JP2002042616A - Vacuum circuit-breaker - Google Patents

Vacuum circuit-breaker

Info

Publication number
JP2002042616A
JP2002042616A JP2000218293A JP2000218293A JP2002042616A JP 2002042616 A JP2002042616 A JP 2002042616A JP 2000218293 A JP2000218293 A JP 2000218293A JP 2000218293 A JP2000218293 A JP 2000218293A JP 2002042616 A JP2002042616 A JP 2002042616A
Authority
JP
Japan
Prior art keywords
cucr
group
test
contact resistance
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000218293A
Other languages
Japanese (ja)
Other versions
JP3840044B2 (en
Inventor
Isao Okutomi
功 奥富
Takashi Kusano
貴史 草野
Mitsutaka Honma
三孝 本間
Iwao Oshima
巖 大島
Atsushi Yamamoto
敦史 山本
Keisei Seki
経世 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Shibafu Engineering Corp
Original Assignee
Toshiba Corp
Shibafu Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Shibafu Engineering Corp filed Critical Toshiba Corp
Priority to JP2000218293A priority Critical patent/JP3840044B2/en
Publication of JP2002042616A publication Critical patent/JP2002042616A/en
Application granted granted Critical
Publication of JP3840044B2 publication Critical patent/JP3840044B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Switches (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
  • Contacts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vacuum circuit-breaker having the stabilized contact resistance characteristic and the excellent large current breaking characteristic. SOLUTION: In a Cu-Cr contact mounted on the vacuum circuit-breaker, a part of a contact surface area is formed of a first CuCr group formed of a plurality of Cr particles having the particle diameter >40 μm and Cu phase surrounding the particles, and a second CuCr group formed of a plurality of Cr particles having the particle diameter <10 μm and Cu phase surrounding the particles, the contact surface area is formed of a plurality of aggregates comprising the first CuCr group and the second CuCr group, and the contact surface area constitutes a part of or the whole of a section of the contact. The stabilized contact resistance characteristic and the excellent large current breaking characteristic can be obtained thereby.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、特に接触抵抗特
性と大電流遮断特性とを両立させた接点素材を備えた真
空遮断器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum circuit breaker provided with a contact material having both a contact resistance characteristic and a large current breaking characteristic.

【0002】[0002]

【従来の技術】真空中でのアーク拡散性を利用して、高
真空中で電流遮断を行わせる真空バルブの接点は対向す
る固定、可動の2つの接点から構成されている。
2. Description of the Related Art The contacts of a vacuum valve for interrupting current in a high vacuum by utilizing arc diffusivity in a vacuum are composed of two fixed and movable contacts facing each other.

【0003】真空遮断器には、大電流断性能、耐電圧性
能、耐溶着性能の基本的3要件の他に接点の接触抵抗特
性、温度上昇特性が重要な要件となっている。
[0003] In addition to the three basic requirements of large current interruption performance, withstand voltage performance, and welding resistance performance, the vacuum circuit breaker has important requirements for contact resistance characteristics and temperature rise characteristics of the contacts.

【0004】しかしながら、これらの要件の中には相反
するものがある関係上、単一の金属種によって総ての要
件を満足させる事は不可能である。この為実用されてい
る多くの接点材料に於いては、不足する性能を相互に補
うような2種以上の元素を組合せる事によって、例えば
大電流用、高耐圧用などのように特定の用途に合った接
点材料の選択採用が行われ、それなりに優れた特性を持
つ真空バルブが開発されているが、さらに強まる要求を
充分満足する真空バルブは未だ得られていないのが実情
である。
[0004] However, since some of these requirements are contradictory, it is impossible to satisfy all the requirements with a single metal species. For this reason, in many contact materials that are in practical use, by combining two or more types of elements that complement each other for insufficient performance, it can be used for specific applications such as large current and high withstand voltage. Although the selection and adoption of contact materials suited to the requirements have been made, vacuum valves having excellent characteristics have been developed, but the fact is that a vacuum valve that sufficiently satisfies ever-increasing requirements has not yet been obtained.

【0005】例えば、優れた大電流遮断性を目的とした
接点として、Crを50%(重量%)程度含有させたC
u−Cr合金(特公昭45−35101号)が知られて
いる。この合金は、Cr自体がCuとほぼ同等の蒸気圧
特牲を保持しかつ強力なガスのゲッタ作用を示す等の作
用で高電圧かつ大電流断性を実現している。すなわちC
u−Cr合金は、高耐圧特性と大容量遮断とを両立させ
得る接点として多用されている。
[0005] For example, as a contact for the purpose of excellent large current interrupting property, C containing about 50% (% by weight) of Cr is used.
A u-Cr alloy (JP-B-45-35101) is known. This alloy realizes high voltage and large current disconnection by the action of Cr itself having substantially the same vapor pressure characteristics as Cu and exhibiting a strong gas getter action. That is, C
A u-Cr alloy is widely used as a contact capable of achieving both high withstand voltage characteristics and high capacity breaking.

【0006】この合金は、活性度の高いCrを使用して
いる事から、接点素材の製造(焼結工程など)、接点素
材から接点片へと加工する時などに於いて、原料粉の選
択、不純物の混入、雰囲気の管理などに配慮しながら製
造しているが、真空バルブの大電流遮断特性と接触抵抗
特性とを同時に兼備した接点材料の供給に対して必ずし
も完全な技術とはなっていない。
Since this alloy uses highly active Cr, it is necessary to select a raw material powder when manufacturing a contact material (sintering step, etc.), or when processing a contact material into a contact piece. Although it is manufactured in consideration of contamination of impurities, management of atmosphere, etc., it is not necessarily a perfect technology for the supply of contact materials that have both the large current interruption characteristics and the contact resistance characteristics of vacuum valves. Absent.

【0007】[0007]

【発明が解決しようとする課題】CuCr接点は、両者
の高温度での蒸気圧特性が近似していることなどが主因
となって、遮断した後でも接点面は比較的平滑な表面損
傷特性を示す為、一般には安定した接触抵抗特性を発揮
している。しかし近年一層の大電流遮断やより高電庄が
印加される可能性のある回路への適応が日常的に行われ
る様になり、接点表面は著しい消耗や強固な溶着現象が
見られ、その結果接触抵抗特性の不安定化が見られる様
になってきた。真空バルブに於いて、遮断によって異常
的に損傷・消耗した接点では、次の定常電流の開閉時の
接触抵抗の異常上昇や温度の異常上昇を引起こしたり、
耐電圧不良を示したりする為、接点の異常的損傷・消耗
は極力抑制する必要がある。
The contact surface of a CuCr contact has a relatively smooth surface damage characteristic even after disconnection, mainly because the vapor pressure characteristics at high temperatures are similar to each other. As a result, generally, stable contact resistance characteristics are exhibited. However, in recent years, it has become common practice to adapt to circuits where higher current interruption or higher voltage may be applied, and the contact surface has been noticeably worn and strongly welded. Instability of the contact resistance characteristics has been observed. In a vacuum valve, a contact that has been abnormally damaged or worn by shutting off may cause an abnormal increase in contact resistance or temperature when the next steady current is opened or closed,
In order to indicate a withstand voltage failure, it is necessary to suppress abnormal damage and wear of the contacts as much as possible.

【0008】研究によれば、CuCr合金の接点特性は
合金中のCr量の変動、Cr粒子の粒度、粒度分布、C
rの偏析の程度、合金中に存在する空孔の程度などに依
存することが判明した。しかしその最適化を進めている
にも拘らず、上述した近年の適応状況では接触抵抗特性
にばらつきが見られ、遮断特性に好ましくない影響を与
えている。そこで両特性を兼備した真空バルブが必要と
なって来た。
According to research, the contact characteristics of a CuCr alloy include variations in the amount of Cr in the alloy, the particle size of Cr particles,
It turned out that it depends on the degree of r segregation, the degree of vacancies existing in the alloy, and the like. However, despite the progress of the optimization, the contact resistance characteristics vary in the recent adaptation situations described above, and this has an unfavorable effect on the cutoff characteristics. Therefore, a vacuum valve having both characteristics has become necessary.

【0009】この発明の目的は、安定した接触抵抗特性
と優れた大電流遮断特性とを備えた真空遮断器の提供に
ある。
An object of the present invention is to provide a vacuum circuit breaker having stable contact resistance characteristics and excellent large current breaking characteristics.

【0010】[0010]

【課題を解決するための手段】上記発明の目的を達成す
る為に、請求項1に記載の本発明は、粒子直径(形状が
楕円、多角形の粒子では、同一面積の円形に換算した時
の直径)が40μmより大きい複数のCr(クロム)粒
子と、これを取り囲むCu(銅)相とで形成された第1
のCuCr集団と、粒子直径が10μmより小さい複数
のCr粒子と、これを取り囲むCu相とで形成された第
2のCuCr集団とで、接触面領域の一部を形成し、更
に、第1のCuCr集団と第2のCuCr集団との複数
個の集合体で接触面領域を形成し、かつこの接触面領域
が接点部断面の一部または総てを構成していることを特
徴とするCu−Cr接点を搭載した真空遮断器である。
In order to achieve the object of the present invention, the present invention according to the first aspect of the present invention is directed to a method for converting a particle diameter (in the case of an elliptical or polygonal particle into a circle having the same area as a circle). (Chromium) particles having a diameter of more than 40 μm and a Cu (copper) phase surrounding the particles.
And a second CuCr population formed of a plurality of Cr particles having a particle diameter smaller than 10 μm and a Cu phase surrounding the Cr particles, a part of the contact surface region is formed, A contact surface region is formed by a plurality of aggregates of a CuCr group and a second CuCr group, and the contact surface region forms part or all of a contact portion cross section. This is a vacuum circuit breaker equipped with Cr contacts.

【0011】すなわち、一般に真空遮断器では、接触面
領域のCu、Crの状態を上記条件の様には特別には配
慮していない通常の接点が使用されている。真空遮断器
は大電流の遮断と小電流の開閉が行われる関係で、上記
条件の様には特別には配慮していない通常の接点を使用
した場合では、大電流の遮断を行うと、大きなアークを
受けた接触面領域は、溶融、蒸発、飛散の繰り返しを受
け、接点表面は著しい荒れや材料消耗を呈し、遮断特性
の低下を招く。この様な溶融、蒸発、飛散の繰り返しを
受ける接点表面は、遮断を受ける度ごとにその表面状態
を大きく変化させる為、ある時は十分な接触面積を確保
できる様に接触をした時には、低い接触抵抗値を得る
が、表面形態は遮断の度ごとに変化する事から、次の遮
断では十分な接触を得る保証はなく、接触抵抗値は大き
く変化する。この様に大電流の遮断では遮断に伴い接触
抵抗特性は大きくばらつきを呈する。
That is, in general, in a vacuum circuit breaker, ordinary contacts are used in which the conditions of Cu and Cr in the contact surface area are not specially considered as in the above conditions. Vacuum circuit breakers are designed to shut off large currents and open and close small currents. The contact surface area that has been subjected to the arc is subjected to repeated melting, evaporation, and scattering, and the contact surface exhibits remarkable roughness and material consumption, resulting in a decrease in cutoff characteristics. The contact surface that undergoes such repetition of melting, evaporation, and scattering greatly changes its surface state each time it is interrupted, so in some cases, when it comes into contact so that a sufficient contact area can be secured, low contact occurs Although a resistance value is obtained, since the surface morphology changes every time interruption occurs, there is no guarantee that a sufficient contact will be obtained in the next interruption, and the contact resistance value will greatly change. As described above, when a large current is interrupted, the contact resistance characteristics vary greatly with the interruption.

【0012】ところが、遮断回数が少ない回数(1〜数
回)の時の接触面領域の顕微鏡的観察によれば,形状、
大きさが、原料粒子の原形をほぼとどめた、粒子直径が
40μmより大きい第1のCuCr集団の中のCr粒子
およびそのごく周辺では、材料損傷も少なく、耐アーク
性が発揮されている現象を認めた。一方、粒子直径が1
0μm級より小さい第2のCuCr集団の中のCr粒子
およびそのごく周辺では、著しい凹凸が観察され、耐ア
ーク性が低い事が示唆された。
However, according to the microscopic observation of the contact surface area when the number of interruptions is small (1 to several times), the shape,
In the Cr particles in the first CuCr group having a particle diameter larger than 40 μm, which is almost the same as the original shape of the raw material particles, and in the immediate vicinity thereof, there is little material damage and the phenomenon that arc resistance is exhibited. Admitted. On the other hand, if the particle diameter is 1
In the Cr particles in the second CuCr group smaller than the 0 μm class and very near the Cr particles, remarkable unevenness was observed, suggesting that the arc resistance was low.

【0013】小電流の遮断を行う時には、大きなアーク
を受ける事がない為、接触面領域の損傷は少なく、耐ア
ーク性を発揮する40μmより大きいCr粒子は必要な
く、むしろ、接触の安定性を重要視する親点から、組織
の均一性が重要となり、粒子直径が10μm級より小さ
いCr粒子の存在がその効果を発揮する。
When a small current is interrupted, a large arc is not received, so that there is little damage to the contact surface area, and there is no need for Cr particles larger than 40 μm for exhibiting arc resistance. From the point of view of importance, the uniformity of the structure becomes important, and the presence of Cr particles having a particle diameter smaller than the 10 μm class exerts its effect.

【0014】以上の様に、大電流の遮断と小電流の開閉
が与えられる接触面領域では、複数の第1のCuCr集
団と第2のCuCr集団とが共存した接点が好ましい。
As described above, in the contact surface region where interruption of a large current and opening and closing of a small current are provided, a contact in which a plurality of the first CuCr group and the second CuCr group coexist is preferable.

【0015】請求項2に記載の本発明は、接点部断面に
於いて、第1のCuCr集団と第2のCuCr集団とで
形成される接触面領域の厚さが、最表面層より少なくと
も20μmの深さを持つことを特徴とする請求項第1項
に記載のCu−Cr接点を搭載した真空遮断器である。
According to a second aspect of the present invention, in the cross section of the contact portion, the thickness of the contact surface region formed by the first CuCr group and the second CuCr group is at least 20 μm from the outermost surface layer. The vacuum circuit breaker equipped with the Cu-Cr contact according to claim 1, wherein the vacuum circuit breaker has a depth.

【0016】すなわち、一般に真空遮断器では、大電流
の遮断時に大きなアークを受けた接触面領域は、溶融、
蒸発によって、著しい荒れや材料消耗を呈し、接点表面
から数μm〜10μm程度の深さのクレータを生ずる事
がある。そこで安定した遮断特性と接触抵抗特性を確保
するには、第1のCuCr集団と第2のCuCr集団と
で形成される接触面領域の厚さ(深さ)を、前記クレー
タの深さより大きい少なくとも20μmの深さとする必
要がある。
That is, in general, in the case of a vacuum circuit breaker, the contact surface region that has received a large arc when a large current is interrupted is melted,
Evaporation may cause significant roughness and material consumption, and may cause a crater having a depth of about several μm to 10 μm from the contact surface. Therefore, in order to secure stable interruption characteristics and contact resistance characteristics, the thickness (depth) of the contact surface region formed by the first CuCr group and the second CuCr group is at least larger than the depth of the crater. It is necessary to have a depth of 20 μm.

【0017】請求項3に記載の本発明は、第1のCuC
r集団の大きさが、少なくとも200μmの幅と、少な
くとも200μmの長さとを持つことを特徴とする請求
項1または請求項2に記載のCu−Cr接点を搭載した
真空遮断器である。
According to a third aspect of the present invention, there is provided the first CuC
The vacuum circuit breaker having a Cu-Cr contact according to claim 1 or 2, wherein the size of the r group has a width of at least 200 µm and a length of at least 200 µm.

【0018】すなわち、この真空遮断器では、遮断特性
と接触抵抗特性の安定化の為に、その値のばらつき幅を
少なくする事が必要である。遮断特性と接触抵抗特性と
をばらつきなく発揮させる為には、組織のばらつきを少
なくすることが重要であり、第1のCuCr集団中のC
rは、複数個以上の存在が好ましい。しかし、第1のC
uCr集団の幅が原料Crの粒子直径と同程度では、第
1のCuCr集団の中には、Cr数は、平均的にはせい
ぜい1〜数個の存在が限度となり、耐アーク性の確保と
接触抵抗の安定化に対して好ましくない。長さについて
も同様である。
That is, in this vacuum circuit breaker, in order to stabilize the breaking characteristics and the contact resistance characteristics, it is necessary to reduce the range of variation in the values. In order to exhibit the breaking characteristics and the contact resistance characteristics without variation, it is important to reduce the variation in the structure.
r is preferably a plurality or more. However, the first C
When the width of the uCr group is substantially the same as the particle diameter of the raw material Cr, the number of Cr in the first CuCr group is, on average, at most 1 to several, and it is necessary to ensure arc resistance. This is not preferable for stabilizing the contact resistance. The same applies to the length.

【0019】請求項4に記載の本発明は、第2のCuC
r集団の大きさが、少なくとも200μmの幅と、少な
くとも200μmの長さとを持つことを特徴とする請求
項1または請求項2に記載のCu−Cr接点を搭載した
真空遮断器である。
According to a fourth aspect of the present invention, the second CuC
The vacuum circuit breaker having a Cu-Cr contact according to claim 1 or 2, wherein the size of the r group has a width of at least 200 µm and a length of at least 200 µm.

