JP2009129856A - Contact point material for vacuum valve, and manufacturing method thereof - Google Patents

Contact point material for vacuum valve, and manufacturing method thereof Download PDF

Info

Publication number
JP2009129856A
JP2009129856A JP2007306526A JP2007306526A JP2009129856A JP 2009129856 A JP2009129856 A JP 2009129856A JP 2007306526 A JP2007306526 A JP 2007306526A JP 2007306526 A JP2007306526 A JP 2007306526A JP 2009129856 A JP2009129856 A JP 2009129856A
Authority
JP
Japan
Prior art keywords
arc
vacuum valve
build
component
conductive component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007306526A
Other languages
Japanese (ja)
Inventor
Atsushi Yamamoto
敦史 山本
Takashi Kusano
貴史 草野
Kosuke Sasage
浩資 捧
Yoshimitsu Niwa
芳充 丹羽
Isao Okutomi
功 奥富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Shibafu Engineering Corp
Original Assignee
Toshiba Corp
Shibafu Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Shibafu Engineering Corp filed Critical Toshiba Corp
Priority to JP2007306526A priority Critical patent/JP2009129856A/en
Publication of JP2009129856A publication Critical patent/JP2009129856A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
  • Contacts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a contact point material for a vacuum valve in which a pulverization of an arc-proof component in a conductive component is improved and breaking characteristics and a voltage resisting property are improved. <P>SOLUTION: The contact point material for the vacuum valve is provided with a pair of contact points 12, 14 which are attachable and detachable, and a surface of a base material composing the contact points 12, 14 composed of a conductive component at least out of the conductive component and an arc-proof component undergoes a friction padding treatment in which a padding material of which the arc-proof component particles are dispersed in a conductive component matrix is rotated to form a padded layer in which the arc-proof component particles are pulverized. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、遮断特性や耐電圧特性などを向上し得る真空バルブ用接点材料およびその製造方法に関する。   The present invention relates to a contact material for a vacuum valve that can improve a breaking characteristic, a withstand voltage characteristic, and the like, and a manufacturing method thereof.

真空開閉機器はその環境調和性により適用範囲の拡大が図られており、高電圧領域への適用が試みられている。真空バルブの接点材料としては、導電性成分のマトリックス中にCr、Moなどの耐弧性成分粒子を分散させた複合材料が一般的に使用されている(例えば、特許文献1参照)。   The application range of the vacuum switchgear is being expanded due to its environmental harmony, and application to the high voltage region has been attempted. As a contact material of a vacuum valve, a composite material in which arc resistant component particles such as Cr and Mo are dispersed in a matrix of a conductive component is generally used (for example, refer to Patent Document 1).

高電圧領域で接点材料を使用する場合、接点間での絶縁破壊メカニズムとしては、耐弧性成分などの粒子が離脱することが挙げられる。特に、Crのような脆性の耐弧性成分では、接点表面に露出している耐弧性成分粒子が開閉により破砕し、絶縁破壊の原因となる微粒子が発生する。このため、耐弧性成分粒子を微粒子化させ、接点表面に露出しないように導電性成分マトリックス中に微細に分散させている。   When a contact material is used in a high voltage region, the dielectric breakdown mechanism between the contacts includes the separation of particles such as arc resistant components. In particular, in a brittle arc resistant component such as Cr, the arc resistant component particles exposed on the contact surface are crushed by opening and closing, and fine particles that cause dielectric breakdown are generated. For this reason, the arc resistant component particles are atomized and finely dispersed in the conductive component matrix so as not to be exposed on the contact surface.

微細に分散させる方法としては、耐弧性成分粒子と導電性成分粒子とを焼結法により製造する方法、耐弧性成分粒子の粒子間に溶解した導電性成分を溶浸する方法、あるいは導電性成分と耐弧性成分の両者を溶解し、急冷して耐弧性成分を導電性成分中に微細に晶出させる方法などがある。   As a fine dispersion method, arc-resistant component particles and conductive component particles are manufactured by a sintering method, a conductive component dissolved between arc-resistant component particles is infiltrated, or conductive For example, there is a method in which both the heat resistant component and the arc resistant component are dissolved and rapidly cooled to crystallize the arc resistant component finely in the conductive component.

