JP3442644B2 - Contact material for vacuum valve - Google Patents

Contact material for vacuum valve

Info

Publication number
JP3442644B2
JP3442644B2 JP04984898A JP4984898A JP3442644B2 JP 3442644 B2 JP3442644 B2 JP 3442644B2 JP 04984898 A JP04984898 A JP 04984898A JP 4984898 A JP4984898 A JP 4984898A JP 3442644 B2 JP3442644 B2 JP 3442644B2
Authority
JP
Japan
Prior art keywords
tic
alloy
contact material
amount
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04984898A
Other languages
Japanese (ja)
Other versions
JPH11250783A (en
Inventor
功 奥富
貴史 草野
敦史 山本
経世 関
巖 大島
三孝 本間
宏通 染井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP04984898A priority Critical patent/JP3442644B2/en
Publication of JPH11250783A publication Critical patent/JPH11250783A/en
Application granted granted Critical
Publication of JP3442644B2 publication Critical patent/JP3442644B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高電圧または大電
流を開閉する真空遮断器などの電極接点に用いられる真
空バルブ用接点材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a contact material for a vacuum valve used for an electrode contact such as a vacuum circuit breaker which opens and closes a high voltage or a large current.

【0002】[0002]

【従来の技術】従来から真空遮断器の真空バルブ内の接
点は、耐溶着特性、耐電圧特性、遮断特性で代表される
基本三要件の他に、裁断(さい断)特性、耐消耗性、接
触抵抗特性、温度上昇特性などを維持向上させるために
種々の素材元素から構成されている。
2. Description of the Related Art Conventionally, the contacts in a vacuum valve of a vacuum circuit breaker have three basic requirements represented by welding resistance, withstand voltage, and breaking characteristics, as well as cutting characteristics, wear resistance, and wear resistance. It is composed of various material elements in order to maintain and improve contact resistance characteristics, temperature rise characteristics, and the like.

【0003】しかし、上述基本三要件は一般に互いに相
反する材料物性を要求する場合が多いことから、1つの
元素で十分満足させることは不可能とされている。そこ
で、材料の複合化、素材張合わせなどによって、大電流
遮断用途、高耐電圧用途、低裁断用途などのように、特
定用途に合った真空バルブ用接点材料(以降、単に接点
材料と称することもある)の開発が行われ、それなりに
優れた特性を発揮しているのが現状である。
However, since the above-mentioned three basic requirements generally require material properties that are in conflict with each other, it is impossible to satisfy one element sufficiently. Therefore, by combining materials, bonding materials, etc., contact materials for vacuum valves (hereinafter simply referred to as contact materials) suitable for specific applications such as high current breaking applications, high withstand voltage applications, low cutting applications, etc. Is also being developed, and the current state is that it exhibits excellent characteristics.

【0004】汎用の真空遮断器の基本三要件を満たすた
めの大電流遮断用接点材料として、例えばBiやTeの
ような溶着防止成分を5重量%以下含有するCu−Bi
合金,Cu−Te合金が知られている(特公昭41−1
2131号、特公昭44−23751号)。Cu−Bi
合金では、結晶粒界に析出した脆いBi、Cu−Te合
金は結晶粒界及び粒内に析出した脆いCu2 Teが合金
自体を脆化させ低溶着引き外し力が実現したことから大
電流遮断特性にも優れている。この合金のうちBiを例
えば10重量%程度とした接点では、適度な蒸気圧特性
を有するので、優れた電流裁断特性を発揮している(特
公昭35−14974号)。
As a contact material for breaking a large current for satisfying the three basic requirements of a general-purpose vacuum circuit breaker, for example, Cu-Bi containing 5% by weight or less of a fusion preventing component such as Bi or Te.
Alloys and Cu-Te alloys are known (Japanese Patent Publication No. 41-1).
No. 2131, Japanese Patent Publication No. 44-23751). Cu-Bi
In the alloy, the brittle Bi precipitated in the grain boundaries, and the Cu-Te alloy, the brittle Cu 2 Te precipitated in the grain boundaries and in the grains embrittles the alloy itself and realizes a low welding detachment force, so that a large current interruption is achieved. It also has excellent characteristics. Among the alloys, the contact having Bi of, for example, about 10% by weight has an appropriate vapor pressure characteristic and therefore exhibits excellent current cutting characteristics (Japanese Patent Publication No. 35-14974).

