, there were many deformations and variations in shape during sintering, which adversely affected the electrode characteristics such as breaking characteristics, withstand voltage characteristics, and welding resistance characteristics, and the material yield.

【0010】一方で、どの製造方法で電極を作製して
も、コンディショニングが必要である。これは、電極表
面にコンディショニング層と呼ばれる耐火性金属と高導
電性金属の溶融急冷された微細組織層を形成し、電極特
性を向上,安定化させる工程である。しかしこの工程で
は、層厚が均一にできないため、コンディショニング層
が最も薄い個所で遮断不能を起こすことが多く、また電
極の接触も点接触となりやすく、耐溶着性にも悪影響を
及ぼす。
On the other hand, no matter which manufacturing method is used to manufacture the electrode, conditioning is required. This is a step of forming a finely textured layer of refractory metal and highly conductive metal, which is called a conditioning layer, on the surface of the electrode, which is quenched and melted to improve and stabilize the electrode characteristics. However, in this step, since the layer thickness cannot be made uniform, it is often impossible to block the conditioning layer at the thinnest point, and the electrode contacts are likely to be point contacts, which also adversely affects the welding resistance.

【0011】そこで、本発明の目的は、従来法を改善す
ることにより、生産コストが安く、かつ表面に微細組織
層を持つ遮断,耐電圧,耐溶着特性に優れた真空遮断器
用電極とその製造方法を提供することにある。
Therefore, an object of the present invention is to improve the conventional method to reduce the production cost and to provide a vacuum circuit breaker electrode having a fine structure layer on the surface and excellent in breaking, withstanding voltage and welding resistance, and its manufacture. To provide a method.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するため
の第一の手段として、耐アーク部材と、電極支持部と、
を有する真空遮断器用電極であって、アーク部材は耐火
性金属と高電導性金属とを有するターゲット材を用いた
製膜法により形成されたことを特徴とする。
As a first means for achieving the above object, an arc resistant member, an electrode supporting portion,
In the electrode for a vacuum circuit breaker, the arc member is formed by a film forming method using a target material having a refractory metal and a highly conductive metal.

【0013】また第二の手段として、第一の手段におい
て製膜法はスパッタリングであることを特徴とする。
As a second means, the film forming method in the first means is sputtering.

【0014】上記目的を達成するための第三の手段とし
て、第一の手段においてこの製膜法はイオンプレーティ
ングであることを特徴とする。
As a third means for achieving the above object, the film forming method in the first means is characterized by ion plating.

【0015】さらに第四の手段として、第一の手段にお
いて電極支持部は耐火性金属と高電導性金属の鋳塊又は
焼結体であることを特徴とする。さらに第五の手段とし
て、第一の手段において、耐アーク部材を構成する耐火
性金属の粒径は0.1μm 〜30μmであることを特徴
とする。
Further, as a fourth means, in the first means, the electrode supporting portion is an ingot or a sintered body of a refractory metal and a highly conductive metal. Further, as a fifth means, in the first means, the refractory metal forming the arc resistant member has a particle size of 0.1 μm to 30 μm.

【0016】さらに第六の手段として、第一の手段にお
いて耐アーク部材は、20重量%〜100重量%の耐火
性金属と0重量%〜80重量%の高導電性金属とを有す
ることを特徴とするさらに第七の手段として、第一の手
段において耐アーク部材は、0.1ppm〜1000ppmの
Al,0.1ppm〜1000ppmのSi及び1ppm〜500
ppmのO2を含有することを特徴とする。
Further, as a sixth means, in the first means, the arc resistant member comprises 20 wt% to 100 wt% of a refractory metal and 0 wt% to 80 wt% of a highly conductive metal. As a seventh means, the arc resistant member in the first means is 0.1 ppm to 1000 ppm Al, 0.1 ppm to 1000 ppm Si and 1 ppm to 500 ppm.
It is characterized by containing ppm O 2 .

【0017】さらに第八の手段として、第一の手段にお
いて耐アーク部材の比抵抗は、3.5μΩcm以上であるこ
とを特徴とする。
As an eighth means, the arc-resistant member in the first means has a specific resistance of 3.5 μΩcm or more.

【0018】さらに第九の手段として、第一の手段にお
いて電極支持部は耐火性金属と高電導性金属の焼結体で
あり、かつ0重量%〜40重量%の前記耐火性金属と6
0重量%〜100重量%とを有することを特徴とする。
As a ninth means, in the first means, the electrode supporting portion is a sintered body of a refractory metal and a highly conductive metal, and 0% to 40% by weight of the refractory metal and 6%
0% to 100% by weight.

【0019】さらに第十の手段として、第一の手段にお
いて電極支持部は耐火性金属と高電導性金属の焼結体で
あり、かつ50ppm〜3000ppmのAl,50ppm〜30
00ppmのSi及び500ppm〜3000ppmのO2 を含
有することを特徴とする。
As a tenth means, in the first means, the electrode supporting portion is a sintered body of a refractory metal and a highly conductive metal, and 50 ppm to 3000 ppm of Al and 50 ppm to 30 ppm.
Characterized in that it contains O 2 Si and 500ppm~3000ppm of 00Ppm.

【0020】さらに第十一の手段として、第一の手段に
おいて電極支持部は耐火性金属と高電導性金属の焼結体
であり、焼結体を構成する耐火性金属の粒径は150μ
m以下を95重量%以上有することを特徴とする。
Further, as an eleventh means, in the first means, the electrode supporting portion is a sintered body of a refractory metal and a highly conductive metal, and the particle diameter of the refractory metal constituting the sintered body is 150 μm.
It is characterized by having m or less of 95% by weight or more.

【0021】さらに第十二の手段として、第一の手段に
おいて電極支持部は耐火性金属と高電導性金属の焼結体
であり、焼結体を構成する高導電性金属の粒径は106
μm以下の粉末を50重量%以上有することを特徴とす
る。
Further, as a twelfth means, in the first means, the electrode supporting portion is a sintered body of a refractory metal and a highly conductive metal, and the particle diameter of the highly conductive metal constituting the sintered body is 106.
It is characterized by containing 50% by weight or more of powder having a particle size of not more than μm.