一方、金属部材表面に摩擦攪拌処理を施し、摩擦熱と回転体の攪拌作用によって表面改質を行い、靭性などの機械的強度を向上させる技術が知られている(例えば、特許文献2参照)。しかしながら、金属部材表面の金属組織を粗状態から緻密状態にするものに過ぎず、上述のように導電性成分や耐弧性成分などの異なる成分粒子を微細に分散させるものではない。
特開2006−233298号公報 (第4〜5ページ、図1) 特開2004−68681号公報 (第3〜4ページ、図1)
On the other hand, a technique is known in which friction stir processing is performed on the surface of a metal member, surface modification is performed by friction heat and a stirring action of a rotating body, and mechanical strength such as toughness is improved (for example, see Patent Document 2). . However, the metal structure on the surface of the metal member is merely changed from a rough state to a dense state, and does not finely disperse different component particles such as a conductive component and an arc resistance component as described above.
JP 2006-233298 A (pages 4-5, FIG. 1) JP 2004-68681 A (pages 3 to 4, FIG. 1)

上記の従来の接点材料においては、耐電圧特性に加えて通電特性や遮断特性が要求され、主たる耐弧性成分としては、CrやMoなどが選択されている。しかしながら、これらの耐弧性成分は比較的酸化し易く、微粒子を原料とした焼結法による製造は困難である。このため、耐弧性成分の微細化には、アーク溶解法や真空溶解法が用いられる。しかしながら、これらの製造方法による分散の微細化には限界があり、更なる耐弧性成分を微細化できる接点材料とその製造方法が望まれていた。   In the above conventional contact material, in addition to the withstand voltage characteristics, energization characteristics and interruption characteristics are required, and Cr, Mo, etc. are selected as main arc resistance components. However, these arc-resistant components are relatively easily oxidized and are difficult to manufacture by a sintering method using fine particles as raw materials. For this reason, an arc melting method or a vacuum melting method is used to refine the arc-resistant component. However, there is a limit to the refinement of dispersion by these production methods, and a contact material and a production method thereof that can further refine the arc resistance component have been desired.

本発明は上記問題を解決するためになされたもので、耐弧性成分の微細化を図り、遮断特性や耐電圧特性などを向上し得る真空バルブ用接点材料およびその製造方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and provides a contact material for a vacuum valve and a method for manufacturing the same that can reduce the arc resistance component and improve the breaking characteristics and the withstand voltage characteristics. Objective.

上記目的を達成するために、本発明の真空バルブ用接点材料は、真空バルブ用接点材料であって、導電性成分と耐弧性成分のうち少なくとも導電性成分で構成された基材の表面に、導電性成分マトリックス中に耐弧性成分粒子を分散させた肉盛材を回転させる摩擦肉盛処理を施し、肉盛層を形成したことを特徴とする。   In order to achieve the above object, the contact material for a vacuum valve of the present invention is a contact material for a vacuum valve, and is provided on the surface of a base material composed of at least a conductive component among a conductive component and an arc resistant component. A build-up layer is formed by applying a friction build-up process of rotating a build-up material in which arc-resistant component particles are dispersed in a conductive component matrix.

本発明によれば、導電性成分中に耐弧性成分を分散させた肉盛材で摩擦肉盛処理を施し、接点の表面に肉盛層を形成しているので、耐弧性成分が微細化されて分散し、耐電圧特性や遮断特性を向上させることができる。   According to the present invention, the friction build-up process is performed with the cladding material in which the arc resistance component is dispersed in the conductive component, and the overlay layer is formed on the surface of the contact, so that the arc resistance component is fine. Can be dispersed to improve the withstand voltage characteristic and the cutoff characteristic.

以下、図面を参照して本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

本発明の実施例に係る真空バルブ用接点材料を図1乃至図3を参照して説明する。図1は、本発明の実施例に係る真空バルブの構成を示す断面図、図2は、本発明の実施例に係る真空バルブの一方の接点の構成を示す断面図、図3は、本発明の実施例に係る真空バルブ用接点の製造方法を説明する図である。   A vacuum valve contact material according to an embodiment of the present invention will be described with reference to FIGS. 1 is a cross-sectional view showing a configuration of a vacuum valve according to an embodiment of the present invention, FIG. 2 is a cross-sectional view showing a configuration of one contact of a vacuum valve according to an embodiment of the present invention, and FIG. It is a figure explaining the manufacturing method of the contact for vacuum valves which concerns on an Example.