【0005】しかしながらCu−Bi合金、Cu−Te
合金では、耐溶着性、大電流遮断特性としては優れてい
るものの、耐電圧特性に対しては満足するものではな
い。
However, Cu-Bi alloy, Cu-Te
The alloy is excellent in welding resistance and large current interruption characteristics, but is not satisfactory in withstand voltage characteristics.

【0006】同じく基本三要件を満たした高耐圧、大電
流遮断用接点材料としては、Cu−Cr合金が知られて
いる。この合金は前記Cu−Bi合金,Cu−Te合金
よりも、構成成分間の蒸気圧差が少ないため、均一な性
能発揮を期待し得る利点があり、使い方によっては優れ
たものである。しかしながらCu−Cr合金では、高耐
圧、大電流遮断特性としては優れてはいるものの、耐溶
着性に対しては満足するものではない。
A Cu-Cr alloy is known as a contact material for high withstand voltage and large current interruption which also satisfies the three basic requirements. Since this alloy has a smaller vapor pressure difference between constituent components than the Cu-Bi alloy and Cu-Te alloy, it has an advantage that uniform performance can be expected, and is excellent depending on the usage. However, although the Cu-Cr alloy is excellent in high withstand voltage and large current interruption characteristics, it is not satisfactory in welding resistance.

【0007】一方、近年、高信頼度形化と小形化を志向
する真空遮断器としては下記裁断特性と遮断特性とを一
層改善することが必要となっている。
On the other hand, in recent years, it has become necessary to further improve the following cutting characteristics and breaking characteristics as a vacuum circuit breaker aiming at high reliability and miniaturization.

【0008】第1としては、真空中でのアークの拡散性
を利用して、高真空中で電流遮断(あるいは電流開閉)
を行わせる真空バルブの接点は、対向する固定、可動2
つの接点から構成されている。真空バルブを十分な配慮
なしに電動機負荷など誘導性回路に用いて電流を遮断す
る時、過渡の異常サージ電圧が発生して負荷機器の絶縁
性に影響を与える場合がある。
First, the current is cut off (or the current is switched) in a high vacuum by utilizing the diffusivity of an arc in a vacuum.
The contact of the vacuum valve that performs
It consists of two contacts. When a vacuum valve is used in an inductive circuit such as an electric motor load to cut off current without sufficient consideration, a transient abnormal surge voltage may be generated, which may affect the insulation of the load equipment.

【0009】この異常サージ電圧の発生原因は、真空中
に於ける小電流遮断時に、低電流側で発生する裁断(さ
い断)現象(交流電流波形の自然ゼロ点を待たずに強制
的に電流遮断が行われること、あるいは高周波消弧現象
などによるものである。異常サージ電圧の値Vsは、回
路のサージインピーダンスZoと電流裁断値Icに比例
する。従って異常サージ電圧の値Vsを低く抑制するた
めの1手段として電流裁断値Icを低くする必要があ
る。上記Ag−WC合金がこの要求に対して有益な接点
合金の1つとして利用されている。
The cause of this abnormal surge voltage is that when a small current is cut off in a vacuum, a cutting phenomenon occurs on the low current side (the current is forcibly forced without waiting for the natural zero point of the AC current waveform). This is due to the interruption, the high frequency arc extinguishing phenomenon, etc. The value Vs of the abnormal surge voltage is proportional to the surge impedance Zo of the circuit and the current cutting value Ic, so that the value Vs of the abnormal surge voltage is suppressed low. It is necessary to lower the current cutoff value Ic as one means for achieving the above requirement, and the Ag-WC alloy is used as one of the contact alloys useful for this requirement.