【0020】すなわち、この真空遮断器では、遮断特性
と接触抵抗特性の安定化の為に、その値のばらつき幅を
少なくする事が必要である。遮断特性と接触抵抗特性と
をばらつきなく発揮させる為には、組織のばらつきを少
なくすることが重要であり、第2のCuCr集団もその
中のCrは、複数個以上の存在が好ましい。しかし、第
2のCuCr集団の幅が原料Crの粒子直径と同程度で
は、第2のCuCr集団の中には、Cr数は、平均的に
はせいぜい1〜数個の存在が限度となり、耐アーク性の
確保と接触抵抗の安定化に対して好ましくない。長さに
ついても同様である。
That is, in this vacuum circuit breaker, in order to stabilize the breaking characteristics and the contact resistance characteristics, it is necessary to reduce the range of variation in the values. It is important to reduce the variation in the structure in order to exhibit the blocking characteristics and the contact resistance characteristics without variation, and it is preferable that the second CuCr group also includes a plurality of Crs in the second CuCr population. However, when the width of the second CuCr group is substantially the same as the particle diameter of the raw material Cr, the number of Cr in the second CuCr group is, on average, at most one to several, and the resistance to Cr is limited. It is not preferable for securing the arc property and stabilizing the contact resistance. The same applies to the length.

【0021】請求項5に記載の本発明は、接触面領域中
に占める第1のCuCr集団の合計が、20〜80面積
%[第1のCuCr集団/(第1のCuCr集団+第2
のCuCr集団)=0.2〜0.8]の比率を持つこと
を特徴とする請求項1に記載のCu−Cr接点を搭載し
た真空遮断器である。
According to a fifth aspect of the present invention, the total of the first CuCr group occupying the contact surface region is 20 to 80 area% [the first CuCr group / (the first CuCr group + the second CuCr group).
(CuCr group) = 0.2-0.8]. The vacuum circuit breaker equipped with the Cu-Cr contact according to claim 1, wherein:

【0022】すなわち、この真空遮断器では、粒子直径
が40μmより大きいCr粒子とこれを取り囲むCu相
とで形成される第1のCuCr集団と、粒子直径が10
μmより小さいCr粒子とこれを取り囲むCu相とで形
成される第2のCuCr集団との面積の比率は、遮断性
能と接触抵抗特性の安定性に対して重要な影響を与え
る。接触面領域中の第1のCuCr集団の比率が20面
積%未満(第2のCuCr集団の比率が80面積%より
大)の場合では、特に大電流を遮断した時の耐アーク性
が十分でない事から遮断特性の低下が見られると共に接
触面領域の材料損傷が激しく接触抵抗値の変動が著し
い。第1のCuCr集団の比率が80面積%より大(第
2のCuCr集団の比率が20面積%未満)の場合で
は、耐アーク性は向上するものの遮断特性が低下する。
That is, in this vacuum circuit breaker, a first CuCr population formed of Cr particles having a particle diameter larger than 40 μm and a Cu phase surrounding the particles,
The area ratio between the Cr particles smaller than μm and the second CuCr population formed of the Cu phase surrounding the particles has an important influence on the breaking performance and the stability of the contact resistance characteristics. In the case where the ratio of the first CuCr group in the contact surface region is less than 20 area% (the ratio of the second CuCr group is larger than 80 area%), the arc resistance is insufficient particularly when a large current is cut off. As a result, the cutoff characteristics are lowered, and the material of the contact surface area is severely damaged, and the contact resistance value fluctuates remarkably. When the ratio of the first CuCr group is greater than 80 area% (the ratio of the second CuCr group is less than 20 area%), the arc resistance is improved but the cutoff characteristics are reduced.

【0023】請求項6に記載の本発明は、第1のCuC
r集団中の平均Cr量が5〜70重量%であり、残部が
Cuであることを特徴とする請求項1に記載のCu−C
r接点を搭載した真空遮断器である。
According to the present invention, the first CuC
The average Cr amount in the r group is 5 to 70% by weight, and the balance is Cu, The Cu-C according to claim 1, wherein the balance is Cu.
This is a vacuum circuit breaker equipped with an r contact.

【0024】すなわち、この真空遮断器では、第1のC
uCr集団中のCr量が、5重量%未満では、小電流開
閉後の接触抵抗値は安定な特性を示すが、特に大電流を
遮断した時の耐アーク性が十分でない事から遮断特性の
低下が見られる。第1のCuCr集団中のCr量が、7
0重量%を超えた場合では、耐アーク性は向上するもの
の遮断特性が低下する。
That is, in this vacuum circuit breaker, the first C
When the amount of Cr in the uCr group is less than 5% by weight, the contact resistance value after opening / closing a small current shows stable characteristics, but in particular, the arc resistance when a large current is interrupted is not sufficient, so that the interruption characteristics deteriorate. Can be seen. When the amount of Cr in the first CuCr population is 7
If it exceeds 0% by weight, the arc resistance is improved, but the cutoff characteristics are reduced.

【0025】請求項7に記載の本発明は、第2のCuC
r集団中の平均Cr量が10〜80重量%であり、残部
がCuであることを特徴とする請求項1に記載のCu−
Cr接点を搭載した真空遮断器である。
The present invention as set forth in claim 7 is characterized in that the second CuC
The average Cr amount in the r group is 10 to 80% by weight, and the balance is Cu.
This is a vacuum circuit breaker equipped with Cr contacts.

【0026】すなわち、この真空遮断器では、第2のC
uCr集団中のCr量が、10重量%未満では、小電流
開閉後の接触抵抗値は安定な特性を示すが、特に大電流
を遮断した時の耐アーク性が十分でない事から遮断特性
の低下が見られる。第2のCuCr集団中のCr量が、
80重量%を超えた場合では、耐アーク性は向上するも
のの遮断特性が低下する。
That is, in this vacuum circuit breaker, the second C
When the amount of Cr in the uCr group is less than 10% by weight, the contact resistance after opening / closing a small current exhibits stable characteristics, but the arc resistance when breaking a large current is not sufficient. Can be seen. The amount of Cr in the second CuCr population is
If it exceeds 80% by weight, the arc resistance is improved, but the cutoff characteristics are reduced.

【0027】請求項8に記載の本発明は、第1のCuC
r集団中のCr粒子は、CuCr合金を750℃〜95
0℃に再加熱し、室温に冷却した時のマイクロビッカー
ス硬度値Hvが、150以上であることを特徴とする請
求項1乃至請求項7のいずれかに記載のCu−Cr接点
を搭載した真空遮断器である。
[0027] The present invention according to claim 8 is characterized in that the first CuC
The chromium particles in the r group are obtained by converting a CuCr alloy
The vacuum having a Cu-Cr contact according to any one of claims 1 to 7, wherein the micro-Vickers hardness value Hv when reheated to 0 ° C and cooled to room temperature is 150 or more. It is a circuit breaker.

【0028】すなわち、この真空遮断器では、750℃
〜950℃に再加熟した後の室温でのHv値がHv=1
50未満では、耐電圧値が十分でなく遮断性能の低下を
招く。再点弧特性の安定化の為には、好ましくはHv=
200以上のHv値を必要とする。
That is, in this vacuum circuit breaker, 750 ° C.
The Hv value at room temperature after re-ripening to ℃ 950 ° C. is Hv = 1.
If it is less than 50, the withstand voltage value is not sufficient, and the breaking performance is reduced. For stabilizing the restriking characteristic, preferably Hv =
Requires an Hv value of 200 or more.

【0029】請求項9に記載の本発明は、第1のCuC
r集団中のCu相に取り囲まれたCr粒子が、20〜2
00μmの平均粒子間距離を持つことを特徴とする請求
項1乃至請求項3、請求項5乃至請求項6、請求項8の
いずれかに記載のCu−Cr接点を搭載した真空遮断器
である。
According to the present invention, the first CuC
Cr particles surrounded by the Cu phase in the r group are 20 to 2
A vacuum circuit breaker having a Cu-Cr contact according to any one of claims 1 to 3, 5 to 6, and 8, wherein the vacuum circuit breaker has an average interparticle distance of 00 µm. .

【0030】すなわち、この真空遮断器では、第1のC
uCr集団中のCr粒子の粒子間間隙が、20μmより
も小さい(狭い)と、接触抵抗値のばらつきは少なくな
るが、接触抵抗値の平均値が増加する共に耐アーク性も
低下する。また200μmよりも大きい(広い)と、接
触抵抗値の分布にバラツキが見られる。20〜200μ
mの平均粒子間距離を与える事によって、大電流遮断時
の耐アーク性と小電流開閉時の接触抵抗の安定化に有効
となる。
That is, in this vacuum circuit breaker, the first C
If the gap between the Cr particles in the uCr population is smaller (narrower) than 20 μm, the variation in the contact resistance value is reduced, but the average contact resistance value is increased and the arc resistance is also reduced. If it is larger (wider) than 200 μm, the distribution of the contact resistance varies. 20-200μ
Providing an average interparticle distance of m is effective for stabilizing the arc resistance when breaking a large current and the contact resistance when switching a small current.

【0031】請求項10に記載の本発明は、第2のCu
Cr集団中のCu相に取り囲まれたCr粒子が、0.0
1〜20μmの平均粒子間距離を持つことを特徴とする
請求項1乃至請求項2、請求項4乃至請求項5、請求項
7のいずれかに記載のCu−Cr接点を搭載した真空遮
断器である。
The present invention as set forth in claim 10 is characterized in that the second Cu
Cr particles surrounded by the Cu phase in the Cr population
8. A vacuum circuit breaker equipped with a Cu-Cr contact according to claim 1, wherein the vacuum circuit breaker has an average inter-particle distance of 1 to 20 [mu] m. It is.

【0032】すなわち、この真空遮断器では、CuCr
集団中のCr粒子の粒子間間隙が、0.01μmより
も小さい(狭い)と、素材の製造が経済的に行えない。
また20μmよりも大きい(広い)と、接触抵抗値の分
布にバラツキが見られる。
That is, in this vacuum circuit breaker, CuCr
If the gap between the Cr particles in the group is smaller (narrower) than 0.01 μm, the production of the material cannot be performed economically.
If it is larger (wider) than 20 μm, the distribution of the contact resistance value varies.

【0033】請求項11に記載の本発明は、第1のCu
Cr集団及び第2のCuCr集団のうち少なくとも一方
の集団のCrの一部または総てを50重量%以下のX成
分(X=Ti、Ta、Nb、V、W、Moの1つ)で置
換したことを特徴とする請求項1乃至請求項10のいず
れかに記載のCu−Cr接点を搭載した真空遮断器であ
る。
[0033] The present invention as set forth in claim 11, wherein the first Cu
Part or all of Cr in at least one of the Cr group and the second CuCr group is replaced with 50% by weight or less of an X component (X = one of Ti, Ta, Nb, V, W, and Mo). A vacuum circuit breaker equipped with the Cu-Cr contact according to any one of claims 1 to 10.

【0034】すなわち、この真空遮断器では、第1のC
uCr集団及び第2のCuCr集団のうち少なくとも一
方の集団中でのX成分の存在は、耐アーク性の向上によ
る接触面領域の荒れを低減し、接触抵抗の安定化を得る
と共に耐電圧特性の向上にも有益となる。
That is, in this vacuum circuit breaker, the first C
The presence of the X component in at least one of the uCr group and the second CuCr group reduces the roughness of the contact surface region due to the improvement in arc resistance, stabilizes the contact resistance, and improves the withstand voltage characteristics. It is also beneficial for improvement.

【0035】[0035]

【発明の実施の形態】以下、本発明の実施形態につい
て、詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail.

【0036】最新の開閉装置プラントや開閉システムで
も、その性能がたった1つの接点材料の品質欠陥によっ
て、遮断特性にばらつきが出たり、機能発揮しないケー
スが存在する場合がある。本発明者らは、真空バルブに
使用されている接点材料を検討し真空バルブ特性と対比
した結果、この発明を完成するに至った。すなわちこの
発明は、下記の事項を持つ事を特徴とするものである。
Even in the latest switchgear plants and switchgear systems, there are cases in which the breaking characteristics are varied or the function is not exhibited due to the quality defect of only one contact material having high performance. The present inventors have studied the contact materials used in the vacuum valve and compared them with the characteristics of the vacuum valve. As a result, the present invention has been completed. That is, the present invention has the following features.

【0037】特に、大電流遮断と小電流開閉との両方を
経た場合には、遮断回数あるいは開閉の回数の経過によ
り、接触面領域の組織および接触面領域の断面方向の組
織(深さ方向)の変化を伴い、遮断特性の低下やばらつ
きの傾向を示すと共に接触抵抗値の増加とばらつき幅の
増大も認められ、材料組織状態が深く関与している事が
新たに判明した。
In particular, when both the large current interruption and the small current switching are performed, the structure of the contact surface region and the structure in the cross-sectional direction (depth direction) of the contact surface region due to the passage of the number of interruptions or the number of switching operations. As a result, the breaking characteristics and the variation tended to decrease, and the contact resistance increased and the variation range increased. It was newly found that the material structure state was deeply involved.

【0038】[試料](試料1)として、粒子直径が4
0μm以上(40μm以下のCr粒子は5重量%以下存
在)の複数のCr粒子と、これらを取り囲むCu相とで
形成した組織分布を持つCu−Cr合金を準備した[C
uCr集団]。
[Sample] (Sample 1) having a particle diameter of 4
A Cu—Cr alloy having a texture distribution formed by a plurality of Cr particles of 0 μm or more (Cr particles of 40 μm or less exist at 5% by weight or less) and a Cu phase surrounding these particles was prepared [C
uCr population].

【0039】(試料2)として、粒子直径が10μm以
下(10μm以上のCr粒子は5重量%以下存在)の複
数のCr粒子と、これらを取り囲むCu相とで形成した
組織分布を持つCu−Cr合金を準備した[CuCr集
団]。
As (Sample 2), Cu—Cr having a texture distribution formed of a plurality of Cr particles having a particle diameter of 10 μm or less (Cr particles having a diameter of 10 μm or more is present at 5% by weight or less) and a Cu phase surrounding these particles. An alloy was prepared [CuCr group].

【0040】(試料3)として、CuCr集団とCu
Cr集団の両者が顕微鏡的スケールで交互に立体的に
分布した組織分布を持つCu−Cr合金を準備した[C
uCr集団×]。
As (Sample 3), a CuCr group and Cu
A Cu—Cr alloy having a texture distribution in which both of the Cr populations were alternately and stereoscopically distributed on a microscopic scale was prepared [C
uCr population x].

【0041】CuCr集団のみで接触面領域を構成し
た場合では、20kA級の大電流を遮断すると耐アーク
性は発輝するものの、接触抵抗特性が比較的小さな開閉
回数で大きなばらつきを示した。CuCr集団のみで
接触面領域を構成した場合では、20kA級の大電流を
遮断すると耐アーク性が十分でなく、遮断特性が比較的
小さな遮断回数で大きなばらつきを示した。
In the case where the contact surface region is constituted only by the CuCr group, the arc resistance becomes bright when a large current of 20 kA class is cut off, but the contact resistance characteristic shows a large variation with a relatively small number of switching operations. In the case where the contact surface region was constituted only by the CuCr group, the arc resistance was not sufficient when a large current of 20 kA class was interrupted, and the interrupting characteristics showed a large variation at a relatively small number of interrupts.

【0042】CuCr集団とCuCr集団とが交互
に立体的に分布した組織の場合には、比較的長い遮断回
数あるいは開閉回数が経過しても遮断特性と接触抵抗特
性の両立性が保たれる。CuCr集団のみ或いはCu
Cr集団のみでは、遮断回数あるいは開閉回数の経過
に対して、比較的短期間で遮断特性と接触抵抗特性の両
立性が崩れる。
In the case of a structure in which CuCr populations and CuCr populations are alternately distributed in a three-dimensional manner, compatibility between the cutoff characteristics and the contact resistance characteristics is maintained even after a relatively long number of interruptions or open / close times. CuCr group only or Cu
When only the Cr group is used, the compatibility between the cutoff characteristic and the contact resistance characteristic is broken in a relatively short period with respect to the elapse of the number of cutoffs or the number of times of opening and closing.

【0043】[テスト]これらの各材料組織状態にある
CuCr接点片(試料1〜3)に対して、 (テスト1):20kA級の大電流のみを遮断させるテ
スト、 (テスト2):30A級の小電流のみを開閉させるテス
ト、 (テスト3):前記大電流の遮断と小電流の開閉を組み
合わせたテスト、 の3通りのテストに供した。(テスト3)が実際のフィ
ールドの状態に近い。
[Test] With respect to the CuCr contact pieces (samples 1 to 3) in each of these material structure states, (Test 1): a test for cutting off only a large current of 20 kA class, (Test 2): 30 A class (Test 3): A test combining the interruption of the large current and the opening and closing of the small current. (Test 3) is close to the actual field state.