【0022】さらに第十三の手段として、第一の手段に
おいて耐火性金属は、Cr,W,Mo,Ta,Nb,B
e,Hf,Ir,Pt,Zr,Ti,Si,Rh及びR
uの1種または2種以上の混合物あるいは化合物からな
ることを特徴とする。
Further, as a thirteenth means, in the first means, the refractory metal is Cr, W, Mo, Ta, Nb, B.
e, Hf, Ir, Pt, Zr, Ti, Si, Rh and R
It is characterized by comprising one or a mixture of two or more kinds of u.

【0023】さらに第十四の手段として、第一の手段に
おいて高導電性金属は、Cu,Ag及びAuの1種また
は2種以上の混合物あるいは化合物からなることを特徴
とする。
Further, as a fourteenth means, the high-conductivity metal in the first means is characterized by comprising one kind or a mixture or compound of two or more kinds of Cu, Ag and Au.

【0024】さらに第十五の手段として、真空遮断器用
電極の製造方法であって、耐火性金属を含む電極支持部
に、耐火性金属と高導電性金属とを有するターゲット材
を用いて耐アーク部材を形成する工程と、耐アーク部材
が形成された前記電極支持部を、還元性雰囲気又は非酸
化性雰囲気中でスパイラル溝により分離される羽根型で
あってかつ中心部に凸部を有するよう加工する工程と、
を有することを特徴とする。
Further, as a fifteenth means, there is provided a method of manufacturing an electrode for a vacuum circuit breaker, wherein an arc supporting is performed by using a target material having a refractory metal and a highly conductive metal as an electrode supporting portion containing a refractory metal. A step of forming a member, and the electrode supporting portion on which the arc resistant member is formed are separated from each other by a spiral groove in a reducing atmosphere or a non-oxidizing atmosphere, and have a convex shape at the center. The process of processing,
It is characterized by having.

【0025】さらに第十六の手段として、真空遮断器用
電極の製造方法であって、耐火性金属を含む電極支持部
に、耐火性金属と高導電性金属とを有するターゲット材
を用いて耐アーク部材を形成する工程と、耐アーク部材
が形成された電極支持部を、還元性雰囲気又は非酸化性
雰囲気中で円状でありかつ中心部に凸部を有するよう加
工する工程と、を有することを特徴とする。
Further, as a sixteenth means, there is provided a method for manufacturing an electrode for a vacuum circuit breaker, wherein an arc supporting is performed by using a target material having a refractory metal and a highly conductive metal as an electrode supporting portion containing a refractory metal. A step of forming a member, and a step of processing the electrode supporting portion on which the arc resistant member is formed so as to have a circular shape in a reducing atmosphere or a non-oxidizing atmosphere and to have a convex portion in the central portion. Is characterized by.

【0026】さらに第十七の手段として、第十五又は十
六の手段において前記耐アーク部材を形成する工程は、
スパッタリングであることを特徴とする。
Further, as a seventeenth means, in the step of forming the arc resistant member in the fifteenth or sixteenth means,
It is characterized by being sputtering.

【0027】さらに第十八の手段として、第十五又は十
六の手段において前記耐アーク部材を形成する工程は、
イオンプレーティングであることを特徴とする。
Further, as an eighteenth means, the step of forming the arc resistant member in the fifteenth or sixteenth means comprises:
It is characterized by being an ion plating.

【0028】さらに第十九の手段として、第十五又は十
六の手段において前記耐アーク部材が形成された前記電
極支持部を加工する工程は180MPa〜800MPa
の加圧下でかつ900℃〜1080℃の温度で行われる
ことを特徴とする。
Further, as a nineteenth means, the step of processing the electrode supporting portion on which the arc resistant member is formed in the fifteenth or sixteenth means is 180 MPa to 800 MPa.
Under a pressure of 900 ° C. to 1080 ° C.

【0029】さらに第二十の手段として、真空遮断器用
電極の製造方法であって、耐火性金属と高電導性金属と
を混合及び焼結して焼結体の電極支持部を形成する工程
と、前記電極支持部に、該耐火性金属と高導電性金属と
を有するターゲット材を用いて耐アーク部材を形成する
工程と、耐アーク部材が形成された前記電極支持部を、
還元性雰囲気又は非酸化性雰囲気中で円状でありかつ中
心部に凸部を有するよう加工する工程と、を有すること
を特徴とする。前記焼結耐に耐火性金属と高電導性金属
とを有するターゲット材を用いて製膜法により形成され
たことを特徴とする。
A twentieth means is a method of manufacturing an electrode for a vacuum circuit breaker, which comprises mixing and sintering a refractory metal and a highly conductive metal to form an electrode supporting portion of a sintered body. A step of forming an arc resistant member using a target material having the refractory metal and a highly conductive metal in the electrode supporting portion; and the electrode supporting portion having the arc resistant member formed thereon,
A step of processing in a reducing atmosphere or a non-oxidizing atmosphere so as to have a circular shape and to have a convex portion in the center portion. It is characterized in that it is formed by a film forming method using a target material having a refractory metal and a highly conductive metal for the sintering resistance.

【0030】さらに第二十一の手段として、真空遮断器
用電極の製造方法であって、耐火性金属と高電導性金属
とを混合及び焼結して焼結体の電極支持部を形成する工
程と、電極支持部に、耐火性金属と高導電性金属とを有
するターゲット材を用いて耐アーク部材を形成する工程
と、耐アーク部材が形成された電極支持部を、還元性雰
囲気又は非酸化性雰囲気中でスパイラル溝により分離さ
れる羽根型であってかつ中心部に凸部を有するよう加工
する工程と、を有することを特徴とする。
Further, as a twenty-first means, a method of manufacturing an electrode for a vacuum circuit breaker, wherein a step of mixing and sintering a refractory metal and a highly conductive metal to form an electrode supporting portion of a sintered body. A step of forming an arc resistant member using a target material having a refractory metal and a highly conductive metal in the electrode supporting portion, and the electrode supporting portion on which the arc resistant member is formed in a reducing atmosphere or a non-oxidizing state. And a step of processing to have a convex portion at the center, which is a blade type separated by a spiral groove in a natural atmosphere.