図1に示すように、真空絶縁容器1の両端には、封止金具2を介して蓋体3が封着され、互いの通電軸4、5の対向する端部に一対の電極6、7が配設されている。上部の電極6を固定電極、下部の電極7を可動電極としている。通電軸5には、伸縮自在のベローズ8が取り付けられ、真空絶縁容器1内を真空に保持しながら通電軸5の軸方向の移動を可能にしている。ベローズ8の上部には、金属製のアークシールド9が設けられ、また、電極6、7を包囲するように金属製の筒状のアークシールド10が設けられている。更に、可動側の電極7には、図2に示すように、通電軸5端がろう付け部11によって固定され、接点12もろう付け部13により固定されている。固定側の接点14も可動側と同様に固定されている。   As shown in FIG. 1, a lid 3 is sealed at both ends of the vacuum insulating container 1 via a sealing fitting 2, and a pair of electrodes 6, 7 are arranged at opposite ends of the current-carrying shafts 4, 5. Is arranged. The upper electrode 6 is a fixed electrode, and the lower electrode 7 is a movable electrode. A telescopic bellows 8 is attached to the energizing shaft 5 so that the energizing shaft 5 can be moved in the axial direction while keeping the inside of the vacuum insulating container 1 in a vacuum. A metal arc shield 9 is provided above the bellows 8, and a metal cylindrical arc shield 10 is provided so as to surround the electrodes 6 and 7. Further, as shown in FIG. 2, the end of the current-carrying shaft 5 is fixed to the movable electrode 7 by a brazing part 11, and the contact 12 is also fixed by a brazing part 13. The fixed side contact 14 is also fixed in the same manner as the movable side.

このような接点12、14の製造方法を図3を参照して説明する。   A method of manufacturing such contacts 12 and 14 will be described with reference to FIG.

図3に示すように、接点12、14となるCuなどの基材15の表面に、耐弧性成分を分散させた肉盛材16を回転させながら所定の面圧で押し付け、肉盛層17を形成させる。この摩擦肉盛処理においては、図示しない回転装置で肉盛材16を約1000rpmで回転させながら、基材15を約500mm/minの速度で平行移動させる。肉盛材16と基材15との接触面では、塑性流動が起こり、冷却すると基板15表面に耐弧性成分が微細化された肉盛層17が形成される。なお、アルゴンガスを用いたシールドガス18の吹き付けは、所定圧力のガスが摩擦面に当たるように実施した。   As shown in FIG. 3, the build-up layer 17 is pressed against the surface of a base material 15 such as Cu to be the contact points 12 and 14 with a predetermined surface pressure while rotating the build-up material 16 in which the arc-resistant component is dispersed. To form. In this friction build-up process, the base material 15 is translated at a speed of about 500 mm / min while the build-up material 16 is rotated at about 1000 rpm by a rotating device (not shown). Plastic flow occurs at the contact surface between the build-up material 16 and the base material 15, and when it is cooled, a build-up layer 17 in which the arc-resistant component is refined is formed on the surface of the substrate 15. The spraying of the shielding gas 18 using argon gas was performed so that a gas having a predetermined pressure hits the friction surface.

肉盛材16が基材15表面を流動する過程において、導電性成分マトリックス中に分散されている耐弧性成分粒子が変形し粉砕される。粉砕は導電性成分に包含された状態で進められるため、耐弧性成分が周囲の雰囲気によって酸化あるいは窒化される機会が少なくなる。したがって、低ガス含有量で、組織が微細化された接点材料を得ることができる。   In the process in which the build-up material 16 flows on the surface of the base material 15, the arc-resistant component particles dispersed in the conductive component matrix are deformed and pulverized. Since the pulverization is performed while being included in the conductive component, the chance of the arc-resistant component being oxidized or nitrided by the surrounding atmosphere is reduced. Therefore, it is possible to obtain a contact material having a fine structure with a low gas content.

ここで、肉盛層17内の耐弧性成分粒子は、基材15中と肉盛材16中に含まれるものであり、基材15にCuだけを用いたものでは肉盛材16中のものとなる。耐弧性成分粒子は、肉盛材16の軸方向と直交する端面を基材15面と平行させると、摩擦する面積が大きくなり、微細化され易くなる。   Here, the arc resistant component particles in the cladding layer 17 are contained in the base material 15 and the cladding material 16. It will be a thing. When the end surface orthogonal to the axial direction of the build-up material 16 is parallel to the surface of the base material 15, the arc-resistant component particles increase in frictional area and are easily miniaturized.

接点12、14の製造においては、所定形状の基材15に肉盛層17を形成してもよく、これよりも大なる面積の基材15に肉盛層17を形成し、それを所定形状に加工してもよい。特に、後者においては、接点12、14の端部まで肉盛層17が均一に形成されるので好ましいものとなる。   In the production of the contacts 12 and 14, the build-up layer 17 may be formed on the base material 15 having a predetermined shape, and the build-up layer 17 is formed on the base material 15 having an area larger than the base layer 15. May be processed. In particular, the latter is preferable because the built-up layer 17 is uniformly formed up to the ends of the contacts 12 and 14.