【0044】[結果の概要](試料1)のCuCr集団
を使用して、20kA級の大電流を遮断させた場合で
は、優れた耐アーク性を発揮し接点消耗も小さく、後述
の(試料2)よりも優れた大電流遮断性を発揮している
が、一方、粒子直径の大きなCr粒子の存在によって、
開閉前の接触抵抗値には大きいばらつきが見られる。小
電流を開閉した場合の接触抵抗値にもばらつきが見られ
る。
[Summary of Result] When a large current of 20 kA class was cut off using the CuCr group of (Sample 1), excellent arc resistance was exhibited and contact wear was small. ), Which is superior to that of the present invention, but on the other hand, due to the presence of Cr particles having a large particle diameter,
A large variation is seen in the contact resistance value before opening and closing. Variations are also seen in the contact resistance values when switching small currents.

【0045】従って、(試料1)のCuCr集団のみ
で、接触面領域を形成させる接点は、遮断特性と接触抵
抗特性を両立させる観点からは好ましくない。
Therefore, a contact that forms a contact surface region only with the CuCr group of (Sample 1) is not preferable from the viewpoint of achieving both the breaking characteristic and the contact resistance characteristic.

【0046】(試料2)のCuCr集団を使用して、
20kA級の大電流を遮断させた場合では、大きな電流
を遮断した時の耐アーク性が(試料1)よりも劣る傾向
にあり、接点消耗が大きく、前記(試料1)よりも低い
電流値で遮断不能を起こし、大電流遮断性が低下し好ま
しくない。一方、接触抵抗値は遮断回数の経過と共に増
大する傾向を持ち好ましくない。開閉前の接触抵抗値
は,安定した接触抵抗特性を発揮している。開閉後(3
0A級の小電流を開閉した後)の接触抵抗値は、ある一
定値以下の遮断電流値では、安定した遮断特性を発揮し
ているが、遮断電流値の増加で急激に遮断特性が低下す
る傾向を持ち好ましくない。
Using the CuCr population of (Sample 2),
When a large current of 20 kA class is interrupted, the arc resistance at the time of interrupting the large current tends to be inferior to that of (Sample 1), the contact wear is large, and the current value is lower than that of (Sample 1). Uninterruptibility is caused, and the large-current interruption property is undesirably reduced. On the other hand, the contact resistance tends to increase as the number of cutoffs elapses, which is not preferable. The contact resistance before opening and closing shows stable contact resistance characteristics. After opening and closing (3
The contact resistance after opening / closing a small current of 0 A class exhibits stable breaking characteristics at a breaking current value of a certain fixed value or less, but the breaking characteristics suddenly decrease as the breaking current value increases. It has a tendency and is not preferred.

【0047】一方、接触抵抗特性については、ある一定
値以上の遮断電流値以下では、比較的表面損傷は開閉回
数が経過しても、変化が少なく、安定した接触抵抗特性
を示す。
On the other hand, with respect to the contact resistance characteristics, when the cut-off current value is equal to or more than a certain fixed value or less, the surface damage shows a relatively small change even after the number of times of opening and closing, and shows stable contact resistance characteristics.

【0048】従って、(試料2)のCuCr集団のみ
で、接触面領域を形成させた接点は、遮断特性と接触抵
抗特性を両立させる観点からはやはり好ましくない。
Therefore, a contact in which the contact surface region is formed only by the CuCr group of (Sample 2) is still not preferable from the viewpoint of achieving both the breaking characteristic and the contact resistance characteristic.

【0049】(試料3)のCuCr集団とCuCr集
団を交互に分布した組織を使用して、20kA級の大
電流を遮断させた場合では、粒子直径が40μm以上の
大きなCr粒子の存在が、耐アーク性を発揮する結果、
接点表面の損傷も少なく、遮断特性の向上と安定した接
触抵抗を確保するのに有効であると共に、30A級の小
電流を開閉した場合では10μm以下のCr粒子の存在
効果によって、ばらつきの少ない接触抵抗特性を示して
いる。
In the case where a large current of 20 kA class was cut off by using a structure in which the CuCr population and the CuCr population of (Sample 3) were alternately distributed, the existence of large Cr particles having a particle diameter of 40 μm or more was found to be resistant. As a result of exhibiting arc properties,
The contact surface has little damage and is effective in improving the breaking characteristics and ensuring stable contact resistance. In addition, when a small current of 30 A class is opened and closed, the presence effect of Cr particles of 10 μm or less makes the contact less scattered. This shows resistance characteristics.

【0050】従って、(試料3)の様に上記したCuC
r集団とCuCr集団とを適当な比率で存在させる
事によって接触面領域を形成させたCuCr集団×
接点が、遮断特性と接触抵抗特性を両立させるのに好ま
しい。
Therefore, as described in (Sample 3), the CuC
a CuCr group in which a contact surface area is formed by allowing an r group and a CuCr group to exist at an appropriate ratio.
A contact is preferable for achieving both a breaking characteristic and a contact resistance characteristic.

【0051】以上説明したように、CuCr接点の特性
の安定化には、一般に合金中のCr量とその量の変動、
Cr粒子の粒度とその粒度分布、Crの偏析の程度、合
金中に存在する空孔の程度などに依存するが、特に遮断
特性と接触抵抗特性を同時に両立させかつそれらの特性
を安定化させるには、上記に加えて更にCuCr合金中
のCr粒子とCuマトリックスとの相互の関係によって
形成される接触面領域が、極めて重要である事が分かっ
た。
As described above, in order to stabilize the characteristics of the CuCr contact, generally, the amount of Cr in the alloy and its fluctuation,
It depends on the particle size and the particle size distribution of Cr particles, the degree of segregation of Cr, the degree of vacancies in the alloy, etc. It has been found that, in addition to the above, the contact surface area formed by the mutual relationship between the Cr particles in the CuCr alloy and the Cu matrix is extremely important.

【0052】すなわち、真空バルブの遮断特性と接触抵
抗特性の両立には、合金中のCrとCuとの関係、すな
わち接触面領域を上記したCuCr集団とCuCr集
団とを存在させる事と所定の比率に制御させる事が必
須である事を突き止めた。
That is, in order to achieve both the shutoff characteristic and the contact resistance characteristic of the vacuum valve, the relationship between Cr and Cu in the alloy, that is, the presence of the above-mentioned CuCr group and the CuCr group in the contact surface area is determined by a predetermined ratio. It was found that it was essential to control

【0053】以下に本発明の実施例を詳細に説明する。
本発明の実施例、比較例の評価条件を図1〜図3に、評
価結果を図4〜図6に示す。
Hereinafter, embodiments of the present invention will be described in detail.
The evaluation conditions of the examples and comparative examples of the present invention are shown in FIGS. 1 to 3, and the evaluation results are shown in FIGS. 4 to 6.

【0054】遮断特性、接触抵抗特性に関する評価は、
次のようにして行った。一部には必要に応じて再点弧特
性、温度上昇特性の評価も実施した。供試接点材料の内
容、製造条件について示す。
The evaluation regarding the breaking characteristics and the contact resistance characteristics is as follows.
It went as follows. In some cases, the re-ignition characteristics and temperature rise characteristics were also evaluated as necessary. The contents of the test contact material and the manufacturing conditions are shown.

【0055】(1)遮断特性 直径70mmの接点を装着した遮断テスト用実験バルブ
を開閉装置に取り付けると共に、ベーキング、電圧エー
ジング等を与えた後、24kV、50Hzの回路に接続
し、電流をほぼ1kAずつ増加しながら遮断限界を真空
バルブ3本につき比較評価した。数値は実施例2の遮断
限界値を1.0とした時の相対値で示した。
(1) Breaking Characteristics An experimental valve for a breaking test equipped with a contact having a diameter of 70 mm was attached to a switchgear, and after baking, voltage aging and the like were applied, the circuit was connected to a circuit of 24 kV and 50 Hz, and a current of approximately 1 kA was applied. The breaking limit was compared and evaluated for each of the three vacuum valves while gradually increasing. Numerical values are shown as relative values when the cutoff limit value in Example 2 was set to 1.0.

【0056】(2)接触抵抗特性 曲率半径50Rの純銅製の針状電極と平板状の各接点片
とを、接触加重10Kgで対向させ、直流10Aを通電
した時の両者間の電位降下から、接触抵抗を求めた。数
値は実施例2の値を基準として、接触抵抗値が0.75
倍より低い場合を(A)、0.75以上〜1.5倍未満
を(B)、1.5以上〜3倍未満を(C)とした。一方
実施例2の値より不安定となった3倍以上〜10倍未満
を(X)、10〜30倍を(Y)、30倍を越える場合
を(Z)とした相対値で示した(A〜C:特性良好、X
〜Z:特性不良)。
(2) Contact Resistance Characteristics A pure copper needle-like electrode having a radius of curvature of 50R is opposed to each plate-like contact piece with a contact load of 10 kg, and a potential drop between the two when a direct current of 10 A is applied is calculated from the following. Contact resistance was determined. The numerical value is based on the value of Example 2 and the contact resistance value is 0.75
(A), 0.75 or more to less than 1.5 times (B), and 1.5 or more to less than 3 times (C). On the other hand, the relative values are shown as (X) when the value is 3 times or more and less than 10 times less stable than the value of Example 2, (Y), and when it exceeds 30 times (Z). AC: good characteristics, X
To Z: poor characteristics).

【0057】(参考)温度上昇特性 各接点片を真空バルブに組込んだ後、バルブ端子部の温
度を高感度赤外温度計を用いて表面温度を非接触的に測
定した測定値から、室温を差引いた後の数値を温度上昇
値として参考にした。
(Reference) Temperature Rise Characteristics After assembling each contact piece into a vacuum valve, the temperature of the valve terminal was measured from the surface temperature in a non-contact manner using a high-sensitivity infrared thermometer. The value after subtracting was used as a temperature rise value.

【0058】(参考)再点弧特性 直径30mm、厚さ5mmの円板状接点片を、ディマウ
ンタブル型真空バルブに装着し、24kV×500Aの
回路を2000回遮断した時の再点弧発生頻度を測定し
参考とした。なお評価は、再点弧発生頻度が実施例2の
値より少ない0.1未満の場合を(A1)、0.1〜1
の場合を(A2)、1〜1.5の場合を(B)、1.5
〜3の場合を(C)とした。一方、実施例2より多発し
た3〜10の場合を(X)、10〜30の場合を
(Y)、大幅に多い場合を(Z)として判断し参考とし
た(A1〜C:特性良好、X〜Z:特性不良)。
(Reference) Re-ignition Characteristics Re-ignition occurs when a disc-shaped contact piece having a diameter of 30 mm and a thickness of 5 mm is mounted on a demountable vacuum valve and a circuit of 24 kV × 500 A is cut off 2,000 times. The frequency was measured and used as a reference. Note that the evaluation was performed when the re-ignition occurrence frequency was less than 0.1, which is lower than the value of Example 2, (A1), and 0.1 to 1
(A2) for the case of (B), (B), 1.5 for the case of 1 to 1.5
The case of ~ 3 was designated as (C). On the other hand, the case of 3 to 10 which occurred more frequently than in Example 2 was determined as (X), the case of 10 to 30 was determined as (Y), and the case of significantly larger was determined as (Z). X to Z: poor characteristics).

【0059】(3)供試Cr粉の内容、CuCr合金の
内容 (試料1):40μm以上の粒子直径を持つCr粉を得
て、例えば真空中で、1150℃で製造したCrスケル
トンの空隙に、別途用意したCuを溶浸させて、粒子直
径が40μm以上の複数のCr粒子と、これらを取り囲
むCu相とで形成した組織分布を持つCuCr合金[C
uCr集団a]を準備した。
(3) Content of test Cr powder, content of CuCr alloy (Sample 1): A Cr powder having a particle diameter of 40 μm or more was obtained, for example, in a void of a Cr skeleton manufactured at 1150 ° C. in a vacuum. A CuCr alloy having a texture distribution formed by infiltrating separately prepared Cu to form a plurality of Cr particles having a particle diameter of 40 μm or more and a Cu phase surrounding these particles [C
uCr population a] was prepared.

【0060】40重量%以下のCr量を含有させたCu
Cr合金の製造の場合には、上記篩い分け法によって4
0μm以上の粒子直径を持つCr粉と、別途用意したC
u粉とを混合した後、1000℃で固相焼結を行って、
粒子直径が40μm以上の複数のCr粒子と、これらを
取り囲むCu相とで形成した組織分布を持つCuCr合
金[CuCr集団b]を準備した。
Cu containing up to 40% by weight of Cr
In the case of producing a Cr alloy, 4
Cr powder having a particle diameter of 0 μm or more and C prepared separately
After mixing with u powder, solid phase sintering is performed at 1000 ° C.
A CuCr alloy [CuCr group b] having a texture distribution formed by a plurality of Cr particles having a particle diameter of 40 μm or more and a Cu phase surrounding them was prepared.

【0061】又、Crの部にX成分(X=Ti、Ta、
Nb、V、W、Moの1つ)を含有させたCu−CrX
合金の製造では、Crの一部または総てを50重量%以
下のX成分で置換する為に、Cr粉にX成分をあらかじ
め混合して、CrX混合粉を得てCrXスケルトンとし
た後、Cuを溶浸させたり、CrX混合粉とCu粉を混
合して固相焼結を行い、粒子直径が40μm以上の複教
のCrX粒子と、これらを取り囲むCu相とで形成した
組織分布を持つCuCrX合金[CuCr集団c]を
準備した。
Further, an X component (X = Ti, Ta,
Cu-CrX containing one of Nb, V, W and Mo)
In the production of the alloy, in order to replace a part or all of Cr with an X component of 50% by weight or less, the X component is preliminarily mixed with the Cr powder to obtain a CrX mixed powder to obtain a CrX skeleton, and then a CuX skeleton. Or a mixture of CrX mixed powder and Cu powder to perform solid phase sintering, and a CuCrX having a texture distribution formed of compounded CrX particles having a particle diameter of 40 μm or more and a Cu phase surrounding them. An alloy [CuCr group c] was prepared.

【0062】(試料2):篩い分け法によって10μm
以下の粒子直径を持つCr粉を得て(10μm以上のC
r粒子は5重量%以下混在)、例えば真空中で、115
0℃で製造したCrスケルトンの空隙に、別途用意した
Cuを溶浸させて、粒子直径が10μm以下(10μm
以上のCr粒子は5重量%以下存在)の複数のCr粒子
と、これらを取り囲むCu相とで形成した組織分布を持
つCuCr合金[CuCr集団a]を準備した。
(Sample 2): 10 μm by sieving method
A Cr powder having the following particle diameter was obtained (C of 10 μm or more).
r particles are mixed in an amount of 5% by weight or less).
Cu prepared separately is infiltrated into the voids of the Cr skeleton manufactured at 0 ° C., and the particle diameter is 10 μm or less (10 μm
A CuCr alloy [CuCr group a] having a texture distribution formed by a plurality of Cr particles (the above Cr particles are present at 5% by weight or less) and a Cu phase surrounding them is prepared.

【0063】10重量%以上のCr量を含有させたCu
Cr合金の製造の場合には、上記篩い分け法によって1
0μm以下の粒子直径を持つCr粉と、別途用意したC
u粉とを混合した後、1000℃で固相焼結を行って、
粒子直径が10μm以下の複数のCr粒子(10μm以
上のCr粒子は5重量%以下存在)と、これらを取り囲
むCu相とで形成した組織分布を持つCuCr合金[C
uCr集団b]を準備した。
Cu containing 10% by weight or more of Cr
In the case of manufacturing a Cr alloy, 1
Cr powder having a particle diameter of 0 μm or less and C prepared separately
After mixing with u powder, solid phase sintering is performed at 1000 ° C.
CuCr alloy having a texture distribution formed of a plurality of Cr particles having a particle diameter of 10 μm or less (Cr particles having a diameter of 10 μm or more are present in an amount of 5% by weight or less) and a Cu phase surrounding these particles [C
uCr population b] was prepared.

【0064】又、Crの一部にX成分(X=Ti、T
a、Nb、V、W、Moの1つ)を含有させたCu−C
rX合金の製造では、Crの一部または総てを50重量
%以下のX成分で置換する為に、Cr粉にX成分をあら
かじめ混合して、CrX混合粉を得てCrXスケルトン
とした後、Cuを溶浸させたり、CrX混合粉とCu粉
を混合して固相焼結を行い、粒子直径が10μm以下の
複数のCrX粒子と、これらを取り囲むCu相とで形成
した組織分布を持つCuCrX合金[CuCr集団
c]を準備した。
An X component (X = Ti, T
a, Nb, V, W, Mo)
In the production of the rX alloy, in order to replace a part or all of Cr with the X component of 50% by weight or less, the X component is preliminarily mixed with the Cr powder to obtain a CrX mixed powder to obtain a CrX skeleton. CuCrX having a texture distribution formed of a plurality of CrX particles having a particle diameter of 10 μm or less and a Cu phase surrounding the plurality of CrX particles having a particle diameter of 10 μm or less by infiltrating Cu or mixing a CrX mixed powder and a Cu powder. An alloy [CuCr group c] was prepared.

【0065】(試料3):溶浸法(または固相焼結法)
で製造したCuCr集団より成る低密度(完全な焼結
が進行する前の状態)のCuCr合金を得た後、これを
篩い分け法によって粉末化して、40μm以上の粒子直
径を持つCuCr合金粉を得る。
(Sample 3): Infiltration method (or solid phase sintering method)
After obtaining a low-density CuCr alloy (a state before complete sintering progresses) composed of the CuCr group produced in the above, this is powdered by a sieving method to obtain a CuCr alloy powder having a particle diameter of 40 μm or more. obtain.