【0031】さらに第二十二の手段として、固定側電極
と、この固定側電極と対向して配置される可動側電極
と、この固定側電極及び可動側電極の周辺に配置される
中間シールドと、を有する真空バルブであって、固定側
電極と可動側電極のうち少なくとも何れかは耐アーク部
材と、電極支持部と、を有し、アーク部材は耐火性金属
と高電導性金属とを有するターゲット材を用いた製膜法
により形成されたことを特徴とする。
Further, as a twelfth means, a fixed side electrode, a movable side electrode arranged to face the fixed side electrode, and an intermediate shield arranged around the fixed side electrode and the movable side electrode. , And at least one of the fixed side electrode and the movable side electrode has an arc resistant member and an electrode supporting portion, and the arc member has a refractory metal and a highly conductive metal. It is characterized in that it is formed by a film forming method using a target material.

【0032】加えて第二十三の手段として、第二十二の
手段において電極支持部は耐火性金属と前記高電導性金
属の鋳塊又は焼結体であることを特徴とする。
In addition, as a twenty-third means, in the twenty-second means, the electrode supporting portion is an ingot or a sintered body of a refractory metal and the high conductivity metal.

【0033】[0033]

【発明の実施の形態】以下、本発明の実施例について図
面を用いて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0034】(実施例1)図1は、本発明により作製し
たアーク電極1の断面を示すものであり、図1(a)は
断面図を、図1(b)は平面図を夫々示す。アーク電極
1は、耐アーク部材2と電極支持部3とを有してなる。
Example 1 FIG. 1 shows a cross section of an arc electrode 1 produced according to the present invention. FIG. 1 (a) is a cross sectional view and FIG. 1 (b) is a plan view. The arc electrode 1 includes an arc resistant member 2 and an electrode support portion 3.

【0035】具体的な製造方法を図2で説明する。A specific manufacturing method will be described with reference to FIG.

【0036】直径40mm,厚さ10mmのCu板4をアセ
トンで洗浄した後、乾燥させ、RFマグネトロンスパッ
タリング装置にセットした。なおこの場合、Cu板4の
変わりにCuの焼結体でも構わない。耐火性金属として
Cr、高導電性金属としてCuを成膜するため、ターゲ
ットにはCr−Cu合金ターゲット5(40Cr−60
Cu合金)をセットした。そして、Arガス圧:5×1
-3Torr,出力:500W,基板間距離:50mm,基板
温度:常温の条件でCr−Cu膜6を4.5μm 成膜し
た。評価試験として比抵抗を測定した結果は5.1μm
であった。元素分析の結果はAlを20ppm、Siを3
0ppm、O2 を250ppm 夫々含有しており、Cr−C
uの成分は、39Cr−61Cuであった。またアーク
電極1の表面を走査型電子顕微鏡で観察した結果、表面
は平滑で、ドロップレットやピンホールの少ない面であ
った。さらに断面も同様に観察した結果、耐アーク部材
2の耐火性金属であるCrの粒径は、0.1μm 〜30
μmであった。
A Cu plate 4 having a diameter of 40 mm and a thickness of 10 mm was washed with acetone, dried, and set in an RF magnetron sputtering device. In this case, a Cu sintered body may be used instead of the Cu plate 4. Since Cr is deposited as a refractory metal and Cu is deposited as a highly conductive metal, the target is a Cr—Cu alloy target 5 (40Cr-60).
Cu alloy) was set. And Ar gas pressure: 5 × 1
The Cr—Cu film 6 was deposited to a thickness of 4.5 μm under the conditions of 0 −3 Torr, output: 500 W, substrate distance: 50 mm, substrate temperature: room temperature. The result of measuring the specific resistance as an evaluation test is 5.1 μm
Met. The elemental analysis shows that Al is 20 ppm and Si is 3
0 ppm, which contained 250ppm respectively the O 2, Cr-C
The component of u was 39Cr-61Cu. Moreover, as a result of observing the surface of the arc electrode 1 with a scanning electron microscope, the surface was smooth and was a surface with few droplets and pinholes. Furthermore, as a result of observing the cross section in the same manner, the particle diameter of Cr which is the refractory metal of the arc resistant member 2 is 0.1 μm to 30 μm.
was μm.

【0037】次に耐アーク部材2と電極支持部3を機械
加工することで、図1に示すアーク電極1を作製した。
アーク電極1は、耐アーク部材2から電極支持部3まで
達する深さとアーク電極1の面の内周側から外周側にか
けて形成される形状のスパイラル溝7を有する。しかし
一部でスパイラル溝7がない場合もある。このスパイラ
ル溝7は、外周側端部で切り離されている。補強板8を
有する場合は、スパイラル溝は、何本でもよいが、3〜
5本が望ましい。しかし補強板8がない場合は、3本以
下とするのが、強度的に望ましい。電極支持部3の背面
には、補強板8と電極棒9がろう付けで接合されてい
る。
Next, the arc resistant member 2 and the electrode supporting portion 3 were machined to produce the arc electrode 1 shown in FIG.
The arc electrode 1 has a depth reaching from the arc resistant member 2 to the electrode support portion 3 and a spiral groove 7 having a shape formed from the inner peripheral side to the outer peripheral side of the surface of the arc electrode 1. However, in some cases, the spiral groove 7 may not be provided. The spiral groove 7 is separated at the outer peripheral side end. When the reinforcing plate 8 is provided, the number of spiral grooves may be 3 to
Five is desirable. However, if the reinforcing plate 8 is not provided, it is preferable that the number is three or less in terms of strength. The reinforcing plate 8 and the electrode rod 9 are brazed to the back surface of the electrode supporting portion 3.

【0038】次にアーク電極1を用いて真空バルブを組
み立てた。その断面図を図3に示す。
Next, a vacuum valve was assembled using the arc electrode 1. The sectional view is shown in FIG.