このような方法で製造した肉盛層17の評価は、以下の通りである。
1)酸素含有量
赤外線吸収法により測定した。
2)平均粒子間距離
断面組織写真の縦横に複数の補助線を引き、耐弧性成分の粒子間距離を測定し、平均値を求めた。
3)厚さと硬さ
断面組織写真から厚さを測定した。また、肉盛材16のビッカース硬さと、基材15のビッカース硬さとの比を求めた。
4)無負荷開閉後の耐電圧特性
電気的特性評価用の真空バルブに組み込み、無負荷開閉を100回実施後、ギャップ長を8mmとし、電圧上昇法により絶縁破壊電圧を求めた。後述する実施例1の結果を基準(1.0)とし、他の実施例と比較例を相対値で示し、0.9以上を合格とした。
5)投入溶着引き外し後の耐電圧特性
後述する実施例8、9、比較例3について、投入時にアークを発生させて溶着させ、その状態を機械的に引き外し、4項と同様の耐電圧特性を求めた。
6)遮断特性
後述する実施例10、比較例4について、ギャップ長を8mmとし、12kV印加条件での合成試験を実施し、電流を段階的に徐々に上昇させたときの再点弧が発生しない上限の遮断電流値を求めた。
これらの結果を表1を参照して説明する。
Evaluation of the built-up layer 17 manufactured by such a method is as follows.
1) Oxygen content It measured by the infrared absorption method.
2) Average interparticle distance A plurality of auxiliary lines were drawn vertically and horizontally in the cross-sectional structure photograph, the interparticle distance of the arc resistant component was measured, and the average value was obtained.
3) Thickness and hardness Thickness was measured from a cross-sectional structure photograph. Further, the ratio between the Vickers hardness of the build-up material 16 and the Vickers hardness of the base material 15 was determined.
4) Dielectric withstand voltage characteristics after opening and closing with no load After incorporating into a vacuum valve for evaluating electrical characteristics, performing no load opening and closing 100 times, the gap length was set to 8 mm, and the dielectric breakdown voltage was determined by the voltage rise method. The result of Example 1 to be described later was set as a reference (1.0), other examples and comparative examples were shown as relative values, and 0.9 or more was regarded as acceptable.
5) Dielectric strength characteristics after throwing-off welding For Examples 8 and 9 and Comparative Example 3 to be described later, an arc is generated at the time of charging and welding is performed, and the state is mechanically pulled off, and the withstand voltage is the same as in Section 4. The characteristics were determined.
6) Breaking characteristics Regarding Example 10 and Comparative Example 4 to be described later, the gap length is 8 mm, and a synthesis test is performed under a 12 kV application condition, and re-ignition does not occur when the current is gradually increased stepwise. The upper limit breaking current value was determined.
These results will be described with reference to Table 1.

(実施例1および比較例1)
実施例1では、溶解法によって製造したCu−25wt%Crの基材15に、同様の組成で焼結法により作製した肉盛材16を用いて摩擦肉盛処理を施し、接点12、14を製造した。比較例1では、溶解法によって製造したCu−25wt%Crで接点12、14を製造した。この結果、実施例1では、図3の丸印で示すように肉盛層17内でCr粒子が微細化されて均一に分散し、平均粒子間距離が0.5μmと比較例1よりも短くなった。また、酸素含有量が500ppmであり、比較例1の100ppmと比べて多いが、耐電圧特性は比較例1よりも上昇した。この実施例1の耐電圧値が基準となる。
(Example 1 and Comparative Example 1)
In Example 1, the Cu-15 wt% Cr base material 15 manufactured by the melting method was subjected to friction build-up processing using the build-up material 16 manufactured by the sintering method with the same composition, and the contacts 12 and 14 were connected. Manufactured. In Comparative Example 1, the contacts 12 and 14 were manufactured using Cu-25 wt% Cr manufactured by a melting method. As a result, in Example 1, as shown by the circles in FIG. 3, the Cr particles are refined and uniformly dispersed in the built-up layer 17, and the average interparticle distance is 0.5 μm, which is shorter than Comparative Example 1. became. In addition, the oxygen content was 500 ppm, which was higher than that of Comparative Example 1 of 100 ppm, but the withstand voltage characteristic was higher than that of Comparative Example 1. The withstand voltage value of the first embodiment is a reference.