【0066】同じく溶浸法(または固相焼結法)で製造
したCuCr集団より成る低密度(完全な焼結が進行
する前の状態)のCuCr合金を得た後、これを粉砕と
篩い分け法によって粉末化して、10μm以下の粒子直
径を持つCuCr合金粉を得る。
A low-density (before complete sintering) CuCr alloy consisting of a group of CuCr similarly produced by the infiltration method (or solid-phase sintering method) is obtained, and then crushed and sieved. By the method, a CuCr alloy powder having a particle diameter of 10 μm or less is obtained.

【0067】上記によって得たCuCr合金粉とCu
Cr合金粉とを所定比率で混合、次いでこの混合粉を
原料素材として(必要により加圧、成型動作を与えた
後)溶浸法(または固相焼結法)によって、CuCr集
団とCuCr集団の両者が顕微鏡的スケールで交互
にかつ立体的に分布した組織分布を持つCuCr合金
[CuCr集団×]を準備した。
The CuCr alloy powder obtained above and Cu
A Cr alloy powder is mixed with a Cr alloy powder at a predetermined ratio, and then this mixed powder is used as a raw material (after applying a pressing and molding operation if necessary) by an infiltration method (or a solid phase sintering method) to form a CuCr group and a CuCr group. A CuCr alloy [CuCr population x] having a texture distribution alternately and three-dimensionally distributed on a microscopic scale was prepared.

【0068】(4)テストの内容 これらの各材料組織状態にあるCuCr接点片(試料1
〜3)に対して、 (テスト1):20kA級の大電流のみを遮断させるテ
スト、 (テスト2):30A級の小電流のみを開閉させるテス
ト、 (テスト3):前記大電流の遮断と小電流の開閉を粗み
合わせたテスト、 の3通りのテストに供した。(テスト3)が実際のフィ
ールドの状態を模擬している。
(4) Content of Test CuCr contact pieces (Sample 1) in each of these material structure states
(Test 1): A test to cut off only a large current of 20 kA class, (Test 2): A test to open and close only a small current of 30 A class, (Test 3): Cut off of the large current The test was a combination of small current switching and open / close testing. (Test 3) simulates the actual state of the field.

【0069】(5)遮断テスト用実験バルブ 遮断テスト用実験バルブの概要は、端面の平均表面粗さ
を約1.5μmに研磨したセラミックス製絶緑容器(主
成分:AL23)を用意し、このセラミックス製絶縁容
器については、組立て前に1600℃の前加熱処理を施
した。封着金具として、板厚さ2mmの42%Ni−F
e合金を用意した。ロウ材として、厚さ0.1mmの7
2%Ag−Cu合金板を用意した。上記用意した各部材
を被接合物間(セラミックス製絶縁容器の端面と封着金
具)に気密封着接合が可能なように配置して、5×10
-4Pa.の真空雰囲気で封着金具とセラミックス製絶縁
容器との気密封着工程に供した。
(5) Experimental valve for shut-off test An experimental valve for shut-off test was prepared by preparing a ceramic green container (main component: AL 2 O 3 ) polished to an average surface roughness of about 1.5 μm on the end face. Then, this ceramic insulating container was subjected to a preheating treatment at 1600 ° C. before assembling. 42% Ni-F with a plate thickness of 2 mm as a sealing metal
e alloy was prepared. As brazing material, 0.1mm thick 7
A 2% Ag-Cu alloy plate was prepared. The above prepared members are arranged between the objects to be joined (the end face of the insulating container made of ceramics and the sealing metal) so as to be able to be hermetically sealed and joined.
-4 Pa. In a vacuum atmosphere, and subjected to a hermetically sealing process between the sealing fitting and the ceramic insulating container.

【0070】(実施例1〜4、比較例1〜2)40μm
以上の粒子直径を持つCr粉を得て、例えば真空中で、
1150℃で製造したCrスケルトンの空隙中に、別途
用意したCuを溶浸させて、粒子直径が40μm以上の
複数のCr粒子と、これらを取り囲むCu相とで形成し
たCu−Cr合金の組織分布を[CuCr集団a]と
する。
(Examples 1-4, Comparative Examples 1-2) 40 μm
Obtaining a Cr powder having the above particle diameter, for example, in a vacuum,
Microstructure distribution of Cu-Cr alloy formed by infiltrating separately prepared Cu into the voids of a Cr skeleton manufactured at 1150 ° C and including a plurality of Cr particles having a particle diameter of 40 µm or more and a Cu phase surrounding them. Is [CuCr group a].

【0071】10μm以下の粒子直径を持つCr粉を得
て、例えば真空中で、1150℃で製造したCrスケル
トンの空隙中に、別途用意したCuを溶浸させて、粒子
直径が10μm以下の複数のCr粒子と、これらを取り
囲むCu相とで形成したCu−Cr合金の組織分布を
[CuCr集団a]とする。
A Cr powder having a particle diameter of 10 μm or less is obtained, and for example, a separately prepared Cu is infiltrated into a void of a Cr skeleton manufactured at 1150 ° C. in a vacuum to form a plurality of particles having a particle diameter of 10 μm or less. The texture distribution of the Cu—Cr alloy formed by the Cr particles and the Cu phase surrounding them is referred to as [CuCr group a].

【0072】ここで、[CuCr集団a]のみの組織
分布を持つCu−Cr合金を比較例−1(Φ=100面
積%)とし、[CuCr集団a]のみの組織分布を持
つCu−Cr合金を比較例−2(Φ=0面積%)とし
た。
Here, a Cu—Cr alloy having a structure distribution of only [CuCr group a] is referred to as Comparative Example-1 (Φ = 100 area%), and a Cu—Cr alloy having a structure distribution of only [CuCr group a] is used. Was set as Comparative Example-2 (Φ = 0 area%).

【0073】また、[CuCr集団a]と[CuCr
集団a]の中の[CuCr集団a]の比率Φ、すな
わち、
[CuCr group a] and [CuCr group a]
Of the [CuCr group a] in the group a], that is,

【0074】[0074]

【数1】 (Equation 1)

【0075】が、Φ=80面積%の組織分布を持つCu
−Cr合金、Φ=60面積%の組織分布を持つCu−C
r合金、Φ=40面積%の組織分布を持つCu−Cr合
金、Φ=20面積%の組織分布を持つCu−Cr合金
を、それぞれ実施例1〜4とした。これらの試料は顕微
鏡による組織調査によって判定し選別したものである。
However, Cu having a structure distribution of Φ = 80 area%
-Cr alloy, Cu-C having a structure distribution of Φ = 60 area%
Examples 1 to 4 were r alloys, Cu-Cr alloys having a structure distribution of Φ = 40 area%, and Cu-Cr alloys having a structure distribution of Φ = 20 area%. These samples were determined and selected by microscopic examination of the structure.

【0076】前記した20kA級の大電流のみを遮断し
た時(テスト1)の実施例2の遮断電流値を1.0と
し、各試料の遮断電流値を相対比較した。その結果を図
4に示した。さらに20kA級の大電流遮断と30A級
の小電流開閉を組み合わせた時(テスト3)の実施例2
の遮断電流値を1.0とし、各試料の遮断電流値を相対
比較した。その結果を図4に示した。なお接触抵抗特性
は前記(テスト1)と(テスト3)以外に30A級の小
電流のみを開閉させるテスト(テスト2)も実施した。
その結果を図4に示した。
When only the large current of the 20 kA class was cut off (test 1), the cut-off current value of Example 2 was set to 1.0, and the cut-off current values of the respective samples were compared relatively. The result is shown in FIG. Example 2 when a large current interruption of 20 kA class is combined with a small current switching of 30 A class (test 3)
The breaking current value of each sample was set to 1.0, and the breaking current values of the respective samples were relatively compared. The result is shown in FIG. As for the contact resistance characteristics, in addition to the above (Test 1) and (Test 3), a test (Test 2) for opening and closing only a small current of 30A class was also performed.
The result is shown in FIG.

【0077】<比率Φ=100、遮断特性>比率Φ=1
00(比較例1)の時では、20kA級の大電流のみを
遮断した遮断特性(テスト1)では、比較標準としてい
る実施例2の遮断電流値の1.25〜1.3倍の遮断倍
率を示し良好な遮断特性を持つ。更に、20kA級の大
電流遮断と30A級の小電流開閉を組み合わせた(テス
ト3)でも、1.15〜1.3倍の遮断倍率を示し良好
な遮断特性を持つ。
<Ratio Φ = 100, cut-off characteristics> Ratio Φ = 1
At the time of 00 (Comparative Example 1), in the breaking characteristic (Test 1) in which only a large current of 20 kA class was cut off, the breaking magnification was 1.25 to 1.3 times the breaking current value of Example 2 as a comparative standard. And has good blocking characteristics. Furthermore, even when a large current interruption of 20 kA class and a small current opening and closing of 30 A class are combined (test 3), the interruption magnification is 1.15 to 1.3 times and good interruption characteristics are obtained.

【0078】<比率Φ=100、接触抵抗特性>一方、
(テスト2)の後の接触抵抗特性では、「B〜C評価」
で合格の範囲にある。しかし(テスト1)の後の接触抵
抗特性が「X〜Y評価」、(テスト3)の後では「評価
Y〜Z」を示し、接触抵抗の観点で好ましくなく、遮断
特性と接触抵抗特性の両立が得られない(比較例1)。
<Ratio Φ = 100, Contact Resistance Characteristics>
In the contact resistance characteristics after (Test 2), "B to C evaluation"
Is in the acceptable range. However, the contact resistance characteristics after (Test 1) indicate "X to Y evaluation" and the evaluation after (Test 3) indicates "Evaluation YZ", which is not preferable from the viewpoint of contact resistance. Compatibility is not obtained (Comparative Example 1).

【0079】<比率Φ=0、遮断特性>比率Φ=0(比
較例2)の時では、20kA級の大電流のみを遮断した
遮断特性は、(テスト1)では比較標準としている実施
例2の遮断電流値の0.75〜1.0倍となり遮断特性
の低下が見られる。(テスト3)では比較標準としてい
る実施例2の遮断電流値の0.4〜0.7倍の遮断倍率
となり遮断特性の著しい低下が見られる。
<Ratio Φ = 0, cut-off characteristics> When the ratio Φ = 0 (Comparative Example 2), the cut-off characteristics in which only a large current of 20 kA class was cut off are the comparative standards in (Test 1). 0.75 to 1.0 times the breaking current value of the above, and a decrease in the breaking characteristics is seen. In (Test 3), the cutoff magnification was 0.4 to 0.7 times the cutoff current value of Example 2 as a comparative standard, and the cutoff characteristics were significantly reduced.

【0080】<比率Φ=0、接触抵抗特性>一方、(テ
スト1)の後の接触抵抗特性では、「X〜Z評価」で不
合格の範囲にある。(テスト2)の後の接触抵抗特性は
「B〜X評価」、(テスト3)の後では「Z評価」を示
し、接触抵抗の観点で好ましくなく、遮断特性と接触抵
抗特性の両者で好ましくない(比較例2)。
<Ratio Φ = 0, Contact Resistance Characteristics> On the other hand, the contact resistance characteristics after the (test 1) are in the rejected range in “X to Z evaluation”. The contact resistance characteristics after (Test 2) indicate “B to X evaluation”, and after (Test 3) indicate “Z evaluation”, which is not preferable in terms of contact resistance, and is preferable in both the breaking characteristics and the contact resistance characteristics. No (Comparative Example 2).

【0081】<比率Φ=80〜20、遮断特性>比率Φ
=80〜20(実施例1〜4)の時では、20kA級の
大電流のみを遮断した遮断特性(テスト1)では、比較
標準としている実施例2の遮断電流値の1〜1.25倍
の遮断倍率を示し良好な遮断特性を持つ。更に、20k
A級の大電流遮断と30A級の小電流開閉を組み合わせ
た(テスト3)でも、0.9〜1.25倍の遮断倍率を
示し良好な遮断特性を持つ。
<Ratio Φ = 80 to 20, cutoff characteristics> Ratio Φ
= 80 to 20 (Examples 1 to 4), the cut-off characteristic (test 1) in which only a large current of 20 kA class was cut off was 1 to 1.25 times the cut-off current value of Example 2 as a comparative standard. And has good cut-off characteristics. In addition, 20k
Even in the case of combining the large current interruption of the class A and the small current switching of the 30A class (test 3), the interruption magnification is 0.9 to 1.25 times, and the circuit has good interruption characteristics.

【0082】<比率Φ=80〜20、接触抵抗特性>
(テスト1)の後の接触抵抗特性では、「B評価」、
「B〜C評価」で合格の範囲にある。(テスト2)の後
の接触抵抗特性も「B評価」、「A〜B評価」で合格の
範囲にある。(テスト3)の後の接触抵抗特性でも「B
評価」、「B〜C評価」を示し合格の範囲にある。以上
の様に比率Φ=80〜20の範囲に於いて、遮断特性と
接触抵抗特性の両立が得られる(実施例1〜4)。
<Ratio Φ = 80 to 20, contact resistance characteristics>
In the contact resistance characteristics after (Test 1), “B evaluation”
"B to C evaluation" is within the acceptable range. The contact resistance characteristics after (Test 2) are also acceptable in “B evaluation” and “A to B evaluation”. In the contact resistance characteristics after (Test 3), "B
Evaluation "and" B to C evaluation ", which are within the acceptable range. As described above, in the range of the ratio Φ = 80 to 20, both the cutoff characteristics and the contact resistance characteristics can be obtained (Examples 1 to 4).

【0083】(実施例5〜6、比較例3)上記実施例1
〜4、比較例1〜2では、接触面領域の厚さ(最表面層
からの深さ)を50μmで一定とした時、接触面領域中
に占めるCuCr集団の割合が遮断特性と接触抵抗特
性の両立に及ぼす影響について示した。しかし本発明技
術に於いては、接触面領域の厚さは50μmに限る事な
く、その効果が得られる。
(Examples 5 and 6, Comparative Example 3) Example 1 above
In Comparative Examples 1 and 2, when the thickness of the contact surface region (depth from the outermost surface layer) was fixed at 50 μm, the ratio of the CuCr group occupying the contact surface region was determined by the cutoff characteristics and the contact resistance characteristics. The effect on the coexistence was shown. However, in the technique of the present invention, the effect can be obtained without limiting the thickness of the contact surface region to 50 μm.

【0084】<比較例3>すなわち、接触面領域の厚さ
が10μmの時(比較例3)には、20kA級の大電流
のみを遮断した遮断特性は、(テスト1)では比較標準
としている実施例2の遮断電流値の0.6〜1.0倍と
なり遮断特性の低下が見られる。(テスト3)では比較
標準としている実施例2の遮断電流値の0.5〜1.0
倍の遮断倍率となり遮断特性の著しい低下が見られる。
(テスト2)の後の接触抵抗特性では、「A〜B評価」
で合格の範囲にあるものの、(テスト1)の後の接触抵
抗特性が「C〜X評価」、(テスト3)の後では「評価
Z」を示し、接触抵抗値に大きなばらつきがみられる点
で好ましくなく、遮断特性と接触抵抗特性の両立が得ら
れない(比較例3)。
<Comparative Example 3> That is, when the thickness of the contact surface area is 10 μm (Comparative Example 3), the cutoff characteristic of cutting off only a large current of 20 kA class is set as a comparative standard in (Test 1). It becomes 0.6 to 1.0 times the cutoff current value of the second embodiment, and the cutoff characteristics are reduced. In (Test 3), the cut-off current value of Example 2 as a comparative standard was 0.5 to 1.0.
The cutoff magnification becomes twice, and the cutoff characteristics are significantly reduced.
In the contact resistance characteristics after (Test 2), "A to B evaluation"
, The contact resistance characteristics after (Test 1) indicate "C to X evaluation", and after (Test 3) indicate "Evaluation Z", and a large variation in the contact resistance value is observed. And it is not preferable, and it is not possible to obtain both the cutoff characteristic and the contact resistance characteristic (Comparative Example 3).

【0085】<実施例5〜6>一方、接触面領域の厚さ
が20〜350μm(実施例5〜6)の時には、20k
A級の大電流のみを遮断した遮断特性(テスト1)で
は、比較標準としている実施例2の遮断電流値の0.9
5〜1.1倍の遮断倍率を示し良好な遮断特性を持つ。
更に、20kA級の大電流遮断と30A級の小電流開閉
を組み合わせた(テスト3)でも、0.9〜1.1倍の
遮断倍率を示し良好な遮断特性を持つ。
<Examples 5 to 6> On the other hand, when the thickness of the contact surface area is 20 to 350 μm (Examples 5 to 6), 20 k
In the breaking characteristic (test 1) in which only the large current of the class A was cut off, the breaking current value of the comparative example 2 was 0.9.
It exhibits a cutoff magnification of 5 to 1.1 times and has good cutoff characteristics.
Further, even when a large current interruption of 20 kA class and a small current opening and closing of 30 A class are combined (test 3), the interruption magnification is 0.9 to 1.1 times and good interruption characteristics are obtained.