【0039】真空バルブの周囲はアルミナ製のシリンダ
10で囲まれている。シリンダ10内には、スパイラル
溝7が存在するアーク電極1と電極棒9と補強板8(有
るものと無いものがある)を冶金的にろう付けすること
で一体化した固定側電極11と可動側電極12を有し、
互いが向き合う形で存在する。固定側電極11と可動側
電極12の周辺部には中間シールド13を有する。これ
は電流遮断中に発生する金属蒸気がシリンダ10に付着
しないようにするために、または電界緩和のために存在
するものである。可動側電極12には金属製ベローズ1
4が存在し、これの可動で電極も可動する。また金属製
ベローズ14に金属蒸気が付着しないようにシールリン
グ15が存在する。これらすべてのはたらきによって電
流遮断が行われる。
The vacuum valve is surrounded by a cylinder 10 made of alumina. In the cylinder 10, the arc electrode 1 having the spiral groove 7, the electrode rod 9, and the reinforcing plate 8 (with or without) are metallurgically brazed to be integrated with the fixed electrode 11 and movable. Has a side electrode 12,
They exist in a form of facing each other. An intermediate shield 13 is provided around the fixed electrode 11 and the movable electrode 12. This is for preventing the metal vapor generated during the current interruption from adhering to the cylinder 10 or for electric field relaxation. The movable side electrode 12 has a metal bellows 1
4 exists, and the movable electrode moves the electrode. Further, a seal ring 15 is present so that metal vapor does not adhere to the metal bellows 14. The current interruption is performed by all these functions.

【0040】真空バルブを真空遮断器に組込み、遮断試
験をしたところ、遮断特性および耐電圧特性は、良好で
あり、別途実施した耐溶着試験の結果も良好であった。
When the vacuum valve was incorporated into a vacuum circuit breaker and a breaking test was conducted, the breaking characteristics and the withstand voltage characteristics were good, and the results of the separately conducted welding resistance test were also good.

【0041】(実施例2)ターゲットのCr−CuのC
r量を20〜100重量%間に変化させて、同様の製造
方法でアーク電極1を作製した。
(Example 2) C of Cr-Cu as a target
The arc electrode 1 was produced by the same production method while changing the amount of r between 20 and 100% by weight.

【0042】実施例1と同様に分析した結果、Cr量の
増加に伴い、比抵抗も増加傾向を示し、比抵抗はすべて
3.5μm 以上を示した。また元素分析は、Cr量の変
化には関係なかったが、0.1ppm〜1000ppmのA
l,0.1ppm〜1000ppmのSi,1ppm〜500ppm
のO2 を常に含有していた。また耐アーク部材2の耐火
性金属であるCrの粒径は、0.1μm 〜30μmであ
った。
As a result of an analysis similar to that of Example 1, the specific resistance also tended to increase as the amount of Cr increased, and the specific resistances were all 3.5 μm or more. The elemental analysis was not related to the change of Cr content, but 0.1 ppm to 1000 ppm of A
l, 0.1ppm-1000ppm Si, 1ppm-500ppm
Of O 2 was always contain. The particle size of the refractory metal Cr of the arc resistant member 2 was 0.1 μm to 30 μm.

【0043】実施例1と同様に真空バルブを真空遮断器
に組込み、遮断試験をしたところ、遮断特性および耐電
圧特性は、良好であり、別途実施した耐溶着試験の結果
も良好であった。
When a vacuum valve was incorporated into a vacuum circuit breaker and a breaking test was conducted in the same manner as in Example 1, the breaking characteristics and the withstand voltage characteristics were good, and the results of the separately conducted welding resistance test were also good.

【0044】(実施例3)焼結体の製造方法を図6で用
いて説明する。
(Example 3) A method for manufacturing a sintered body will be described with reference to FIG.

【0045】耐火性金属としてのCr粉末25重量%、
高導電性金属としてのCu粉末75重量%をVミキサー
で混合した。用いたCr粉末は、O2 が50ppm 〜30
00ppm、Alが50ppm〜3000ppm、Siが50ppm
〜3000ppm の微量元素を含むものである。混合粉を
直径40mmの金型を用いて、180MPaの圧力で成形
し、直径40mm,厚さ10mmの成形体16を作製した。
25% by weight of Cr powder as a refractory metal,
75% by weight of Cu powder as a highly conductive metal was mixed with a V mixer. The Cr powder used has O 2 of 50 ppm to 30
00ppm, Al 50ppm-3000ppm, Si 50ppm
It contains trace elements up to 3000ppm. The mixed powder was molded at a pressure of 180 MPa using a mold having a diameter of 40 mm to produce a molded body 16 having a diameter of 40 mm and a thickness of 10 mm.

【0046】黒鉛製皿A17の上に成形体16を設置
し、さらに均一加熱のために成形体上を覆うように黒鉛
製皿B18を設置し、加熱用の真空電気炉内で6.7 ×
10-3Pa以下の真空中で、1020℃×60分間加熱
した。これらを焼結後に黒鉛製皿A17から取ると、焼
結体を得ることができる。尚、成形体16中に存在した
微量元素(Al:50ppm〜3000ppm,Si:50pp
m〜3000ppm)は焼結体中に含んでいる。また黒鉛製
皿A17及びB18は板,るつぼでも同様の効果を得る
ことが可能である。
The molded body 16 was placed on the graphite dish A17, and further the graphite dish B18 was installed so as to cover the molded body for uniform heating, and 6.7 × in a vacuum electric furnace for heating.
It was heated at 1020 ° C. for 60 minutes in a vacuum of 10 −3 Pa or less. When these are taken out from the graphite dish A17 after sintering, a sintered body can be obtained. The trace elements (Al: 50 ppm to 3000 ppm, Si: 50 pp) existing in the molded body 16
m to 3000 ppm) is contained in the sintered body. Further, the graphite plates A17 and B18 can also have the same effect with a plate or a crucible.

【0047】焼結体をアセトン洗浄後、乾燥させ、RF
マグネトロンスパッタリング装置にセットし、実施例1
と同様にCr−Cu膜6を4.5μm 成膜させた。
The sintered body was washed with acetone, dried, and then subjected to RF.
Example 1 set in a magnetron sputtering apparatus
A Cr-Cu film 6 having a thickness of 4.5 μm was formed in the same manner as in.