【0010】この低裁断性用接点材料として、WCの熱
電子放出効果とAgの適度の蒸気圧との相乗的作用によ
って優れた低裁断性を発揮するAg−WC合金(Agが
40%)が知られている(特願昭42−68447
号)。また、耐弧成分材料の粒子直径(例えばWCの粒
径)を0.2〜1μmとした接点材料の採用により、裁
断電流特性の改善に有効であることが示唆されている
(特公平5−61338号)。 更に、WC−Coの粒
子間距離を0.3〜3μmとした接点材料の採用によ
り、アーク陰極点の易動度が良好となり、大電流遮断特
性の向上を計った接点材料も知られている(特開平4−
206121号)。しかしながら、これらAgーWC系
合金では裁断特性としては優れてはいるものの、大電流
遮断特性及び裁断特性と大電流遮断特性との両立性に対
しては満足するものではない。
As the contact material for low cutting property, an Ag-WC alloy (Ag is 40%) which exhibits excellent low cutting property by the synergistic action of the thermoelectron emission effect of WC and the appropriate vapor pressure of Ag is used. Known (Japanese Patent Application No. 42-68447)
issue). Further, it has been suggested that the use of a contact material in which the particle diameter of the arc-resistant component material (for example, the particle diameter of WC) is 0.2 to 1 μm is effective in improving the cutting current characteristics (Japanese Patent Publication No. 61338). Further, by adopting a contact material having a WC-Co interparticle distance of 0.3 to 3 μm, the mobility of the arc cathode spot is improved, and a contact material having an improved large current interruption characteristic is also known. (JP-A-4-
206121). However, although these Ag-WC alloys have excellent cutting characteristics, they are not satisfactory in terms of large current breaking characteristics and compatibility between cutting characteristics and large current breaking characteristics.

【0011】第2としては、真空遮断器には電流遮断
後、真空バルブ内で閃絡が発生し、接点間が再び導通状
態になる(その後放電は継続しない)現象を誘起する場
合がある。この現象を再点弧と呼び、その発生メカニズ
ムは未解明であるが、電気回路が一度電流遮断状態とな
った後に導通状態に急激に変化するため、異常過電圧が
発生しやすい。また、再点弧の発生によって電流遮断特
性を著しく低下させることになる。更に、大電流遮断を
行った接点の表面は、亀裂の生成や選択的な蒸発、脱落
など著しく損傷し、その結果材料の損耗を招くものであ
り、このような損耗(消耗)した表面をもつ接点が次の
開閉あるいは遮断時には、2次的な多くの不利益を持た
らすことになる。そのため大電流を遮断してもなお安定
した損耗の少ない接点を実現することも、遮断特性の向
上と共に求められている。
Secondly, after the current is cut off in the vacuum circuit breaker, a flashover occurs in the vacuum valve, and a phenomenon in which the contacts become conductive again (the discharge does not continue thereafter) may be induced. This phenomenon is called re-ignition, and the mechanism of its occurrence has not been clarified, but an abnormal overvoltage is likely to occur because the electric circuit suddenly changes to the conductive state after the current is cut off. In addition, the occurrence of re-ignition significantly deteriorates the current interruption characteristic. Furthermore, the surface of the contact that has been subjected to a large current interruption is significantly damaged such as generation of cracks, selective evaporation, and falling off, resulting in material wear. When the contact is opened or closed next time, many secondary disadvantages are caused. Therefore, it is required to realize a stable contact with little wear even when a large current is cut off, together with the improvement of the breaking characteristics.

【0012】[0012]

【発明が解決しようとする課題】上記したような真空バ
ルブ用の低裁断型接点材料としては、前記したCu−B
i合金,Cu−Te合金、Cu−Cr合金に優先してA
g−WC合金を適用してきたが、さらに強まる低裁断化
と電流遮断特性とを両立させる要求に対しては、十分な
接点材料とはいえないが実情であり、両特性をより高度
に両立させることが重要な課題とされている。更にAg
−WC合金では、効果なAgを多量に含有するため、素
材価格の低減も重要な課題とされている。
As the low cutting type contact material for the vacuum valve as described above, the above-mentioned Cu-B is used.
i prior to the i alloy, Cu-Te alloy, and Cu-Cr alloy
Although the g-WC alloy has been applied, it is not a sufficient contact material for the requirement to further improve the low cutting property and the current cutoff property, but it is the actual situation, and both properties are more highly compatible. Is an important issue. Further Ag
-WC alloys contain a large amount of effective Ag, and therefore reduction of material cost is also an important issue.