【0086】(テスト1)の後の接触抵抗特性では、
「B評価」で合格の範囲にある。(テスト2)の後の接
触抵抗特性も「B評価」で合格の範囲にある。(テスト
3)の後の接触抵抗特性でも「B評価」を示しで合格の
範囲にある。
In the contact resistance characteristics after (Test 1),
"B evaluation" is within the acceptable range. The contact resistance characteristics after (Test 2) are also in the acceptable range in “B evaluation”. The contact resistance characteristics after (test 3) also show "B evaluation", which is within the acceptable range.

【0087】以上の様に接触面領域の厚さが20〜35
0μmの範囲に於いて、遮断特牲と接触抵抗特性の両立
が得られる。
As described above, the thickness of the contact surface area is 20 to 35.
Within the range of 0 μm, both the blocking characteristic and the contact resistance characteristic can be obtained.

【0088】(実施例7〜10、比較例4〜5)上記実
施例1〜6、比較例1〜3では、接触面領域中に占める
CuCr集団の大きさ(集団の幅と長さ)を、幅が2
00μm、長さが400μm(以下、幅200/長40
0と略記)で一定とした時、遮断特性と接触抵抗特性の
両立に及ぼす影響について示した。
(Examples 7 to 10 and Comparative Examples 4 to 5) In the above Examples 1 to 6 and Comparative Examples 1 to 3, the size (width and length of the group) of the CuCr group occupying the contact surface region was determined. , Width 2
00 μm, length 400 μm (hereinafter, width 200 / length 40
0) (abbreviated as 0), the effect on the compatibility between the breaking characteristic and the contact resistance characteristic is shown.

【0089】しかし本発明技術に於いては、接触面領域
中に占めるCuCr集団の大きさ(集団の幅と長さ)
は、幅200/長400に限る事なくその効果を得る。
However, in the present invention, the size of the CuCr group (the width and the length of the group) occupying the contact surface area
Can obtain the effect without being limited to the width 200 / length 400.

【0090】<比較例4>すなわち、CuCr集団の
大きさが幅200/長20(比較例4)の時には、20
kA級の大電流のみを遮断した遮断特性は、(テスト
1)では比較標準としている実施例2の遮断電流値の
0.55〜1.1倍となり遮断特性の低下が見られる。
(テスト3)では比較標準としている実施例2の遮断電
流値の0.5〜1.0倍の遮断倍率となり遮断特性の著
しい低下が見られ好ましくない。
<Comparative Example 4> That is, when the size of the CuCr group is width 200 / length 20 (Comparative Example 4), 20
In (Test 1), the cut-off characteristic of only the kA class large current was 0.55 to 1.1 times the cut-off current value of Example 2 as a comparative standard, and the cut-off characteristic was reduced.
In (Test 3), the breaking current is 0.5 to 1.0 times the breaking current value of Example 2 as a comparative standard, and the breaking characteristics are remarkably reduced.

【0091】(テスト2)の後の接触抵抗特性では、
「A〜B評価」で合格の範囲にあるものの、(テスト
1)の後の接触抵抗特性が「B〜Y評価」と大幅にばら
つきを示し、(テスト3)の後でも「B〜Z評価」と接
触抵抗値に大きなばらつきがみられる点で好ましくな
く、遮断特性と接触抵抗特性の両立が得られない。
In the contact resistance characteristics after (Test 2),
Although in the acceptable range in “A to B evaluation”, the contact resistance characteristics after (Test 1) showed a large variation from “B to Y evaluation”, and even after (Test 3), “B to Z evaluation” ", Which is not preferable in that a large variation is observed in the contact resistance value, and it is not possible to obtain both the breaking characteristic and the contact resistance characteristic.

【0092】<実施例7〜8>一方、接触面領域中に占
めるCuCr集団の大きさ(集団の幅と長さ)が、幅
200/長200〜1000(実施例7〜8)の時に
は、20kA級の大電流のみを遮断した遮断特性(テス
ト1)では、比較標準としている実施例2の遮断電流値
の0.9〜1.1倍の遮断倍率を示し良好な遮断特性を
持つ。更に、20kA級の大電流遮断と30A級の小電
流開閉を組み合わせた(テスト3)でも、0.9〜1.
05倍の遮断倍率を示し良好な遮断特性を持つ。
<Examples 7 and 8> On the other hand, when the size (width and length of the group) of the CuCr group occupying the contact surface region is 200 / width 200/1000 (examples 7 and 8), In the cutoff characteristic (test 1) in which only a large current of 20 kA class was cut off, the cutoff magnification was 0.9 to 1.1 times the cutoff current value of Example 2 as a comparative standard, indicating good cutoff characteristics. Furthermore, even when a large current interruption of 20 kA class and a small current switching of 30 A class are combined (test 3), 0.9 to 1.
It shows a blocking magnification of 05 times and has good blocking characteristics.

【0093】(テスト1)の後の接触抵抗特性では、
「B評価」で合格の範囲にある。(テスト2)の後の接
触抵抗特性も「B評価」で合格の範囲にある。(テスト
3)の後の接触抵抗特性でも「B評価」を示して合格の
範囲にある。
In the contact resistance characteristics after (Test 1),
"B evaluation" is within the acceptable range. The contact resistance characteristics after (Test 2) are also in the acceptable range in “B evaluation”. The contact resistance characteristics after (Test 3) also show "B evaluation" and are in the acceptable range.

【0094】以上の様に、接触面領域中に占めるCuC
r集団の大きさ(集団の幅と長さ)が、幅200/長
200〜1000の範囲に於いて、遮断特性と接触抵抗
特性の両立が得られる。
As described above, CuC occupying the contact surface region
When the size of the r group (width and length of the group) is in the range of width 200 / length 200 to 1000, both the blocking property and the contact resistance property can be obtained.

【0095】<比較例5>同様に、CuCr集団の大
きさが幅10/長400(比較例5)の時にも、20k
A級の大電流のみを遮断した遮断特性は、(テスト1)
では比較標準としている実施例2の遮断電流値の0.5
〜0.9倍となり遮断特性の低下が見られる。(テスト
3)では比較標準としている実施例2の遮断電流値の
0.3〜0.8倍の遮断倍率となり遮断特性の著しい低
下と顕著なばらつきが見られ好ましくない。
<Comparative Example 5> Similarly, when the size of the CuCr group is width 10 / length 400 (Comparative Example 5), 20 k
The interrupting characteristic that interrupts only the class A large current is (Test 1)
Here, 0.5 of the breaking current value of the second embodiment, which is a comparative standard, is used.
0.90.9 times, and a decrease in cutoff characteristics is observed. In (Test 3), the breaking current is 0.3 to 0.8 times the breaking current value of Example 2 as a comparative standard, and the breaking characteristics are remarkably deteriorated and remarkably varied.

【0096】(テスト2)の後の接触抵抗特性では、
「B〜C評価」で合格の範囲にあるものの、(テスト
1)の後の接触抵抗特性が「C〜Z評価」と大幅にばら
つきを示し、(テスト3)の後でも「X〜Z評価」と接
触抵抗値に大幅な上昇と大きなばらつきが見られる点で
好ましくなく、遮断特性と接触抵抗特性の両立が得られ
ない。
In the contact resistance characteristics after (Test 2),
Although "B to C evaluation" is within the acceptable range, the contact resistance characteristics after (Test 1) show a large variation from "C to Z evaluation", and "X to Z evaluation" even after (Test 3). And the contact resistance value shows a large increase and a large variation, which is not preferable, and it is not possible to obtain both the breaking characteristics and the contact resistance characteristics.

【0097】<実施例9〜10>一方、接触面領域中に
占めるCuCr集団の大きさ(集団の幅と長さ)が、
幅400〜1000(実施例9〜10)の時には、20
kA級の大電流のみを遮断した遮断特性(テスト1)で
は、比較標準としている実施例2の遮断電流値の1.1
〜1.3倍の遮断倍率を示し極めて良好な遮断特性を持
つ。更に、20kA級の大電流遮断と30A級の小電流
開閉を姐み合わせた(テスト3)でも、1.0〜1.2
5倍の遮断倍率を示し極めて良好な遮断特性を持つ。
<Examples 9 to 10> On the other hand, the size of the CuCr group (the width and length of the group) occupying the contact surface area is
When the width is 400 to 1000 (Examples 9 to 10), 20
In the breaking characteristic (test 1) in which only a large current of the kA class was cut off, the breaking current value of the comparative example 2 of Example 2 was 1.1.
It exhibits a cutoff magnification of up to 1.3 times and has extremely good cutoff characteristics. Furthermore, even when a large current interruption of 20 kA class and a small current switching of 30 A class are combined (test 3), 1.0-1.2
It has a 5 times cutoff magnification and has very good cutoff characteristics.

【0098】(テスト1)の後の接触抵抗特性でも、
「B評価」で合格の範囲にある。(テスト2)の後の接
触抵抗特性も「B評価」で合格の範囲にある。(テスト
3)の後の接触抵抗特性でも「C評価」を示し、いずれ
も合格の範囲にある。
The contact resistance characteristics after (Test 1) are
"B evaluation" is within the acceptable range. The contact resistance characteristics after (Test 2) are also in the acceptable range in “B evaluation”. The contact resistance characteristics after (Test 3) also show "C evaluation", and all are within the acceptable range.

【0099】以上の様に、接触面領域中に占めるCuC
r集団の大きさ(集団の幅と長さ)が、幅200〜1
000/長400の範囲に於いて、遮断特性と接触抵抗
特性の両立が得られる。
As described above, CuC occupying the contact surface region
r The size of the group (the width and length of the group) is 200 to 1
In the range of 000/400, both the breaking characteristics and the contact resistance characteristics can be obtained.

【0100】従って、(実施例7〜8)と(実施例9〜
10)とから、接触面領域中に占めるCuCr集団の
大きさは、少なくとも200μmの幅と、少なくとも2
00μmの長さを満たす事が好ましい。
Therefore, (Examples 7 to 8) and (Examples 9 to 8)
10) that the size of the CuCr population occupying the contact surface area is at least 200 μm wide and at least 2 μm.
It is preferable to satisfy the length of 00 μm.

【0101】(実施例11〜14、比較例6〜7)上記
実施例1〜10、比較例1〜5では、接触面領域中に占
めるCuCr集団の大きさ(集団の幅と長さ)を幅2
00/長400で一定とした時、接触面領域中に占める
CuCr集団の大きさ(集団の幅と長さ)が、遮断特
性と接触抵抗特性の両立に及ぼす影響について示した。
(Examples 11 to 14 and Comparative Examples 6 and 7) In the above Examples 1 to 10 and Comparative Examples 1 to 5, the size (width and length of the group) of the CuCr group occupying the contact surface region was determined. Width 2
The effect of the size of the CuCr group (the width and length of the group) occupying the contact surface area on the balance between the breaking characteristics and the contact resistance characteristics when the ratio was fixed at 00 / length 400 was shown.

【0102】本発明技術は、接触面領域中に占めるCu
Cr集団の大きさ(集団の幅と長さ)は、上記の幅2
00/長400に限る事なく効果を得る。
The technique of the present invention relates to the method of occupying Cu in the contact surface area.
The size of the Cr group (width and length of the group) is the width 2
The effect is obtained without being limited to 00 / length 400.

【0103】<比較例6>すなわち、接触面領域中に占
めるCuCr集団の大きさ(集団の幅と長さ)が、幅
200/長20(比較例6)の時には、20kA級の大
電流のみを遮断した遮断特性は、(テスト1)では比較
標準としている実施例2の遮断電流値の0.35〜0.
55倍となり遮断特性の著しい低下が見られ好ましくな
い。(テスト3)でも比較標準としている実施例2の遮
断電流値の0.2〜0.65倍の遮断倍率となり一層の
遮断特性の低下が見られる。
<Comparative Example 6> That is, when the size of the CuCr group (width and length of the group) occupying the contact surface area is 200 / width 20 (Comparative Example 6), only a large current of 20 kA class is obtained. The cut-off characteristic of Example 2 which is a comparative standard in (Test 1) is 0.35 to 0.5% of the cut-off current value of Example 2.
It is 55 times, which is not preferable because a remarkable decrease in the cutoff characteristic is observed. Also in (Test 3), the cutoff magnification is 0.2 to 0.65 times the cutoff current value of Example 2 which is a comparative standard, and the cutoff characteristics are further reduced.

【0104】(テスト2)の後の接触抵抗特性では、
「B〜C評価」を示し合格の範囲にあるものの、(テス
ト1)の後の接触抵抗特性が「C〜X評価」とばらつき
を示し、(テスト3)の後では「C〜Z評価」と、接触
抵抗値の大幅なばらつきが見られる点で好ましくなく、
遮断特性と接触抵抗特性の両立が得られない。
In the contact resistance characteristics after (Test 2),
Although “B to C evaluation” is in the acceptable range, the contact resistance characteristics after (Test 1) show variations from “C to X evaluation”, and after (Test 3), “C to Z evaluation” And that the contact resistance value greatly varies,
It is not possible to achieve both the breaking characteristics and the contact resistance characteristics.

【0105】<実施例11〜12>一方、接触面領域中
に占めるCuCr集団の大きさ(集団の幅と長さ)
が、幅200/長200〜1000(実施例11〜1
2)の時には、20kA級の大電流のみを遮断した遮断
特性(テスト1)では、比較標準としている実施例2の
遮断電流値の1.05〜1.1倍の遮断倍率を示し良好
な遮断特性を持つ。
<Examples 11 to 12> On the other hand, the size of the CuCr group occupying the contact surface area (width and length of the group)
But width 200 / length 200 to 1000 (Examples 11 to 1)
In the case of 2), the breaking characteristic (test 1) in which only a large current of 20 kA class was cut off showed a breaking magnification of 1.05 to 1.1 times the breaking current value of Example 2 as a comparative standard, showing good breaking. Has characteristics.

【0106】更に、20kA級の大電流遮断と30A級
の小電流開閉を組み合わせた(テスト3)でも、0.9
〜1.05倍の遮断倍率を示し良好な遮断特性を持つ。
Further, even when a large current interruption of 20 kA class and a small current switching of 30 A class are combined (test 3), 0.9 is obtained.
It shows a cutoff magnification of up to 1.05 times and has good cutoff characteristics.

【0107】(テスト1)の後の接触抵抗特性では、
「B評価」で合格の範囲にある。(テスト2)の後の接
触抵抗特性も「B評価」で合格の範囲にある。(テスト
3)の後の接触抵抗特性でも「B評価」を示して合格の
範囲にある。
In the contact resistance characteristics after (Test 1),
"B evaluation" is within the acceptable range. The contact resistance characteristics after (Test 2) are also in the acceptable range in “B evaluation”. The contact resistance characteristics after (Test 3) also show "B evaluation" and are in the acceptable range.

【0108】以上の様に、接触面領域中に占めるCuC
r集団の大きさ(集団の幅と長さ)が、幅200/長
200〜1000の範囲に於いて、遮断特性と接触抵抗
特性の両立が得られる。
As described above, CuC occupying the contact surface region
When the size of the r group (width and length of the group) is in the range of width 200 / length 200 to 1000, both the blocking property and the contact resistance property can be obtained.

【0109】<比較例7>CuCr集団の大きさが幅
10/長400(比較例7)の時には、20kA級の大
電流のみを遮断した遮断特性は、(テスト1)では比較
標準としている実施例2の遮断電流値の0.8〜0.9
倍となり遮断特性の低下が見られる。(テスト3)では
比較標準としている実施例2の遮断電流値の0.25〜
0.5倍の遮断倍率となり遮断特性の著しい低下と顕著
なばらつきが見られ好ましくない。
<Comparative Example 7> When the size of the CuCr group is width 10 / length 400 (Comparative Example 7), the cutoff characteristic of blocking only a large current of 20 kA class is set as a comparative standard in (Test 1). 0.8 to 0.9 of the breaking current value of Example 2
It becomes twice as large and the cutoff characteristics are reduced. In (Test 3), the breaking current of 0.25 to
The cutoff magnification is 0.5 times, and the cutoff characteristics are remarkably deteriorated and remarkably varied.

【0110】(テスト2)の後の接触抵抗特性では、
「B〜C評価」で合格の範囲にあるものの、(テスト
1)の後の接触抵抗特性が「B〜X評価」と大幅にばら
つきを示し、(テスト3)の後でも「C〜X評価」と接
触抵抗値に大幅な上昇と大きなばらつきがみられる点で
好ましくなく、遮断特性と接触抵抗特性の両立が得られ
ない。
In the contact resistance characteristics after (Test 2),
Although in the acceptable range in “B to C evaluation”, the contact resistance characteristics after (Test 1) showed a large variation from “B to X evaluation”, and even after (Test 3), the “C to X evaluation” ", Which is not preferable in that a large increase and a large variation are seen in the contact resistance value, and it is not possible to obtain both the breaking characteristics and the contact resistance characteristics.