【0048】実施例1と同様に、分析,試験等を実施し
たが、同様に良好な結果であった。
Analysis, tests and the like were carried out in the same manner as in Example 1, but similarly good results were obtained.

【0049】(実施例4)焼結体の作製時のCr量を0
重量%〜40重量%に変化させて作製したが、実施例3
と同様の焼結体が作製された。その後、同様に、分析,
試験等を実施したが、実施例1と同様に良好な結果であ
った。
(Example 4) When the sintered body was produced, the Cr content was set to 0.
Example 3 was prepared by changing the content of the powder to 40% by weight.
A sintered body similar to that was prepared. Then, similarly,
As a result of tests and the like, good results were obtained as in Example 1.

【0050】(実施例5)成形体16の作製時の成形条
件を180MPa〜800MPaに変化させて作製した
が、実施例3と同様の焼結体が作製された。その後、実
施例1と同様に、分析,試験等を実施したが、同様に良
好な結果であった。
(Example 5) Although the molding conditions for manufacturing the molded body 16 were changed from 180 MPa to 800 MPa, a sintered body similar to that of Example 3 was manufactured. After that, analysis, tests and the like were carried out in the same manner as in Example 1, and similarly good results were obtained.

【0051】(実施例6)焼結体の作製時の焼結条件を
それぞれ焼結温度:900℃〜1080℃、還元性雰囲
気に変化させて作製したが、実施例3と同様の焼結体が
作製された。その後、実施例1と同様に、分析,試験等
を実施したが、同様に良好な結果であった。
Example 6 A sintered body similar to that of Example 3 was prepared by changing the sintering conditions at the time of producing the sintered body to a sintering temperature of 900 ° C. to 1080 ° C. and a reducing atmosphere. Was created. After that, analysis, tests and the like were carried out in the same manner as in Example 1, and similarly good results were obtained.

【0052】(実施例7)耐火性金属の種類をCr以外
のW,Mo,Ta,Nb,Be,Hf,Ir,Pt,Z
r,Ti,Si,Rh及びRuの1種または2種以上の
混合物あるいは化合物に変化させた場合や高導電性金属
の種類をCu以外のAg及びAuの1種または2種以上
の混合物あるいは化合物に変化させて実施例1から実施
例6と同様のことを実施したが、同様に良好な結果であ
った。
(Embodiment 7) Refractory metals other than Cr are W, Mo, Ta, Nb, Be, Hf, Ir, Pt, Z.
When one or more mixtures or compounds of r, Ti, Si, Rh and Ru are changed, or the kind of highly conductive metal is one or more mixtures or compounds of Ag and Au other than Cu. However, the same results as in Examples 1 to 6 were obtained.

【0053】また、電極支持部3上に作製する耐アーク
部材2の成膜法は、RFスパッタリングだけではなく、
マグネトロンスパッタリング,DCスパッタリングを代
表とする一連のスパッタリングやアークイオンプレーテ
ィングを代表とする一連のイオンプレーティング等のタ
ーゲット材を使用する成膜法であれば、同様の結果が得
られる。
Further, the film forming method of the arc resistant member 2 formed on the electrode supporting portion 3 is not limited to RF sputtering,
Similar results can be obtained by a film forming method using a target material such as a series of sputterings typified by magnetron sputtering and DC sputtering and a series of ion platings typified by arc ion plating.

【0054】以上、本発明によれば、固定側電極と可動
側電極とを有し、両電極の互いに向き合う全面が耐火性
金属と高導電性金属とを有する合金からなる耐アーク部
材により構成される真空遮断器用電極において、耐アー
ク部材がターゲット材を用いた成膜法により、電極支持
部である前記高導電性金属の鋳塊上または耐火性金属と
高導電性金属からなる焼結体上に作製されることで、生
産コストが安く、耐アーク部材を構成する耐火性金属の
粒径が0.1μm 〜30μmである微細組織層を持つ遮
断,耐電圧,耐溶着特性に優れた真空遮断器用電極とそ
の製造方法を提供することができる
As described above, according to the present invention, the arc-resistant member having the fixed-side electrode and the movable-side electrode, and the entire surfaces of both electrodes facing each other are made of an alloy containing a refractory metal and a highly conductive metal. In the electrode for vacuum circuit breaker, the arc-resistant member is formed on the ingot of the highly conductive metal or the sintered body made of the refractory metal and the highly conductive metal, which is the electrode supporting portion, by the film forming method using the target material. Since it is manufactured in a vacuum, it has a low production cost, and has a fine structure layer in which the grain size of the refractory metal constituting the arc resistant member is 0.1 μm to 30 μm, and it has excellent withstand voltage and welding resistance. And a method for manufacturing the same can be provided.

【0055】[0055]

【発明の効果】以上により、生産コストが安く、かつ表
面に微細組織層を持つ遮断,耐電圧,耐溶着特性に優れ
た真空遮断器用電極とその製造方法を提供することがで
きる。
As described above, it is possible to provide an electrode for a vacuum circuit breaker which has a low production cost and which has a fine structure layer on the surface and is excellent in blocking, withstand voltage and welding resistance, and a manufacturing method thereof.

【図面の簡単な説明】[Brief description of drawings]

【図1】アーク電極の外観図。FIG. 1 is an external view of an arc electrode.

【図2】アーク電極の製造方法を表す図。FIG. 2 is a diagram showing a method of manufacturing an arc electrode.

【図3】真空バルブの断面を表す図。FIG. 3 is a view showing a cross section of a vacuum valve.

【図4】耐火性金属の粒度分布を表す図。FIG. 4 is a diagram showing a particle size distribution of a refractory metal.

【図5】高導電性金属の粒度分布を表す図。FIG. 5 is a diagram showing a particle size distribution of a highly conductive metal.

【図6】焼結体の製造方法を表す図。FIG. 6 is a diagram showing a method for manufacturing a sintered body.