(実施例2、3)
実施例2では、溶浸法によって製造したCu−25wt%Crの基材15に、同様の組成で焼結法により作製した肉盛材16を用いて摩擦肉盛処理を施し、接点12、14を製造した。実施例3では、焼結法によって製造したCu−25wt%Crの基材15に、同様の組成で溶解法により作製した肉盛材16を用いて摩擦肉盛処理を施し、接点12、14を製造した。この結果、肉盛材16のビッカース硬さが実施例3の方が硬くなったが、両者共、Cr粒子は微細化され、良好な耐電圧特性が得られた。
(Examples 2 and 3)
In Example 2, the Cu-15 wt% Cr base material 15 produced by the infiltration method was subjected to a friction build-up process using the build-up material 16 produced by the sintering method with the same composition, and the contacts 12, 14. Manufactured. In Example 3, the base material 15 of Cu-25 wt% Cr manufactured by the sintering method was subjected to friction build-up processing using the build-up material 16 manufactured by the melting method with the same composition, and the contacts 12 and 14 were formed. Manufactured. As a result, the Vickers hardness of the build-up material 16 became harder in Example 3, but in both cases, the Cr particles were refined and good voltage resistance characteristics were obtained.

(実施例4、5および比較例2)
基材15をCuとし、Crの含有量を25、50、75wt%と変化させた肉盛材16を焼結法で製造した。いずれも肉盛材16のCr含有量が基材15よりも多いため、耐電圧特性は良好であった。しかし、比較例2では、肉盛材16のビッカース硬さが基材15の2.2倍となり、Cr粒子が均一に分散された肉盛層17が形成されなかった。粒子間距離のバラツキが大きく、接点12、14に適する状態でなかったので、表中には肉盛層17が形成されずと表示した。このため、肉盛材16のビッカース硬さの比は、基材15の2倍以下が好ましい。
(Examples 4 and 5 and Comparative Example 2)
The build-up material 16 which made the base material 15 Cu and changed content of Cr with 25, 50, and 75 wt% was manufactured by the sintering method. In any case, the withstand voltage characteristics were good because the Cr content of the cladding material 16 was higher than that of the base material 15. However, in Comparative Example 2, the Vickers hardness of the build-up material 16 was 2.2 times that of the base material 15, and the build-up layer 17 in which Cr particles were uniformly dispersed was not formed. Since the variation in the distance between the particles was large and it was not in a state suitable for the contacts 12 and 14, it was indicated that the overlay layer 17 was not formed in the table. For this reason, the ratio of the Vickers hardness of the build-up material 16 is preferably twice or less that of the base material 15.

(実施例6、7および比較例3)
基材15を焼結法で製造したCu−25wt%Crとし、Crの含有量を5、35、50wt%と変化させた肉盛材16を焼結法で製造した。ビッカース硬さの比は1前後であり、実施例6、7では粒子間距離が0.2〜0.3μmで、耐電圧特性が良好であった。しかし、実施例3では、肉盛材16のCr含有量が少なく粒子間距離が増大し、耐電圧特性が不充分であった。
(Examples 6 and 7 and Comparative Example 3)
The base material 15 was made into Cu-25 wt% Cr manufactured by the sintering method, and the cladding material 16 in which the Cr content was changed to 5, 35, and 50 wt% was manufactured by the sintering method. The ratio of Vickers hardness was around 1. In Examples 6 and 7, the interparticle distance was 0.2 to 0.3 μm, and the withstand voltage characteristics were good. However, in Example 3, the Cr content of the build-up material 16 was small, the interparticle distance was increased, and the withstand voltage characteristics were insufficient.

(実施例8、9および比較例4)
溶解法によって製造したCu−25wt%Crの基材15に、同様の組成で焼結法により作製した肉盛材16を用いて、厚さを0.5、1、3mmと変化させた肉盛層17を形成した。厚さは、肉盛材16の押圧と基材15の移動速度で制御した。いずれも無負荷開閉後の耐電圧特性は良好であった。しかし、投入溶着引き外し後の耐電圧特性は、実施例8、9よりも肉盛層17厚さ0.5mmの比較例4が低かった。実施例8を1.0とすると、実施例9では1.1倍、比較例4では0.5倍であった。このため、溶着が起き得るものでは、投入溶着引き外し力に耐え得るように、肉盛層17の厚さを1mm以上にすることが好ましい。投入溶着引き外し力は、一般的に数100kgfとなる。
(Examples 8 and 9 and Comparative Example 4)
Build-up with thickness changed to 0.5, 1, and 3 mm by using the build-up material 16 produced by the sintering method with the same composition on the base material 15 of Cu-25 wt% Cr produced by the melting method Layer 17 was formed. The thickness was controlled by pressing the build-up material 16 and the moving speed of the base material 15. In any case, the withstand voltage characteristic after no-load switching was good. However, the withstand voltage characteristics after throwing-off welding were lower than those of Examples 8 and 9 in Comparative Example 4 in which the overlay layer 17 had a thickness of 0.5 mm. Assuming that Example 8 is 1.0, it is 1.1 times in Example 9 and 0.5 times in Comparative Example 4. For this reason, in the case where welding can occur, it is preferable to set the thickness of the build-up layer 17 to 1 mm or more so that it can withstand the input welding pull-out force. The input welding pull-out force is generally several hundred kgf.