【0111】<実施例13〜14>一方、接触面領域中
に占めるCuCr集団の大きさ(集団の幅と長さ)
が、幅400〜1000(実施例13〜14)の時に
は、20kA級の大電流のみを遮断した遮断特性(テス
ト1)では、比較標準としている実施例2の遮断電流値
の1.1〜1.15倍の遮断倍率を示し極めて良好な遮
断特性を持つ。更に、20kA級の大電流遮断と30A
級の小電流開閉を組み合わせた(テスト3)でも、0.
95〜1.15倍の遮断倍率を示し極めて良好な遮断特
性を持つ。
<Examples 13 and 14> On the other hand, the size of the CuCr group occupying the contact surface region (width and length of the group)
However, when the width is 400 to 1000 (Examples 13 and 14), the breaking characteristic (Test 1) in which only a large current of 20 kA class is cut off is 1.1 to 1 of the breaking current value of Example 2 as a comparative standard. It has a cut-off magnification of 15 times and has very good cut-off characteristics. Furthermore, large current interruption of 20kA class and 30A
Even with the combination of small current switching of the class (Test 3), even the combination
It exhibits a cutoff magnification of 95 to 1.15 times and has extremely good cutoff characteristics.

【0112】(テスト1)の後の接触抵抗特性でも、
「B評価」で合格の範囲にある。(テスト2)の後の接
触抵抗特性も「B評価」で合格の範囲にある。(テスト
3)の後の接触抵抗特性でも「B評価」を示していずれ
も合格の範囲にある。
In the contact resistance characteristics after (Test 1),
"B evaluation" is within the acceptable range. The contact resistance characteristics after (Test 2) are also in the acceptable range in “B evaluation”. The contact resistance characteristics after (Test 3) also show "B evaluation" and are all within the acceptable range.

【0113】以上の様に、接触面領域中に占めるCuC
r集団の大きさ(集団の幅と長さ)が、幅200〜1
000/長400の範囲に於いて、遮断特性と接触抵抗
特性の両立が得られる。
As described above, CuC occupying the contact surface region
r The size of the group (the width and length of the group) is 200 to 1
In the range of 000/400, both the breaking characteristics and the contact resistance characteristics can be obtained.

【0114】従って、(実施例11〜12)と(実施例
13〜14)とから、接触面領域中に占めるCuCr集
団の大きさは、少なくとも200μmの幅と、少なく
とも200μmの長さを満たす事が好ましい(実施例1
1〜14)。
Therefore, according to (Examples 11 to 12) and (Examples 13 to 14), the size of the CuCr group occupying the contact surface region must satisfy at least the width of 200 μm and the length of at least 200 μm. (Example 1
1-14).

【0115】(実施例15〜17、比較例8〜9)上記
実施例1〜14、比較例1〜7では、CuCr集団中
の平均Cr量を25重量%とした場合の遮断特性と接触
抵抗特性の両立に及ぼす影響について示した。
(Examples 15 to 17, Comparative Examples 8 to 9) In Examples 1 to 14 and Comparative Examples 1 to 7, the breaking characteristics and the contact resistance when the average Cr content in the CuCr population was 25% by weight. The effects on the compatibility of characteristics were shown.

【0116】本発明技術は、CuCr集団中の平均C
r量は、上記25%Crに限る事なく効果を得る。
The technique of the present invention is based on the average C in the CuCr population.
The effect is obtained without limiting the amount of r to 25% Cr.

【0117】<比較例8>すなわち、CuCr集団中
の平均Cr量が2重量%の時には、20kA級の大電流
のみを遮断した遮断特性は、(テスト1)では比較標準
としている実施例2の遮断電流値の0.75〜1.05
倍となり遮断特性のばらつきが見られ好ましくない。
(テスト3)でも比較標準としている実施例2の遮断電
流値の0.5〜0.8倍の遮断倍率となり一層の遮断特
性の低下が見られる。
<Comparative Example 8> That is, when the average Cr content in the CuCr group was 2% by weight, the cutoff characteristic of cutting off only a large current of 20 kA class was the same as that of Example 2 which was used as a comparative standard in (Test 1). 0.75 to 1.05 of the breaking current value
This is unfavorable because the variation in cutoff characteristics is seen.
(Test 3) also shows a cutoff magnification of 0.5 to 0.8 times the cutoff current value of the comparative example 2 of Example 2, and the cutoff characteristics are further reduced.

【0118】(テスト2)の後の接触抵抗特性では、
「A評価」を示し合格の範囲にあり、(テスト1)の後
の接触抵抗特性も「A〜B評価」を示し合格の範囲にあ
り、(テスト3)の後でも「B評価」を発揮する。接触
抵抗特性は合格の範囲にあるが、遮断特性と接触抵抗特
性の両立性という観点からは好ましくない。
In the contact resistance characteristics after (Test 2),
It shows "A evaluation" and is in the pass range, and the contact resistance characteristic after (Test 1) also shows "AB" and is in the pass range, and shows "B evaluation" even after (Test 3). I do. Although the contact resistance characteristic is in the acceptable range, it is not preferable from the viewpoint of compatibility between the cutoff characteristic and the contact resistance characteristic.

【0119】<比較例9>CuCr集団中の平均Cr
量が90重量%の時には、20kA級の大電流のみを遮
断した遮断特性は、(テスト1)では比較標準としてい
る実施例2の遮断電流値の0.5〜0.65倍となり遮
断特性の大幅な低下が見られ好ましくない。(テスト
3)でも比較標準としている実施例2の遮断電流値の
0.4〜0.6倍の遮断倍率となり一層の遮断特性の低
下が見られる。
<Comparative Example 9> Average Cr in CuCr population
When the amount is 90% by weight, the breaking characteristic of blocking only a large current of 20 kA class is 0.5 to 0.65 times the breaking current value of Example 2 which is a comparative standard in (Test 1). A significant decrease is observed, which is not preferable. Also in (Test 3), the cutoff magnification is 0.4 to 0.6 times the cutoff current value of Example 2 which is a comparative standard, and the cutoff characteristics are further reduced.

【0120】(テスト2)の後の接触抵抗特性では、
「C〜Z評価」と大幅な低下とばらつきを示す。(テス
ト1)の後の接触抵抗特性も「X〜Z評価」と大幅にば
らつきを示し、(テスト3)の後でも「Y〜Z評価」と
接触抵抗値に大幅な上昇がみられる点で好ましくなく、
遮断特性と接触抵抗特性の両者共特性の低下が見られ
る。遮断特性と接触抵抗特性の両立性という観点からは
好ましくない。
In the contact resistance characteristics after (Test 2),
"C to Z evaluation" shows a significant decrease and variation. The contact resistance characteristic after (Test 1) also shows a large variation with "X to Z evaluation", and the contact resistance value shows a large increase after (Test 3) with "Y to Z evaluation". Undesirable
Both the cutoff characteristics and the contact resistance characteristics show a decrease in characteristics. It is not preferable from the viewpoint of compatibility between the breaking characteristics and the contact resistance characteristics.

【0121】<実施例15〜17>CuCr集団中の
平均Cr量が5〜70重量%(実施例15〜17)の時
には、20kA級の大電流のみを遮断した遮断特性は、
(テスト1)では比較標準としている実施例2の遮断電
流値の0.95〜1.3倍となり、優れた遮断特性を発
揮する。(テスト3)でも比較標準としている実施例2
の遮断電流値の0.9〜1.2倍の遮断倍率となり優れ
た遮断特性を発揮する。
<Examples 15 to 17> When the average amount of Cr in the CuCr group was 5 to 70% by weight (Examples 15 to 17), the cutoff characteristic of cutting off only a large current of 20 kA class was as follows.
In (test 1), the cut-off current value is 0.95 to 1.3 times the cut-off current value of the comparative example 2 and exhibits excellent cut-off characteristics. Example 2 used as a comparative standard in (Test 3)
Of 0.9 to 1.2 times the breaking current value of the above, and exhibits excellent breaking characteristics.

【0122】(テスト2)の後の接触抵抗特性では、
「A〜B評価」、「B評価」、「B〜C評価」を示し合
格の範囲にあり、(テスト1)の後の接触抵抗特性も
「B評価」、「B〜C評価」を示し合格の範囲にあり、
(テスト3)の後でも「B評価」、「B〜C評価」、
「C評価」を発揮する。
In the contact resistance characteristics after (Test 2),
"AB evaluation", "B evaluation", "BC evaluation" are in the acceptable range, and the contact resistance characteristics after (test 1) also show "B evaluation", "BC evaluation" In the pass range,
Even after (Test 3), "B evaluation", "BC evaluation",
Demonstrate "C evaluation".

【0123】従って、(実施例15〜17)から、Cu
Cr集団中の平均Cr量を5重量%〜70重量%とし
た場合に遮断特性と接触抵抗特性の両立が得られる。
Therefore, from (Examples 15 to 17), Cu
When the average amount of Cr in the Cr group is set to 5% by weight to 70% by weight, both of the blocking characteristic and the contact resistance characteristic can be obtained.

【0124】(実施例18〜20、比較例10〜11)
上記実施例1〜17、比較例1〜9では、CuCr集団
中の平均Cr量を25重量%とした場合の遮断特性と
接触抵抗特性の両立に及ぼす影響について示した。
(Examples 18 to 20, Comparative Examples 10 to 11)
In the above Examples 1 to 17 and Comparative Examples 1 to 9, the effects on the compatibility between the cutoff characteristics and the contact resistance characteristics when the average Cr amount in the CuCr group was 25% by weight were shown.

【0125】本発明技術は、CuCr集団中の平均C
r量は、上記25%Crに限る事なく効果を得る。
The technique of the present invention is based on the average C in the CuCr population.
The effect is obtained without limiting the amount of r to 25% Cr.

【0126】<比較例10>すなわち、CuCr集団
中の平均Cr量が5重量%の時には、20kA級の大電
流のみを遮断した遮断特性は、(テスト1)では比較標
準としている実施例2の遮断電流値の0.8〜0.95
倍となり遮断特性の低下が見られ好ましくない。(テス
ト3)でも比較標準としている実施例2の遮断電流値の
0.6〜0.8倍の遮断倍率となり一層の遮断特性の低
下が見られる。
<Comparative Example 10> That is, when the average amount of Cr in the CuCr group was 5% by weight, the cut-off characteristic of cutting off only a large current of 20 kA class was the same as that of Example 2 which was used as a comparative standard in (Test 1). 0.8 to 0.95 of the breaking current value
This is unfavorable because the cutoff characteristics are reduced. (Test 3) also shows a cutoff magnification of 0.6 to 0.8 times the cutoff current value of Example 2 which is a comparative standard, and the cutoff characteristics are further reduced.

【0127】(テスト2)の後の接触抵抗特性では、
「A評価」を示し合格の範囲にあり、(テスト1)の後
の接触抵抗特性も「A〜B評価」を示し合格の範囲にあ
り、(テスト3)の後でも「B評価」を発揮する。接触
抵抗特性は合格の範囲にあるが、遮断特性と接触抵抗特
性の両立性という観点からは好ましくない。
In the contact resistance characteristics after (Test 2),
It shows "A evaluation" and is in the pass range, and the contact resistance characteristic after (Test 1) also shows "AB" and is in the pass range, and shows "B evaluation" even after (Test 3). I do. Although the contact resistance characteristic is in the acceptable range, it is not preferable from the viewpoint of compatibility between the cutoff characteristic and the contact resistance characteristic.

【0128】<比較例11>CuCr集団中の平均C
r量が90重量%の時には、20kA級の大電流のみを
遮断した遮断特性は、(テスト1)では比較標準として
いる実施例2の遮断電流値の0.6〜0.7倍となり遮
断特性の低下が見られ好ましくない。(テスト3)でも
比較標準としている実施例2の遮断電流値の0.4〜
0.6倍の遮断倍率となり一層の遮断特性の低下が見ら
れる。
<Comparative Example 11> Average C in CuCr population
When the amount of r is 90% by weight, the breaking characteristic of blocking only a large current of 20 kA class is 0.6 to 0.7 times the breaking current value of Example 2 which is a comparative standard in (Test 1). Is unfavorably observed. (Test 3) The cut-off current value of Example 2 which is also a comparative standard is 0.4 to
The cutoff magnification is 0.6 times, and the cutoff characteristics are further reduced.

【0129】(テスト2)の後の接触抵抗特性では、
「C〜Z評価」と大幅な低下とばらつきを示す。(テス
ト1)の後の接触抵抗特性も「X〜Z評価」と大幅にば
らつきを示し、(テスト3)の後でも「Y〜Z評価」と
接触抵抗値に大幅な上昇がみられる点で好ましくなく、
遮断特性と接触抵抗特性の両者共特性の低下が見られ
る。遮断特性と接触抵抗特性の両立性という観点からは
好ましくない。
In the contact resistance characteristics after (Test 2),
"C to Z evaluation" shows a significant decrease and variation. The contact resistance characteristic after (Test 1) also shows a large variation with "X to Z evaluation", and the contact resistance value shows a large increase after (Test 3) with "Y to Z evaluation". Undesirable
Both the cutoff characteristics and the contact resistance characteristics show a decrease in characteristics. It is not preferable from the viewpoint of compatibility between the breaking characteristics and the contact resistance characteristics.

【0130】<実施例18〜20>CuCr集団中の
平均Cr量が10〜80重量%(実施例18〜20)の
時には、20kA級の大電流のみを遮断した遮断特性
は、(テスト1)では比較標準としている実施例2の遮
断電流値の1.0〜1.15倍となり、優れた遮断特性
を発揮する。(テスト3)でも比較標準としている実施
例2の遮断電流値の0.9〜1.0倍の遮断倍率となり
優れた遮断特性を発揮する。
<Examples 18 to 20> When the average amount of Cr in the CuCr group was 10 to 80% by weight (Examples 18 to 20), the cut-off characteristic of cutting off only a large current of 20 kA class was (Test 1). In this case, the breaking current value is 1.0 to 1.15 times the breaking current value of Example 2 which is a comparative standard, and excellent breaking characteristics are exhibited. (Test 3) also exhibits a breaking magnification of 0.9 to 1.0 times the breaking current value of Example 2 which is a comparative standard, and exhibits excellent breaking characteristics.

【0131】(テスト2)の後の接触抵抗特性では、
「A〜B評価」、「B評価」、「B〜C評価」を示し合
格の範囲にあり、(テスト1)の後の接触抵抗特性も
「B評価」、「B〜C評価」を示し合格の範囲にあり、
(テスト3)の後でも「B評価」、「B〜C評価」、
「C評価」を発揮する。
In the contact resistance characteristics after (Test 2),
"AB evaluation", "B evaluation", "BC evaluation" are in the acceptable range, and the contact resistance characteristics after (test 1) also show "B evaluation", "BC evaluation" In the pass range,
Even after (Test 3), "B evaluation", "BC evaluation",
Demonstrate "C evaluation".

【0132】従って、(実施例18〜20)から、Cu
Cr集団中の平均Cr量を10重量%〜80重量%と
した場合に遮断特性と接触抵抗特性の両立が得られる。
Therefore, from (Examples 18 to 20), Cu
When the average amount of Cr in the Cr group is set to 10% by weight to 80% by weight, both the blocking property and the contact resistance property can be obtained.

【0133】(実施例21〜22、比較例12〜13)
上記実施例1〜20、比較例1〜11では、CuCr合
金全体中のCr量を25重量%とした場合の遮断特性と
接触抵抗特性の両立に及ぼす影響について示した。
(Examples 21 to 22, Comparative Examples 12 to 13)
In the above Examples 1 to 20 and Comparative Examples 1 to 11, the effects on the compatibility between the breaking characteristics and the contact resistance characteristics when the Cr content in the whole CuCr alloy was 25% by weight were shown.

【0134】本発明技術は、CuCr合金全体中のCr
量は、上記25%Crに限る事なく効果を得る。
The technology of the present invention relates to the method of
The amount is not limited to the above-mentioned 25% Cr, and an effect can be obtained.

【0135】<比較例12>すなわち、CuCr合金全
体中のCr量が2重量%の時には、20kA級の大電流
のみを遮断した遮断特性は、(テスト1)では比較標準
としている実施例2の遮断電流値の0.65〜1.0倍
となり遮断特性のばらつきが見られ好ましくない。(テ
スト3)でも比較標準としている実施例2の遮断電流値
の0.25〜0.65倍の遮断倍率となり一層の遮断特
性の低下が見られる。
<Comparative Example 12> That is, when the amount of Cr in the entire CuCr alloy was 2% by weight, the cut-off characteristic of cutting off only a large current of 20 kA class was the same as that of Example 2 which was used as a comparative standard in (Test 1) It is 0.65 to 1.0 times the breaking current value, and the variation in the breaking characteristics is unfavorably observed. Also in (test 3), the cutoff magnification is 0.25 to 0.65 times the cutoff current value of the comparative example 2 of Example 2, and the cutoff characteristics are further reduced.

【0136】(テスト2)の後の接触抵抗特性では、
「A評価」を示し合格の範囲にあり、(テスト1)の後
の接触抵抗特性も「A〜B評価」を示し合格の範囲にあ
り、(テスト3)の後でも「B評価」を発揮する。接触
抵抗特性は合格の範囲にあるが、遮断特性と接触抵抗特
性の両立性という観点からは好ましくない。
In the contact resistance characteristics after (Test 2),
It shows "A evaluation" and is in the pass range, and the contact resistance characteristic after (Test 1) also shows "AB" and is in the pass range, and shows "B evaluation" even after (Test 3). I do. Although the contact resistance characteristic is in the acceptable range, it is not preferable from the viewpoint of compatibility between the cutoff characteristic and the contact resistance characteristic.