【符号の説明】[Explanation of symbols]

1…アーク電極、2…耐アーク部材、3…電極支持部、
4…Cu板、5…Cr−Cu合金ターゲット、6…Cr
−Cu膜、7…スパイラル溝、8…補強板、9…電極
棒、10…シリンダ、11…固定側電極、12…可動側
電極、13…中間シールド、14…金属製ベローズ、1
5…シールリング、16…成形体、17…黒鉛製皿A、
18…黒鉛製皿B、19…スペーサ。
1 ... Arc electrode, 2 ... Arc resistant member, 3 ... Electrode support,
4 ... Cu plate, 5 ... Cr-Cu alloy target, 6 ... Cr
-Cu film, 7 ... Spiral groove, 8 ... Reinforcing plate, 9 ... Electrode rod, 10 ... Cylinder, 11 ... Fixed side electrode, 12 ... Movable side electrode, 13 ... Intermediate shield, 14 ... Metal bellows, 1
5 ... Seal ring, 16 ... Molded body, 17 ... Graphite dish A,
18 ... Graphite plate B, 19 ... Spacer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小室 勝博 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 馬場 昇 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 Fターム(参考) 4K029 AA02 BA21 CA03 CA05 DC04 5G026 BA02 BA04 BB02 BB03 BB04 BB12 BB14 BB15 BB16 BB17 BB18 BC03 BC05 BC09    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Katsuhiro Komuro             7-1-1, Omika-cho, Hitachi-shi, Ibaraki Prefecture             Inside the Hitachi Research Laboratory, Hitachi Ltd. (72) Inventor Noboru Baba             7-1-1, Omika-cho, Hitachi-shi, Ibaraki Prefecture             Inside the Hitachi Research Laboratory, Hitachi Ltd. F-term (reference) 4K029 AA02 BA21 CA03 CA05 DC04                 5G026 BA02 BA04 BB02 BB03 BB04                       BB12 BB14 BB15 BB16 BB17                       BB18 BC03 BC05 BC09

Claims (23)