(実施例10および比較例5)
溶解法によって製造したCu−25wt%Crの基材15に、同様の組成で焼結法により作製した肉盛材16を用いて、アルゴンガスの噴き付けの有無について評価した。いずれも無負荷開閉後の耐電圧特性は良好であった。しかし、遮断特性では、シールドガス18を用いた実施例10の方が比較例5よりも遮断電流値が高かった。実施例10を1.0とすると、比較例5では0.7倍であった。このため、シールドガス18を用いての摩擦肉盛処理は、酸素含有量を低減でき、耐電圧特性とともに、遮断特性を向上させることができる。また、シールドガス18の吹き付けにより、冷却を促進させることができる。
(Example 10 and Comparative Example 5)
The overlaying material 16 produced by the sintering method with the same composition was used for the base material 15 of Cu-25 wt% Cr produced by the melting method, and the presence or absence of spraying of argon gas was evaluated. In any case, the withstand voltage characteristic after no-load switching was good. However, in the cutoff characteristics, the cutoff current value of Example 10 using the shield gas 18 was higher than that of Comparative Example 5. Assuming that Example 10 is 1.0, Comparative Example 5 is 0.7 times. For this reason, the friction build-up process using the shield gas 18 can reduce the oxygen content, and can improve the cutoff characteristics as well as the withstand voltage characteristics. Further, the cooling can be promoted by spraying the shield gas 18.

(実施例11、12)
実施例11では、溶解法によって製造したCu−20wt%Moの基材15に、同様の組成で焼結法により作製した肉盛材16を用いて摩擦肉盛処理を施した。実施例12では、溶解法によって製造したCu−10wt%Mo−12.5wt%Crの基材15に、同様の組成で焼結法により作製した肉盛材16を用いて摩擦肉盛処理を施した。いずれも耐電圧特性は良好であり、接点材料にCu−Cr合金のほかに、Cu−Mo合金、Cu−Mo−Cr合金を用いることができる。
(Examples 11 and 12)
In Example 11, the friction build-up process was performed on the Cu-20 wt% Mo base material 15 produced by the melting method using the build-up material 16 produced by the sintering method with the same composition. In Example 12, friction build-up treatment was performed on the base material 15 of Cu-10 wt% Mo-12.5 wt% Cr manufactured by the melting method using the build-up material 16 manufactured by the sintering method with the same composition. did. In any case, the withstand voltage characteristics are good, and a Cu—Mo alloy or a Cu—Mo—Cr alloy can be used as the contact material in addition to the Cu—Cr alloy.

上記実施例の真空バルブ用接点材料によれば、接点12、14を構成する基材15の表面に肉盛材16を回転させる摩擦肉盛処理を施して肉盛層17を形成しているので、耐弧性成分が粉砕され微細化されて分散し、低ガス量となり、耐電圧特性や遮断特性を向上させることができる。

Figure 2009129856
According to the contact material for a vacuum valve of the above embodiment, the overlaying layer 17 is formed by applying the friction overlaying process for rotating the overlaying material 16 on the surface of the base material 15 constituting the contacts 12 and 14. The arc-resistant component is pulverized, refined and dispersed, the amount of gas becomes low, and the withstand voltage characteristic and the interruption characteristic can be improved.
Figure 2009129856

本発明の実施例に係る真空バルブの構成を示す断面図。Sectional drawing which shows the structure of the vacuum valve which concerns on the Example of this invention. 本発明の実施例に係る真空バルブの一方の接点の構成を示す断面図。Sectional drawing which shows the structure of one contact of the vacuum valve which concerns on the Example of this invention. 本発明の実施例に係る真空バルブ用接点の製造方法を説明する図。The figure explaining the manufacturing method of the contact for vacuum valves concerning the example of the present invention.