【0137】<比較例13>CuCr合金全体中のCr
量が90重量%の時には、20kA級の大電流のみを遮
断した遮断特性は、(テスト1)では比較標準としてい
る実施例2の遮断電流値の0.55〜0.7倍となり遮
断特性の大幅な低下が見られ好ましくない。(テスト
3)でも比較標準としている実施例2の遮断電流値の
0.4〜0.55倍の遮断倍率となり一層の遮断特性の
低下が見られる。
<Comparative Example 13> Cr in the whole CuCr alloy
When the amount is 90% by weight, the breaking characteristic of blocking only a large current of 20 kA class is 0.55 to 0.7 times the breaking current value of Example 2 which is a comparative standard in (Test 1). A significant decrease is observed, which is not preferable. (Test 3) also shows a breaking magnification of 0.4 to 0.55 times the breaking current value of Example 2 which is a comparative standard, and the breaking characteristics are further reduced.

【0138】(テスト2)の後の接触抵抗特性では、
「C〜Z評価」と大幅な低下とばらつきを示す。(テス
ト1)の後の接触抵抗特性も「X〜Z評価」と大幅にば
らつきを示し、(テスト3)の後でも「Y〜Z評価」と
接触抵抗値に大幅な上昇がみられる点で好ましくなく、
遮断特性と接触抵抗特性の両者共特性の低下が見られ
る。遮断特性と接触抵抗特性の両立性という観点からは
好ましくない。
In the contact resistance characteristics after (Test 2),
"C to Z evaluation" shows a significant decrease and variation. The contact resistance characteristic after (Test 1) also shows a large variation with "X to Z evaluation", and the contact resistance value shows a large increase after (Test 3) with "Y to Z evaluation". Undesirable
Both the cutoff characteristics and the contact resistance characteristics show a decrease in characteristics. It is not preferable from the viewpoint of compatibility between the breaking characteristics and the contact resistance characteristics.

【0139】<実施例21〜22>CuCr合金全体中
のCr量が5〜70重量%(実施例21〜22)の時に
は、20kA級の大電流のみを遮断した遮断特性は、
(テスト1)では比較標準としている実施例2の遮断電
流値の1.0〜1.2倍となり、優れた遮断特性を発揮
する。(テスト3)でも比較標準としている実施例2の
遮断電流値の0.9〜1.1倍の遮断倍率となり優れた
遮断特性を発揮する。
<Examples 21 to 22> When the amount of Cr in the entire CuCr alloy was 5 to 70% by weight (Examples 21 to 22), the breaking characteristics of blocking only a large current of 20 kA class were as follows.
In (test 1), the cutoff current value is 1.0 to 1.2 times the cutoff current value of the comparative example 2 and exhibits excellent cutoff characteristics. Also in (test 3), the cutoff current value is 0.9 to 1.1 times the cutoff current value of Example 2 which is a comparative standard, and excellent cutoff characteristics are exhibited.

【0140】(テスト2)の後の接触抵抗特性では、
「A〜B評価」、「B〜C評価」を示し合格の範囲にあ
り、(テスト1)の後の接触抵抗特性も「B評価」、
「B〜C評価」を示し合格の範囲にあり、(テスト3)
の後でも「B評価」、「C評価」を発揮する。
In the contact resistance characteristics after (Test 2),
It shows "AB evaluation" and "BC evaluation" and is in the acceptable range, and the contact resistance characteristics after (test 1) are also "B evaluation".
It shows "B to C evaluation" and is in the acceptable range (Test 3)
After that, "B evaluation" and "C evaluation" are exhibited.

【0141】従って、(実施例21〜22)から、Cu
Cr合金全体中のCr量を5重量%〜70重量%とした
場合に遮断特性と接触抵抗特性の両立が得られる。
Therefore, from (Examples 21 to 22), Cu
When the amount of Cr in the entire Cr alloy is set to 5% by weight to 70% by weight, both the blocking property and the contact resistance property can be obtained.

【0142】(実施例23〜25、比較例14〜15)
上記実施例1〜22、比較例1〜13では、CuCr集
団中のCrの平均粒子間距離を35μmで一定とした
場合の遮断特性と接触抵抗特性の両立に及ぼす影響につ
いて示した。
(Examples 23 to 25, Comparative Examples 14 to 15)
In the above Examples 1 to 22 and Comparative Examples 1 to 13, the influence on the compatibility between the blocking characteristics and the contact resistance characteristics when the average distance between Cr particles in the CuCr group was fixed at 35 µm was shown.

【0143】本発明技術は、CuCr集団中のCrの
平均粒子間距離は、上記35μmに限る事なく効果を得
る。
The technique of the present invention is effective without limiting the average intergranular distance of Cr in the CuCr population to 35 μm.

【0144】<比較例14>すなわち、CuCr集団
中のCrの平均粒子間距離が5μmの時には、20kA
級の大電流のみを遮断した遮断特性は、(テスト1)で
は比較標準としている実施例2の遮断電流値の0.9〜
1.05倍と合格の範囲にあるものの、(テスト3)で
は比較標準としている実施例2の遮断電流値の0.45
〜0.65倍の遮断倍率となり遮断特性の低下が見られ
る。
<Comparative Example 14> That is, when the average interparticle distance of Cr in the CuCr population was 5 μm, 20 kA
The breaking characteristic of blocking only large current of the class was 0.9 to 0.9 of the breaking current value of Example 2 which is a comparative standard in (Test 1).
Although it was within the acceptable range of 1.05 times, (Test 3) was 0.45 of the cut-off current value of Example 2 as a comparative standard.
The cutoff magnification becomes about 0.65 times, and the cutoff characteristics are reduced.

【0145】(テスト2)の後の接触抵抗特性では、
「B評価」を示し合格の範囲にあり、(テスト1)の後
の接触抵抗特性も「B評価」を示し合格の範囲にあり、
(テスト3)の後でも「C評価」を発揮する。接触抵抗
特性は合格の範囲にあるが、遮断特性と接触抵抗特性の
両立性という観点からは好ましくない。
In the contact resistance characteristics after (Test 2),
It shows "B evaluation" and is in a pass range, and the contact resistance characteristic after (Test 1) also shows "B evaluation" and is in a pass range.
Even after (Test 3), "C evaluation" is exhibited. Although the contact resistance characteristic is in the acceptable range, it is not preferable from the viewpoint of compatibility between the cutoff characteristic and the contact resistance characteristic.

【0146】<比較例15>CuCr集団中のCrの
平均粒子間距離が500μmの時には、20kA級の大
電流のみを遮断した遮断特性は、(テスト1)では比較
標準としている実施例2の遮断電流値の0.65〜0.
95倍となり遮断特性の低下が見られ好ましくない。
(テスト3)でも比較標準としている実施例2の遮断電
流値の0.3〜1.2倍の遮断倍率となり一層の遮断特
性の低下が見られる。
<Comparative Example 15> When the average interparticle distance of Cr in the CuCr group was 500 μm, the cutoff characteristic of cutting off only a large current of 20 kA class was the same as that of Example 2 which was used as a comparative standard in (Test 1). 0.65-0.
It is 95 times, which is not preferable because the cutoff characteristics are reduced.
(Test 3) also shows a breaking magnification of 0.3 to 1.2 times the breaking current value of Example 2 which is a comparative standard, and further lowers the breaking characteristics.

【0147】(テスト2)の後の接触抵抗特性では、
「B〜X評価」とばらつきを示す。(テスト1)の後の
接触抵抗特性も「B〜Y評価」と大幅にばらつきを示
し、(テスト3)の後でも「B〜Z評価」と接触抵抗値
に大幅なばらつきを示し好ましくなく、遮断特性と接触
抵抗特性の両者共特性の低下が見られる。遮断特性と接
触抵抗特性の両立性という観点からは好ましくない。
In the contact resistance characteristics after (Test 2),
"B to X evaluation" and variations are shown. The contact resistance characteristics after (Test 1) also show large variations in "B to Y evaluation", and even after (Test 3), the contact resistance values show large variations in "B to Z evaluation", which is not preferable. Both the cutoff characteristics and the contact resistance characteristics show a decrease in characteristics. It is not preferable from the viewpoint of compatibility between the breaking characteristics and the contact resistance characteristics.

【0148】<実施例23〜25>CuCr集団中の
Crの平均粒子間距離が20〜200μm(実施例23
〜25)の時には、20kA級の大電流のみを遮断した
遮断特性は、(テスト1)では比較標準としている実施
例2の遮断電流値の0.95〜1.15倍となり、優れ
た遮断特性を発揮する。(テスト3)でも比較標準とし
ている実施例2の遮断電流値の0.9〜1.1倍の遮断
倍率となり優れた遮断特性を発揮する。
<Examples 23 to 25> The average interparticle distance of Cr in the CuCr population was 20 to 200 µm (Example 23 to 25).
In the case of (1) to (25), the cut-off characteristic in which only a large current of 20 kA class was cut off was 0.95 to 1.15 times the cut-off current value of Example 2 which is a comparative standard in (Test 1). Demonstrate. Also in (test 3), the cutoff current value is 0.9 to 1.1 times the cutoff current value of Example 2 which is a comparative standard, and excellent cutoff characteristics are exhibited.

【0149】(テスト2)の後の接触抵抗特性では、
「A」、「A〜B評価」、「B〜C評価」を示し合格の
範囲にあり、(テスト1)の後の接触抵抗特性も「A〜
B評価」、「B〜C評価」を示し合格の範囲にあり、
(テスト3)の後でも「B評価」、「A〜B評価」、
「B〜C評価」を発揮する。
In the contact resistance characteristics after (Test 2),
"A", "AB evaluation", "BC evaluation" are in the acceptable range, and the contact resistance characteristics after (test 1) are also "A ~"
B evaluation "," B ~ C evaluation "and in the range of passing,
Even after (Test 3), "B evaluation", "AB evaluation",
Demonstrates “B to C evaluation”.

【0150】従って、(実施例23〜25)から、Cu
Cr集団中のCrの平均粒子間距離を20〜200μ
mとした場合に遮断特性と接触抵抗特性の両立が得られ
る。
Therefore, from Examples 23 to 25, Cu
The average distance between Cr particles in the Cr population is 20 to 200 μm.
When it is set to m, both the breaking characteristic and the contact resistance characteristic can be obtained.

【0151】(実施例26〜29、比較例16〜17)
上記実施例1〜25、比較例1〜15では、CuCr集
団中のCrの平均粒子間距離を0.5μmで一定とし
た場合の遮断特性と接触抵抗特性の両立に及ぼす影響に
ついて示した。
(Examples 26 to 29, Comparative Examples 16 to 17)
In the above Examples 1 to 25 and Comparative Examples 1 to 15, the effects on the compatibility between the cutoff characteristics and the contact resistance characteristics when the average distance between the Cr particles in the CuCr population was fixed at 0.5 μm were shown.

【0152】本発明技術は、CuCr集団中のCrの
平均粒子間距離は、上記0.5μmに限る事なく効果を
得る。
The technique of the present invention is effective without limiting the average intergranular distance of Cr in the CuCr population to 0.5 μm.

【0153】<比較例16>CuCr集団中のCrの
平均粒子間距離を0.01μm未満にすることは、素材
の製造を経済的に行うことができないので、試作を中止
した。
<Comparative Example 16> Making the average intergranular distance of Cr less than 0.01 μm in the CuCr population would not make the production of the material economical, so the trial production was stopped.

【0154】<比較例17>CuCr集団中のCrの
平均粒子間距離が30μmの時には、20kA級の大電
流のみを遮断した遮断特性は、(テスト1)では比較標
準としている実施例2の遮断電流値の0.55〜0.8
5倍となり遮断特性の低下が見られ好ましくない。(テ
スト3)でも比較標準としている実施例2の遮断電流値
の0.4〜0.95倍の遮断倍率となり一層の遮断特性
の低下が見られる。
<Comparative Example 17> When the average interparticle distance of Cr in the CuCr population was 30 μm, the cutoff characteristic of cutting off only a large current of 20 kA class was the same as that of Example 2 which was used as a comparative standard in (Test 1). 0.55-0.8 of current value
It is five times, and the blocking characteristics are deteriorated, which is not preferable. Also in (Test 3), the cutoff magnification is 0.4 to 0.95 times the cutoff current value of Example 2 as a comparative standard, and the cutoff characteristics are further reduced.

【0155】(テスト2)の後の接触抵抗特性では、
「B〜C評価」と合格の範囲にあるものの、(テスト
1)の後の接触抵抗特性は「B〜X評価」と大幅にばら
つきを示し、(テスト3)の後でも「C〜Y評価」と接
触抵抗値に大幅なばらつきを示し好ましくなく、遮断特
性と接触抵抗特性の両者共特性の低下が見られる。遮断
特性と接触抵抗特性の両立性という観点からは好ましく
ない。
In the contact resistance characteristics after (Test 2),
Although in the acceptable range of “B to C evaluation”, the contact resistance characteristics after (Test 1) showed a large variation from “B to X evaluation”, and even after (Test 3), the “C to Y evaluation” And the contact resistance value greatly varies, which is not preferable, and both the cutoff characteristics and the contact resistance characteristics show a decrease in the characteristics. It is not preferable from the viewpoint of compatibility between the breaking characteristics and the contact resistance characteristics.

【0156】<実施例26〜29>CuCr集団中の
Crの平均粒子間距離が0.01〜20μm(実施例2
6〜29)の時には、20kA級の大電流のみを遮断し
た遮断特性は、(テスト1)では比較標準としている実
施例2の遮断電流値の0.95〜1.2倍となり、優れ
た遮断特性を発揮する。(テスト3)でも比較標準とし
ている実施例2の遮断電流値の0.9〜1.1倍の遮断
倍率となり優れた遮断特性を発揮する。
<Examples 26 to 29> The average interparticle distance of Cr in the CuCr population was 0.01 to 20 µm (Example 2 to 29).
In the case of 6 to 29), the breaking characteristic in which only a large current of 20 kA class was cut was 0.95 to 1.2 times the breaking current value of Example 2 which is a comparative standard in (Test 1), and excellent breaking was achieved. Demonstrate the characteristics. Also in (test 3), the cutoff current value is 0.9 to 1.1 times the cutoff current value of Example 2 which is a comparative standard, and excellent cutoff characteristics are exhibited.

【0157】(テスト2)の後の接触抵抗特性では、
「A〜B評価」、「B評価」を示し合格の範囲にあり、
(テスト1)の後の接触抵抗特性も「B〜C評価」を示
し合格の範囲にあり、(テスト3)の後でも「B評
価」、「B〜C評価」、「C評価」を発揮する。
In the contact resistance characteristics after (Test 2),
"AB evaluation", "B evaluation" is in the range of passing,
The contact resistance characteristics after (Test 1) also show "B to C evaluation" and are in the acceptable range, and also exhibit "B evaluation", "B to C evaluation", and "C evaluation" even after (Test 3). I do.

【0158】従って、(実施例26〜29)から、Cu
Cr集団中のCrの平均粒子間距離を0.01〜20
μmとした場合に遮断特性と接触抵抗特性の両立が得ら
れる。
Therefore, from Examples 26 to 29, Cu
The average interparticle distance of Cr in the Cr population is 0.01 to 20.
When the thickness is set to μm, both the blocking characteristic and the contact resistance characteristic can be obtained.

【0159】(実施例30〜32、比較例18)上記実
施例1〜29、比較例1〜17では、CuCr合金を7
50〜950℃に再加熱した後、室温にまで冷却した時
の、CuCr集団中のCr粒子のマイクロビッカース
硬さ値Hvを、200とした場合の遮断特性と接触抵抗
特性の両立に及ぼす影響について示した。
(Examples 30 to 32, Comparative Example 18) In Examples 1 to 29 and Comparative Examples 1 to 17, the CuCr alloy was
Influence on reconciliation of the interception characteristics and the contact resistance characteristics when the micro Vickers hardness value Hv of the Cr particles in the CuCr population is 200 when reheated to 50 to 950 ° C. and then cooled to room temperature. Indicated.

【0160】本発明技術は、CuCr合金を750〜9
50℃に再加熱した後、室温にまで冷却した時の、Cu
Cr集団中のCr粒子のマイクロビッカース硬さ値H
vを、200に限る事なく効果を得る。
The present invention relates to a CuCr alloy of 750 to 9
After reheating to 50 ° C. and cooling to room temperature, Cu
Micro-Vickers hardness value H of Cr particles in Cr population
The effect is obtained without limiting v to 200.

【0161】<比較例18>CuCr合金を750〜9
50℃に再加熱した後、室温にまで冷却した時の、Cu
Cr集団中のCr粒子のマイクロビッカース硬さ値H
vを120とした時には、20kA級の大電流のみを遮
断した遮断特性は、(テスト1)では比較標準としてい
る実施例2の遮断電流値の0.45〜0.7倍となり遮
断特性の低下が見られ好ましくない。(テスト3)でも
比較標準としている実施例2の遮断電流値の0.3〜
0.5倍の遮断倍率となり一層の遮断特性の低下が見ら
れる。
<Comparative Example 18> CuCr alloy was added to 750-9
After reheating to 50 ° C. and cooling to room temperature, Cu
Micro-Vickers hardness value H of Cr particles in Cr population
When v is set to 120, the cut-off characteristic in which only a large current of 20 kA class is cut off is 0.45 to 0.7 times the cut-off current value of Example 2 which is a comparative standard in (Test 1), and the cut-off characteristic is lowered. Are not preferred. (Test 3) 0.3 to less than the breaking current value of Example 2 which is also a comparative standard.
The cutoff magnification is 0.5 times, and the cutoff characteristics are further reduced.