【特許請求の範囲】[Claims] 【請求項1】耐アーク部材と、電極支持部と、を有する
真空遮断器用電極であって、 前記アーク部材は、耐火性金属と高電導性金属とを有す
るターゲット材を用いた製膜法により形成されたことを
特徴とする真空遮断器用電極。
1. An electrode for a vacuum circuit breaker having an arc resistant member and an electrode supporting portion, wherein the arc member is formed by a film forming method using a target material having a refractory metal and a highly conductive metal. An electrode for a vacuum circuit breaker characterized by being formed.
【請求項2】前記製膜法はスパッタリングであることを
特徴とする請求項1記載の真空遮断器用電極。
2. The electrode for a vacuum circuit breaker according to claim 1, wherein the film forming method is sputtering.
【請求項3】前記製膜法はイオンプレーティングである
ことを特徴とする請求項1記載の真空遮断器用電極。
3. The electrode for a vacuum circuit breaker according to claim 1, wherein the film forming method is ion plating.
【請求項4】前記電極支持部は前記耐火性金属と前記高
電導性金属の鋳塊又は焼結体であることを特徴とする請
求項1記載の真空遮断器用電極。
4. The electrode for a vacuum circuit breaker according to claim 1, wherein the electrode supporting portion is an ingot or a sintered body of the refractory metal and the highly conductive metal.
【請求項5】前記耐アーク部材を構成する前記耐火性金
属の粒径は0.1μm 〜30μmであることを特徴とす
る請求項1記載の真空遮断器用電極。
5. The electrode for a vacuum circuit breaker according to claim 1, wherein the refractory metal forming the arc resistant member has a particle size of 0.1 μm to 30 μm.
【請求項6】前記耐アーク部材は、20重量%〜100
重量%の前記耐火性金属と0重量%〜80重量%の前記
高導電性金属とを有することを特徴とする請求項1記載
の真空遮断器用電極。
6. The arc resistant member comprises 20% by weight to 100% by weight.
The electrode for a vacuum circuit breaker according to claim 1, wherein the electrode has a refractory metal of 0 wt% and the highly conductive metal of 0 wt% to 80 wt%.
【請求項7】前記耐アーク部材は、0.1ppm〜1000
ppmのAl,0.1ppm〜1000ppmのSi及び1ppm〜
500ppmのO2 を含有することを特徴とする請求項1
記載の真空遮断器用電極。
7. The arc resistant member comprises 0.1 ppm to 1000 ppm.
ppm Al, 0.1 ppm-1000 ppm Si and 1 ppm-
2. The composition according to claim 1, which contains 500 ppm of O 2.
The vacuum circuit breaker electrode described.
【請求項8】前記耐アーク部材の比抵抗は、3.5μΩc
m 以上であることを特徴とする請求項1記載の真空遮断
器用電極。
8. The specific resistance of the arc resistant member is 3.5 μΩc
The electrode for a vacuum circuit breaker according to claim 1, wherein the electrode is for m or more.
【請求項9】前記電極支持部は前記耐火性金属と前記高
電導性金属の焼結体であり、かつ0重量%〜40重量%
の前記耐火性金属と60重量%〜100重量%とを有す
ることを特徴とする請求項1記載の真空遮断器用電極。
9. The electrode supporting portion is a sintered body of the refractory metal and the high-conductivity metal, and 0% by weight to 40% by weight.
2. The electrode for a vacuum circuit breaker according to claim 1, wherein the refractory metal and 60 wt% to 100 wt% are included.
【請求項10】前記電極支持部は前記耐火性金属と前記
高電導性金属の焼結体であり、かつ50ppm〜3000p
pmのAl,50ppm〜3000ppmのSi及び500ppm
〜3000ppmのO2 を含有することを特徴とする請求
項1記載の真空遮断器用電極。
10. The electrode supporting portion is a sintered body of the refractory metal and the high-conductivity metal, and is 50 ppm to 3000 p.
pm Al, 50ppm-3000ppm Si and 500ppm
The electrode for a vacuum circuit breaker according to claim 1, which contains ˜3000 ppm of O 2 .
【請求項11】前記電極支持部は前記耐火性金属と前記
高電導性金属の焼結体であり、前記焼結体を構成する前
記耐火性金属の粒径は150μm以下を95重量%以上
有することを特徴とする請求項1記載の真空遮断器用電
極。
11. The electrode supporting portion is a sintered body of the refractory metal and the high-conductivity metal, and the particle diameter of the refractory metal forming the sintered body is not less than 150 μm and not less than 95% by weight. The electrode for a vacuum circuit breaker according to claim 1, wherein:
【請求項12】前記電極支持部は前記耐火性金属と前記
高電導性金属の焼結体であり、前記焼結体を構成する前
記高導電性金属の粒径は106μm以下の粉末を50重
量%以上有することを特徴とする請求項1記載の真空遮
断器用電極。
12. The electrode supporting portion is a sintered body of the refractory metal and the high-conductivity metal, and the high-conductivity metal forming the sintered body has a particle diameter of 106 μm or less of 50 parts by weight of powder. % Or more, The electrode for a vacuum circuit breaker according to claim 1, wherein
【請求項13】前記耐火性金属は、Cr,W,Mo,T
a,Nb,Be,Hf,Ir,Pt,Zr,Ti,S
i,Rh及びRuの1種または2種以上の混合物あるい
は化合物からなることを特徴とする請求項1記載の真空
遮断器用電極。
13. The refractory metal is Cr, W, Mo, T.
a, Nb, Be, Hf, Ir, Pt, Zr, Ti, S
The electrode for a vacuum circuit breaker according to claim 1, which is composed of one kind or a mixture or compound of two or more kinds of i, Rh and Ru.
【請求項14】前記高導電性金属は、Cu,Ag及びA
uの1種または2種以上の混合物あるいは化合物からな
ることを特徴とする請求項1記載の真空遮断器用電極。
14. The highly conductive metal is Cu, Ag or A.
The electrode for a vacuum circuit breaker according to claim 1, which is composed of one kind or a mixture of two or more kinds of u.
【請求項15】耐火性金属を含む電極支持部に、該耐火
性金属と高導電性金属とを有するターゲット材を用いて
耐アーク部材を形成する工程と、前記耐アーク部材が形
成された前記電極支持部を、還元性雰囲気又は非酸化性
雰囲気中でスパイラル溝により分離される羽根型であっ
てかつ中心部に凸部を有するよう加工する工程と、を有
することを特徴とする真空遮断器用電極の製造方法。
15. A step of forming an arc resistant member on an electrode supporting portion containing a refractory metal by using a target material having the refractory metal and a highly conductive metal; and the step of forming the arc resistant member. A vacuum circuit breaker characterized by comprising: a step of processing the electrode supporting portion in a reducing atmosphere or a non-oxidizing atmosphere so as to have a blade shape separated by a spiral groove and having a convex portion in a central portion. Electrode manufacturing method.
【請求項16】耐火性金属を含む電極支持部に、該耐火
性金属と高導電性金属とを有するターゲット材を用いて
耐アーク部材を形成する工程と、 前記耐アーク部材が形成された前記電極支持部を、還元
性雰囲気又は非酸化性雰囲気中で円状でありかつ中心部
に凸部を有するよう加工する工程と、を有することを特
徴とする真空遮断器用電極の製造方法。
16. A step of forming an arc resistant member on an electrode supporting portion containing a refractory metal by using a target material having the refractory metal and a highly conductive metal, and the step of forming the arc resistant member. And a step of processing the electrode supporting portion so as to have a circular shape in a reducing atmosphere or a non-oxidizing atmosphere and to have a convex portion at a central portion thereof.
【請求項17】前記耐アーク部材を形成する工程は、ス
パッタリングであることを特徴とする請求項15又は1
6記載の真空遮断器用電極の製造方法。
17. The method according to claim 15, wherein the step of forming the arc resistant member is sputtering.
6. The method for manufacturing a vacuum circuit breaker electrode according to 6.
【請求項18】前記耐アーク部材を形成する工程は、イ
オンプレーティングであることを特徴とする請求項15
又は16記載の真空遮断器用電極の製造方法。
18. The step of forming the arc resistant member is ion plating.
Or the manufacturing method of the electrode for vacuum circuit breakers of Claim 16.
【請求項19】前記耐アーク部材が形成された前記電極
支持部を加工する工程は180MPa〜800MPaの
加圧下でかつ900℃〜1080℃の温度で行われるこ
とを特徴とする請求項9又は10記載の真空遮断器用電
極の製造方法。
19. The process of processing the electrode support portion on which the arc resistant member is formed is performed under a pressure of 180 MPa to 800 MPa and a temperature of 900 ° C. to 1080 ° C. A method of manufacturing an electrode for a vacuum circuit breaker according to claim 1.
【請求項20】耐火性金属と高電導性金属とを混合及び
焼結して焼結体の電極支持部を形成する工程と、 前記電極支持部に、該耐火性金属と高導電性金属とを有
するターゲット材を用いて耐アーク部材を形成する工程
と、 前記耐アーク部材が形成された前記電極支持部を、還元
性雰囲気又は非酸化性雰囲気中で円状でありかつ中心部
に凸部を有するよう加工する工程と、を有することを特
徴とする真空遮断器用電極の製造方法。
20. A step of forming an electrode supporting portion of a sintered body by mixing and sintering a refractory metal and a highly conductive metal, and the refractory metal and the highly conductive metal in the electrode supporting portion. A step of forming an arc resistant member using a target material having, and the electrode support portion on which the arc resistant member is formed is circular in a reducing atmosphere or a non-oxidizing atmosphere and has a convex portion at the center. And a step of processing so as to have a method of manufacturing an electrode for a vacuum circuit breaker.
【請求項21】耐火性金属と高電導性金属とを混合及び
焼結して焼結体の電極支持部を形成する工程と、 前記電極支持部に、該耐火性金属と高導電性金属とを有
するターゲット材を用いて耐アーク部材を形成する工程
と、 前記耐アーク部材が形成された前記電極支持部を、還元
性雰囲気又は非酸化性雰囲気中でスパイラル溝により分
離される羽根型であってかつ中心部に凸部を有するよう
加工する工程と、を有することを特徴とする真空遮断器
用電極の製造方法。
21. A step of mixing and sintering a refractory metal and a high-conductivity metal to form an electrode supporting portion of a sintered body, the refractory metal and a highly conductive metal in the electrode supporting portion. And a step of forming an arc resistant member using a target material having a blade shape, wherein the electrode supporting portion on which the arc resistant member is formed is separated by a spiral groove in a reducing atmosphere or a non-oxidizing atmosphere. And a step of processing so as to have a convex portion at the center thereof, and a method for manufacturing an electrode for a vacuum circuit breaker.
【請求項22】固定側電極と、 該固定側電極と対向して配置される可動側電極と、 前記固定側電極及び可動側電極の周辺に配置される中間
シールドと、を有する真空バルブであって、 前記固定側電極と可動側電極のうち少なくとも何れかは
耐アーク部材と、電極支持部と、を有し、前記アーク部
材は耐火性金属と高電導性金属とを有するターゲット材
を用いた製膜法により形成されたことを特徴とする真空
バルブ。
22. A vacuum valve having a fixed electrode, a movable electrode arranged to face the fixed electrode, and an intermediate shield arranged around the fixed electrode and the movable electrode. At least one of the fixed side electrode and the movable side electrode has an arc resistant member and an electrode supporting portion, and the arc member uses a target material having a refractory metal and a highly conductive metal. A vacuum valve formed by a film forming method.
【請求項23】前記電極支持部は前記耐火性金属と前記
高電導性金属の鋳塊又は焼結体であることを特徴とする
請求項22記載の真空バルブ。
23. The vacuum valve according to claim 22, wherein the electrode supporting portion is an ingot or a sintered body of the refractory metal and the highly conductive metal.
JP2002132251A 2002-05-08 2002-05-08 Electrode for vacuum circuit breaker and manufacturing method therefor Pending JP2003331698A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002132251A JP2003331698A (en) 2002-05-08 2002-05-08 Electrode for vacuum circuit breaker and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002132251A JP2003331698A (en) 2002-05-08 2002-05-08 Electrode for vacuum circuit breaker and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2003331698A true JP2003331698A (en) 2003-11-21