符号の説明Explanation of symbols

1 真空絶縁容器
2 封着金具
3 蓋体
4、5 通電軸
6、7 電極
8 ベローズ
9、10 アークシールド
11、13 ろう付け部
12、14 接点
15 基材
16 肉盛材
17 肉盛層
18 シールドガス
DESCRIPTION OF SYMBOLS 1 Vacuum insulation container 2 Sealing metal fitting 3 Cover body 4, 5 Current supply shaft 6, 7 Electrode 8 Bellows 9, 10 Arc shield 11, 13 Brazing part 12, 14 Contact 15 Base material 16 Overlay material 17 Overlay layer 18 Shield gas

Claims (7)

真空バルブ用接点材料であって、
導電性成分と耐弧性成分のうち少なくとも導電性成分で構成された基材の表面に、
導電性成分マトリックス中に耐弧性成分粒子を分散させた肉盛材を回転させる摩擦肉盛処理を施し、
肉盛層を形成したことを特徴とする真空バルブ用接点材料。
A contact material for a vacuum valve,
On the surface of the base material composed of at least the conductive component of the conductive component and the arc resistant component,
Friction overlaying is performed by rotating a cladding material in which arc-resistant component particles are dispersed in a conductive component matrix,
A contact material for a vacuum valve, characterized by forming a built-up layer.
前記導電性成分は、Cuであり、
前記耐弧性成分は、CrとMoのうちの少なくとも一方を用いることを特徴とする請求項1に記載の真空バルブ用接点材料。
The conductive component is Cu;
The contact material for a vacuum valve according to claim 1, wherein at least one of Cr and Mo is used as the arc resistance component.
前記肉盛層の厚さを、溶着引き外し力に耐え得るものにすることを特徴とする請求項1または請求項2に記載の真空バルブ用接点材料。   The contact material for a vacuum valve according to claim 1 or 2, wherein the build-up layer has a thickness that can withstand a welding pull-off force. 導電性成分と耐弧性成分のうち少なくとも導電性成分で構成された基材の表面に、
導電性成分マトリックス中に耐弧性成分粒子を分散させた肉盛材を押し当てながら回転させるとともに、前記基材を移動させて塑性流動を起こし、
少なくとも前記耐弧性成分粒子を微細化させた肉盛層を形成したことを特徴とする真空バルブ用接点材料の製造方法。
On the surface of the base material composed of at least the conductive component of the conductive component and the arc resistant component,
While rotating while pressing the cladding material in which arc-resistant component particles are dispersed in the conductive component matrix, the base material is moved to cause plastic flow,
A method for producing a contact material for a vacuum valve, characterized in that a build-up layer in which at least the arc-resistant component particles are refined is formed.
前記肉盛材は、Cu−Cr、Cu−Mo−Cr、Cu−Moのいずれかであり、焼結法、溶解法のいずれかの方法で製造したことを特徴とする請求項4に記載の真空バルブ用接点材料の製造方法。   The build-up material is Cu-Cr, Cu-Mo-Cr, or Cu-Mo, and is manufactured by any one of a sintering method and a melting method. Manufacturing method of contact material for vacuum valve. 前記基材は、Cu、Cu−Cr、Cu−Moのいずれかであり、焼結法、溶浸法、溶解法のいずれかの方法で製造したことを特徴とする請求項4または請求項5に記載の真空バルブ用接点材料の製造方法。   The said base material is either Cu, Cu-Cr, Cu-Mo, and it manufactured by the method of any one of the sintering method, the infiltration method, and the melt | dissolution method, The Claim 4 or Claim 5 characterized by the above-mentioned. The manufacturing method of the contact material for vacuum valves as described in 2 .. 前記基板表面の塑性流動を、シールドガス雰囲気中で行うことを特徴とする請求項4乃至請求項6のいずれか1項に記載の真空バルブ用接点材料の製造方法。   The method for producing a contact material for a vacuum valve according to any one of claims 4 to 6, wherein the plastic flow of the substrate surface is performed in a shielding gas atmosphere.
JP2007306526A 2007-11-27 2007-11-27 Contact point material for vacuum valve, and manufacturing method thereof Pending JP2009129856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007306526A JP2009129856A (en) 2007-11-27 2007-11-27 Contact point material for vacuum valve, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007306526A JP2009129856A (en) 2007-11-27 2007-11-27 Contact point material for vacuum valve, and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2009129856A true JP2009129856A (en) 2009-06-11

Family

ID=40820558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007306526A Pending JP2009129856A (en) 2007-11-27 2007-11-27 Contact point material for vacuum valve, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2009129856A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011024228A1 (en) * 2009-08-28 2011-03-03 株式会社日立製作所 Electric contact point for vacuum valve, and vacuum interrupter and vacuum switchgear using the electric contact point
JP2012009402A (en) * 2010-06-28 2012-01-12 Toshiba Corp Contact for vacuum valve, and manufacturing method of the same
WO2014024780A1 (en) * 2012-08-08 2014-02-13 日立建機株式会社 Coating method and device, and coating member
JP2020027741A (en) * 2018-08-10 2020-02-20 株式会社東芝 Contact material for vacuum valve, manufacturing method of contact material for vacuum valve, and vacuum valve