【0162】(テスト2)の後の接触抵抗特性では、
「A評価」を示し合格の範囲にあり、(テスト1)の後
の接触抵抗特性も「A〜B評価」を示し合格の範囲にあ
り、(テスト3)の後でも「A〜B評価」を発揮する。
接触抵抗特性は合格の範囲にあるが、遮断特性と接触抵
抗特性の両立性という観点からは好ましくない。
In the contact resistance characteristics after (Test 2),
The contact resistance characteristics after (test 1) are in the acceptable range, indicating "A evaluation", and are also in the acceptable range after "test 3". Demonstrate.
Although the contact resistance characteristic is in the acceptable range, it is not preferable from the viewpoint of compatibility between the cutoff characteristic and the contact resistance characteristic.

【0163】<実施例30〜32>CuCr合金を75
0〜950℃に再加熱した後、室温にまで冷却した時
の、CuCr集団中のCr粒子のマイクロビッカース
硬さ値Hvを150〜280(実施例30〜32)とし
た時には、20kA級の大電流のみを遮断した遮断特性
は、(テスト1)では比較標準としている実施例2の遮
断電流値の0.95〜1.2倍となり、優れた遮断特性
を発揮する。(テスト3)でも比較標準としている実施
例2の遮断電流値の0.9〜1.05倍の遮断倍率とな
り優れた遮断特性を発揮する。
<Embodiments 30 to 32> The CuCr alloy is
When the micro-Vickers hardness value Hv of the Cr particles in the CuCr population at the time of reheating to 0 to 950 ° C. and then cooling to room temperature is 150 to 280 (Examples 30 to 32), a large value of 20 kA class is obtained. The cut-off characteristic in which only the current was cut off is 0.95 to 1.2 times the cut-off current value of Example 2 which is a comparative standard in (Test 1), and exhibits excellent cut-off characteristics. (Test 3) also exhibits a breaking magnification of 0.9 to 1.05 times the breaking current value of Example 2 as a comparative standard, and exhibits excellent breaking characteristics.

【0164】(テスト2)の後の接触抵抗特性では、
「A〜B評価」、「B評価」を示し合格の範囲にあり、
(テスト1)の後の接触抵抗特性も「B評価」、「B〜
C評価」を示し合格の範囲にあり、(テスト3)の後で
も「B評価」、「B〜C評価」を発揮する。
In the contact resistance characteristics after (Test 2),
"AB evaluation", "B evaluation" is in the range of passing,
The contact resistance characteristics after (Test 1) were also “B evaluation”, “B ~
"C evaluation" is within the acceptable range, and "B evaluation" and "BC evaluation" are exhibited even after (Test 3).

【0165】従って、(実施例30〜32)から、Cu
Cr合金を750〜950℃に再加熱した後、室温にま
で冷却した時の、CuCr集団中のCr粒子のマイク
ロビッカース硬さ値Hvを、150以上とした場合に遮
断特性と接触抵抗特性の両立が得られる。なお、再点弧
特性の安定化の為には、好ましくはHv=200以上の
Hv値を必要とする。
Therefore, from (Examples 30 to 32), Cu
When the Cr alloy is reheated to 750 to 950 ° C. and then cooled to room temperature, when the micro-Vickers hardness value Hv of the Cr particles in the CuCr population is set to 150 or more, both the blocking property and the contact resistance property are satisfied. Is obtained. In order to stabilize the re-ignition characteristic, it is preferable that an Hv value of Hv = 200 or more is required.

【0166】(変形例)上記CuCr集団及びCuC
r集団のうち少なくとも一方の集団のCrの一部また
は総てを50重量%以下のX成分(X=Ti、Ta、N
b、V、W、Moの1つ)で置換してもよい。
(Modification) The above-mentioned CuCr group and CuC
and 50% by weight or less of the X component (X = Ti, Ta, N
b, V, W, or Mo).

【0167】CuCr集団中、またはCuCr集団
中でのX成分の存在は、耐アーク性の向上による接触面
領域の荒れを低減し、接触抵抗の安定化を得ると共に耐
電圧特性の向上にも有益となる。
The presence of the X component in the CuCr group or in the CuCr group reduces the roughness of the contact surface region due to the improvement in arc resistance, stabilizes the contact resistance, and is useful for improving the withstand voltage characteristics. Becomes

【0168】[0168]

【発明の効果】以上説明したように、本発明によれば、
安定した接触抵抗特性と優れた大電流遮断特性とを備え
た真空遮断器を実現することができる。
As described above, according to the present invention,
A vacuum circuit breaker having stable contact resistance characteristics and excellent large current breaking characteristics can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施例1〜14、及び比較例1〜7
の評価条件を示す表図。
FIG. 1 shows Examples 1 to 14 of the present invention and Comparative Examples 1 to 7.
FIG. 2 is a table showing evaluation conditions.

【図2】 本発明の実施例15〜25、及び比較例8〜
15の評価条件を示す表図。
FIG. 2 shows Examples 15 to 25 of the present invention and Comparative Examples 8 to
FIG. 15 is a table showing 15 evaluation conditions.

【図3】 本発明の実施例26〜32、及び比較例16
〜18の評価条件を示す表図。
FIG. 3 shows Examples 26 to 32 of the present invention and Comparative Example 16
FIG. 19 is a table showing evaluation conditions of Nos. To 18;

【図4】 本発明の実施例1〜14、及び比較例1〜7
の評価結果を示す表図。
FIG. 4 shows Examples 1 to 14 of the present invention and Comparative Examples 1 to 7.
FIG. 4 is a table showing evaluation results of the above.

【図5】 本発明の実施例15〜25、及び比較例8〜
15の評価結果を示す表図。
FIG. 5 Examples 15 to 25 of the present invention and Comparative Examples 8 to
15 is a table showing the evaluation results of 15; FIG.

【図6】 本発明の実施例26〜32、及び比較例16
〜18の評価結果を示す表図。
FIG. 6 shows Examples 26 to 32 of the present invention and Comparative Example 16
FIG. 19 is a table showing evaluation results of Nos. To 18.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 草野 貴史 東京都府中市東芝町1番地 株式会社東芝 府中事業所内 (72)発明者 本間 三孝 東京都府中市東芝町1番地 株式会社東芝 府中事業所内 (72)発明者 大島 巖 東京都府中市東芝町1番地 株式会社東芝 府中事業所内 (72)発明者 山本 敦史 東京都府中市東芝町1番地 株式会社東芝 府中事業所内 (72)発明者 関 経世 東京都府中市東芝町1番地 株式会社東芝 府中事業所内 Fターム(参考) 5G023 AA05 BA01 BA11 CA33 5G026 BA01 BA07 BB02 BB11 BB12 BB14 BB15 BB16 BB17 BB18 BC02 BC04 BC09 5G050 AA12 AA13 AA25 AA27 AA46 AA48 AA50 AA51 BA01 BA04 CA01 DA03 EA02  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takashi Kusano 1 Toshiba-cho, Fuchu-shi, Tokyo Tokyo, Japan Inside the Fuchu office of Toshiba Corporation (72) Inventor Mitaka Honma 1-futoshiba-cho, Fuchu-shi, Tokyo Inside the Fuchu office, Toshiba ( 72) Inventor Iwao Oshima 1 Toshiba-cho, Fuchu-shi, Tokyo, Japan Inside the Fuchu Office, Toshiba Corporation (72) Inventor Atsushi Yamamoto 1-toshiba, Toshiba-cho, Fuchu-shi, Tokyo Inside Fuchu Office, Toshiba Corporation (72) Inventor Keisei Seki Tokyo 1 Toshiba-cho, Fuchu-shi F-term in Toshiba Corporation Fuchu Plant (reference)

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】粒子直径が40μmより大きい複数のCr
粒子と、これを取り囲むCu相とで形成された第1のC
uCr集団と、粒子直径が10μmより小さい複数のC
r粒子と、これを取り囲むCu相とで形成された第2の
CuCr集団とで、接触面領域の一部を形成し、 更に、前記第1のCuCr集団と第2のCuCr集団と
の複数個の集合体で接触面領域を形成し、 かつこの接触面領域が接点部断面の一部または総てを構
成していることを特徴とするCu−Cr接点を搭載した
真空遮断器。
A plurality of Cr particles having a particle diameter of more than 40 μm.
The first C formed by the particles and the surrounding Cu phase
uCr population and multiple C particles with particle diameters smaller than 10 μm
r particles and a second CuCr group formed of a Cu phase surrounding the r particles form a part of the contact surface region; and a plurality of the first CuCr group and the second CuCr group. A vacuum circuit breaker equipped with a Cu-Cr contact, wherein a contact surface region is formed by an aggregate of the above, and the contact surface region constitutes a part or all of a cross section of the contact portion.
【請求項2】前記接点部断面に於いて、前記第1のCu
Cr集団と第2のCuCr集団とで形成される接触面領
域の厚さは、最表面層より少なくとも20μmの深さを
持つことを特徴とする請求項第1項に記載のCu−Cr
接点を搭載した真空遮断器。
2. The method according to claim 2, wherein the first Cu
The Cu-Cr according to claim 1, wherein the thickness of the contact surface region formed by the Cr group and the second CuCr group has a depth of at least 20 µm from the outermost layer.
Vacuum circuit breaker with contacts.
【請求項3】前記第1のCuCr集団の大きさが、少な
くとも200μmの幅と、少なくとも200μmの長さ
とを持つことを特徴とする請求項1または請求項2に記
載のCu−Cr接点を搭載した真空遮断器。
3. A Cu-Cr contact according to claim 1, wherein the size of the first CuCr population has a width of at least 200 μm and a length of at least 200 μm. Vacuum circuit breaker.
【請求項4】前記第2のCuCr集団の大きさが、少な
くとも200μmの幅と、少なくとも200μmの長さ
とを持つことを特徴とする請求項1または請求項2に記
載のCu−Cr接点を搭載した真空遮断器。
4. A Cu-Cr contact according to claim 1, wherein the size of the second CuCr population has a width of at least 200 μm and a length of at least 200 μm. Vacuum circuit breaker.
【請求項5】前記接触面領域中に占める前記第1のCu
Cr集団の合計が、20〜80面積%の比率を持つこと
を特徴とする請求項1に記載のCu−Cr接点を搭載し
た真空遮断器。
5. The first Cu occupying the contact surface area.
The vacuum circuit breaker having a Cu-Cr contact according to claim 1, wherein the total of the Cr group has a ratio of 20 to 80 area%.
【請求項6】前記第1のCuCr集団中の平均Cr量は
5〜70重量%であり、残部がCuであることを特徴と
する請求項1に記載のCu−Cr接点を搭載した真空遮
断器。
6. The vacuum interrupter according to claim 1, wherein the average amount of Cr in the first CuCr group is 5 to 70% by weight, and the balance is Cu. vessel.
【請求項7】前記第2のCuCr集団中の平均Cr量は
10〜80重量%であり、残部がCuであることを特徴
とする請求項1に記載のCu−Cr接点を搭載した真空
遮断器。
7. The vacuum interrupter according to claim 1, wherein the average amount of Cr in the second CuCr group is 10 to 80% by weight, and the balance is Cu. vessel.
【請求項8】前記第1のCuCr集団中のCr粒子は、
CuCr合金を750℃〜950℃に再加熱し、室温に
冷却した時のマイクロビッカース硬度値Hvが、150
以上であることを特徴とする請求項1乃至請求項7のい
ずれかに記載のCu−Cr接点を搭載した真空遮断器。
8. The Cr particles in the first CuCr population,
When the CuCr alloy is reheated to 750 to 950 ° C. and cooled to room temperature, the micro Vickers hardness value Hv is 150
The vacuum circuit breaker equipped with the Cu-Cr contact according to any one of claims 1 to 7, characterized in that:
【請求項9】前記第1のCuCr集団中のCu相に取り
囲まれたCr粒子は、20〜200μmの平均粒子間距
離を持つことを特徴とする請求項1乃至請求項3、請求
項5乃至請求項6、請求項8のいずれかに記載のCu−
Cr接点を搭載した真空遮断器。
9. The Cr particles surrounded by the Cu phase in the first CuCr population have an average interparticle distance of 20 to 200 μm. The Cu- according to any one of claims 6 and 8,
Vacuum circuit breaker with Cr contacts.
【請求項10】前記第2のCuCr集団中のCu相に取
り囲まれたCr粒子は、0.01〜20μmの平均粒子
間距離を持つことを特徴とする請求項1乃至請求項2、
請求項4乃至請求項5、請求項7のいずれかに記載のC
u−Cr接点を搭載した真空遮断器。
10. The method according to claim 1, wherein the Cr particles surrounded by the Cu phase in the second CuCr population have an average interparticle distance of 0.01 to 20 μm.
C according to any one of claims 4 to 5, and 7
Vacuum circuit breaker with u-Cr contacts.
【請求項11】前記第1のCuCr集団及び前記第2の
CuCr集団のうち少なくとも一方の集団のCrの一部
または総てを50重量%以下のX成分(X=Ti、T
a、Nb、V、W、Moの1つ)で置換したことを特徴
とする請求項1乃至請求項10のいずれかに記載のCu
−Cr接点を搭載した真空遮断器。
11. An X component (X = Ti, T) of 50% by weight or less of a part or all of Cr in at least one of the first CuCr group and the second CuCr group.
11. Cu according to any one of claims 1 to 10, characterized by being substituted by one of a, Nb, V, W and Mo).
-Vacuum circuit breaker with Cr contacts.
JP2000218293A 2000-07-19 2000-07-19 Vacuum circuit breaker Expired - Lifetime JP3840044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000218293A JP3840044B2 (en) 2000-07-19 2000-07-19 Vacuum circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000218293A JP3840044B2 (en) 2000-07-19 2000-07-19 Vacuum circuit breaker

Publications (2)

Publication Number Publication Date
JP2002042616A true JP2002042616A (en) 2002-02-08
JP3840044B2 JP3840044B2 (en) 2006-11-01

Family

ID=18713265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000218293A Expired - Lifetime JP3840044B2 (en) 2000-07-19 2000-07-19 Vacuum circuit breaker

Country Status (1)

Country Link
JP (1) JP3840044B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009129856A (en) * 2007-11-27 2009-06-11 Toshiba Corp Contact point material for vacuum valve, and manufacturing method thereof
CN111621656A (en) * 2020-04-21 2020-09-04 陕西斯瑞新材料股份有限公司 Method for preparing CuCr-MgBi contact material by adopting electromagnetic-ultrasonic suspension smelting

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009129856A (en) * 2007-11-27 2009-06-11 Toshiba Corp Contact point material for vacuum valve, and manufacturing method thereof
CN111621656A (en) * 2020-04-21 2020-09-04 陕西斯瑞新材料股份有限公司 Method for preparing CuCr-MgBi contact material by adopting electromagnetic-ultrasonic suspension smelting
CN111621656B (en) * 2020-04-21 2021-08-06 陕西斯瑞新材料股份有限公司 Method for preparing CuCr-MgBi contact material by adopting electromagnetic-ultrasonic suspension smelting

Also Published As

Publication number Publication date
JP3840044B2 (en) 2006-11-01

Similar Documents

Publication Publication Date Title
JP2778826B2 (en) Contact material for vacuum valve
JP3598195B2 (en) Contact material
JP3663038B2 (en) Vacuum valve
JP3773644B2 (en) Contact material
JP2002042616A (en) Vacuum circuit-breaker
JP4404980B2 (en) Vacuum valve
JP5116538B2 (en) Contact material
JP3442644B2 (en) Contact material for vacuum valve
JP4515696B2 (en) Contact materials for vacuum circuit breakers
JP2001184963A (en) Electrical contact material and method of producing the same
JP2002008499A (en) Vacuum circuit breaker
JP2013032589A (en) Contact material and method for manufacturing the same
JPH10199379A (en) Contact material for vacuum breaker
JP2001236864A (en) Contact material of vacuum circuit-breaker for electric power
JP2001236865A (en) Vacuum valve
JP2003183749A (en) Vacuum circuit-breaker and contact material for this
JP2004332046A (en) Contact material for circuit breaker, and vacuum circuit breaker
JP4515695B2 (en) Contact materials for vacuum circuit breakers
JP2003331698A (en) Electrode for vacuum circuit breaker and manufacturing method therefor
JP2695939B2 (en) Contact material for vacuum valve
JP3865357B2 (en) Contact for vacuum switch and method for manufacturing the same
JP4156867B2 (en) Contact and vacuum circuit breaker equipped with the same
JP2002279865A (en) Vacuum circuit breaker
JP3478699B2 (en) Manufacturing method of contact alloy for vacuum circuit breaker
JP3688473B2 (en) Manufacturing method of contact material for vacuum valve

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060727

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060804

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3840044

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313122

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term