Family

ID=29695967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002132251A Pending JP2003331698A (en) 2002-05-08 2002-05-08 Electrode for vacuum circuit breaker and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2003331698A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009129856A (en) * 2007-11-27 2009-06-11 Toshiba Corp Contact point material for vacuum valve, and manufacturing method thereof
JP2017111907A (en) * 2015-12-15 2017-06-22 株式会社東芝 Contact point for vacuum valve, method for manufacturing the same, and vacuum valve having contact point
JP2020027741A (en) * 2018-08-10 2020-02-20 株式会社東芝 Contact material for vacuum valve, manufacturing method of contact material for vacuum valve, and vacuum valve
CN112475796A (en) * 2020-11-11 2021-03-12 宁波江丰电子材料股份有限公司 Welding method of target assembly

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009129856A (en) * 2007-11-27 2009-06-11 Toshiba Corp Contact point material for vacuum valve, and manufacturing method thereof
JP2017111907A (en) * 2015-12-15 2017-06-22 株式会社東芝 Contact point for vacuum valve, method for manufacturing the same, and vacuum valve having contact point
JP2020027741A (en) * 2018-08-10 2020-02-20 株式会社東芝 Contact material for vacuum valve, manufacturing method of contact material for vacuum valve, and vacuum valve
JP7182946B2 (en) 2018-08-10 2022-12-05 株式会社東芝 Contact material for vacuum valve, method for manufacturing contact material for vacuum valve, and vacuum valve
CN112475796A (en) * 2020-11-11 2021-03-12 宁波江丰电子材料股份有限公司 Welding method of target assembly
CN112475796B (en) * 2020-11-11 2022-04-15 宁波江丰电子材料股份有限公司 Welding method of target assembly

Similar Documents

Publication Publication Date Title
EP2081200B1 (en) Electrical contact for vacuum interrupter
JP4759987B2 (en) Electrode and electrical contact and its manufacturing method
EP1528581B1 (en) Electrical contact, method of manufacturing the same, electrode for vacuum interrupter, and vacuum circuit breaker
JP4455066B2 (en) Electrical contact member, method of manufacturing the same, vacuum valve and vacuum circuit breaker using the same
EP1742238B1 (en) Electrical contacts for vacuum circuit breakers and methods of manufacturing the same
EP0090579B1 (en) Surge-absorberless vacuum circuit interrupter
KR0145245B1 (en) Contact material for a vacuum switch
EP0530437B1 (en) Contact material for vacuum circuit breakers and method of manufacturing the same
EP0118844A2 (en) Vacuum switch and method of manufacturing the same
KR0170052B1 (en) Contact material for vacuum valve &amp; method of manufacturing the same
JP3597544B2 (en) Contact material for vacuum valve and manufacturing method thereof
JP2003331698A (en) Electrode for vacuum circuit breaker and manufacturing method therefor
JP2001135206A (en) Electrode, vacuum valve electrode, vacuum valve and vacuum switch
JP2000235825A (en) Electrode member for vacuum circuit-breaker and manufacture thereof
JP2011108380A (en) Electric contact for vacuum valve, and vacuum interrupter using the same
JP4249356B2 (en) Electrical contact material
EP1026709B1 (en) Vacuum interrupter and vacuum switch thereof
JP2003147407A (en) Electric contact, its manufacturing method, and vacuum valve and vacuum circuit breaker using the same
JP2003223834A (en) Electrical contact member and manufacturing method therefor
JP6398530B2 (en) Method for producing electrode material
JP2006032036A (en) Contact material for vacuum valve
JP2002167631A (en) Electrical contact material, its production method and gas-blast circuit breaker
JP2000173415A (en) Electric contact and its manufacture
JPH0822734A (en) Manufacture of contact material for vacuum valve
JP2003183749A (en) Vacuum circuit-breaker and contact material for this