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002042616A (en) * 2000-07-19 2002-02-08 Shibafu Engineering Corp Vacuum circuit-breaker
JP2003203544A (en) * 2002-01-10 2003-07-18 Shibafu Engineering Corp Contact point material for vacuum valve and method of manufacture
JP2003331698A (en) * 2002-05-08 2003-11-21 Hitachi Ltd Electrode for vacuum circuit breaker and manufacturing method therefor
JP2004031028A (en) * 2002-06-24 2004-01-29 Asahi Kasei Chemicals Corp Electric contact material or electrode material
JP2006100243A (en) * 2004-03-22 2006-04-13 Shibafu Engineering Corp Composite contact, vacuum switch, and manufacturing method of composite contact
JP2007100129A (en) * 2005-09-30 2007-04-19 Mitsui Eng & Shipbuild Co Ltd Surface coating method and surface coating film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002042616A (en) * 2000-07-19 2002-02-08 Shibafu Engineering Corp Vacuum circuit-breaker
JP2003203544A (en) * 2002-01-10 2003-07-18 Shibafu Engineering Corp Contact point material for vacuum valve and method of manufacture
JP2003331698A (en) * 2002-05-08 2003-11-21 Hitachi Ltd Electrode for vacuum circuit breaker and manufacturing method therefor
JP2004031028A (en) * 2002-06-24 2004-01-29 Asahi Kasei Chemicals Corp Electric contact material or electrode material
JP2006100243A (en) * 2004-03-22 2006-04-13 Shibafu Engineering Corp Composite contact, vacuum switch, and manufacturing method of composite contact
JP2007100129A (en) * 2005-09-30 2007-04-19 Mitsui Eng & Shipbuild Co Ltd Surface coating method and surface coating film

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011024228A1 (en) * 2009-08-28 2011-03-03 株式会社日立製作所 Electric contact point for vacuum valve, and vacuum interrupter and vacuum switchgear using the electric contact point
JP2012009402A (en) * 2010-06-28 2012-01-12 Toshiba Corp Contact for vacuum valve, and manufacturing method of the same
WO2014024780A1 (en) * 2012-08-08 2014-02-13 日立建機株式会社 Coating method and device, and coating member
JPWO2014024780A1 (en) * 2012-08-08 2016-07-25 日立建機株式会社 Coating method and apparatus, and coating member
JP2020027741A (en) * 2018-08-10 2020-02-20 株式会社東芝 Contact material for vacuum valve, manufacturing method of contact material for vacuum valve, and vacuum valve
JP7182946B2 (en) 2018-08-10 2022-12-05 株式会社東芝 Contact material for vacuum valve, method for manufacturing contact material for vacuum valve, and vacuum valve

Similar Documents

Publication Publication Date Title
JP5880789B1 (en) A composite metal in which Cu is infiltrated into a compact formed from solid solution particles
JP5904308B2 (en) Method for producing electrode material
WO2011162398A1 (en) Method for producing electrode material for vacuum circuit breaker, electrode material for vacuum circuit breaker and electrode for vacuum circuit breaker
JP5861807B1 (en) Method for producing electrode material
JP6075423B1 (en) Vacuum circuit breaker
JP6323578B1 (en) Electrode material manufacturing method and electrode material
JP2009129856A (en) Contact point material for vacuum valve, and manufacturing method thereof
JP6253494B2 (en) Contact material for vacuum valve and vacuum valve
JP5142559B2 (en) Contact material for vacuum valve and manufacturing method thereof
JP2012004076A (en) Vacuum valve contact and manufacturing method thereof
JP6398415B2 (en) Method for producing electrode material
JP6015725B2 (en) Method for producing electrode material
JP2007066753A (en) Contact material for vacuum valve, and manufacturing method therefor
JP6669327B1 (en) Electrical contacts, vacuum valves with electrical contacts
JP5753244B2 (en) Contact material and circuit breaker using the same
JP5506873B2 (en) Contact material and manufacturing method thereof
JP6090388B2 (en) Electrode material and method for producing electrode material
JP6398530B2 (en) Method for producing electrode material
JP2016003344A (en) Production method of electrode material and electrode material
JP2006233298A (en) Contact material for vacuum valve and its production method
JP2006100243A (en) Composite contact, vacuum switch, and manufacturing method of composite contact
JP2006032036A (en) Contact material for vacuum valve
JP2009076218A (en) Electrical contact
JP2009252550A (en) Contact material, and manufacturing method thereof
Hu Powder Metallurgy Electrical Contact Materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100831

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111128

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111206

A977 Report on retrieval

Effective date: 20120406

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120410

A521 Written amendment

Effective date: 20120611

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130419