【0013】例えば、真空遮断器をコンデンサ回路に適
応した場合では、通常の2倍、3倍の電圧が印加される
関係上、電流遮断、電流開閉時のアークによって接点の
表面が著しく損傷し、その結果、接点の表面荒れや脱落
消耗も遮断特性の低下を招いている。低裁断性Ag−W
C合金においても同様の現象が見られ、一層の低裁断化
と一層の遮断特性をも兼備する接点材料の開発改良が急
務となっている。即ち、電流遮断特性として好ましいA
g−WC合金を搭載した遮断器であっても、コンデンサ
バンクを遮断させて再点弧を発生させる実験によれば、
極めて大きな過電圧の発生や、過大な高周波電流の発生
が観測されるため、極度に電流遮断特性が低下する。そ
の結果、Ag−WC合金に対して再点弧発生を抑制し、
遮断特性を向上させる技術の開発が求められている。
For example, when the vacuum circuit breaker is applied to a capacitor circuit, the contact surface is remarkably damaged by an arc during current interruption and current opening / closing due to the fact that a voltage that is twice or three times the normal voltage is applied. As a result, the contact surface is roughened and the contacts are also worn out. Low cutting property Ag-W
The same phenomenon is observed in the C alloy, and there is an urgent need to develop and improve a contact material that has both a lower cutting property and a higher barrier property. That is, A which is preferable as the current interruption characteristic
According to an experiment in which even a circuit breaker equipped with a g-WC alloy causes a capacitor bank to be interrupted to cause re-ignition,
Generation of extremely large overvoltage and generation of excessive high-frequency current are observed, and the current cutoff characteristic is extremely deteriorated. As a result, the re-ignition occurrence is suppressed for the Ag-WC alloy,
There is a demand for the development of technology that improves the breaking characteristics.

【0014】Ag−WC合金の再点弧現象の発生メカニ
ズムは未だ知られていないが、筆者らの実験観察によれ
ば、再点弧は真空バルブ内の接点/接点間、接点/ア一
クシールド間でかなり高い頻度で発生している。そのた
め筆者らは、例えば接点がアークを受けた時に放出され
る突発性ガスの抑制技術、接点表面形態の最適化技術な
ど、再点弧の発生抑制に極めて有効な技術を明らかに
し、再点弧発生の抑制に貢献した。例えばAg−WC合
金の加熱過程で放出されるガス総量、ガスの種類並びに
放出形態に注目し、再点弧発生との相関を詳細に観察を
行ったところ、溶融点近傍で極めて短時間ではあるがパ
ルス状に突発的に放出されるガスが多い接点では、再点
弧発生率も高くなり、極度に遮断特性が低下した。
Although the mechanism of occurrence of the re-ignition phenomenon of Ag-WC alloy has not been known yet, according to the experimental observations of the authors, re-ignition shows that the re-ignition occurs in the vacuum valve at the contact point / between contact points / contact point / arc shield. It occurs at a fairly high frequency between. Therefore, the authors have clarified the extremely effective technology for suppressing the re-ignition, such as the technology for suppressing the sudden gas emitted when the contact receives an arc and the technology for optimizing the contact surface morphology. Contributed to the suppression of the outbreak. For example, paying attention to the total amount of gas released during the heating process of Ag-WC alloy, the type of gas, and the release form, and observing the correlation with the occurrence of restriking in detail, it was found that it was a very short time near the melting point. However, in the contacts where a large amount of gas was suddenly released in a pulsed manner, the re-ignition rate was also high and the breaking characteristics were extremely deteriorated.

【0015】そこでAgの溶融温度以上にて加熱するな
ど、予めAg−WC合金中の突発的ガス放出の一因を除
去しておくことや、Ag−WC合金の合金中のポアや組
織的偏析を抑制するように焼結技術を改良することなど
によって、再点弧現象の発生を低減させて真空遮断器の
遮断特性を向上させた。しかし、近年では適応する電
圧、電流範囲の拡大や多様化する負荷への適応拡大な
ど、過酷化した条件での使用機会が増大した結果、上記
した従来技術に付加するさらなる新技術の開発が必要と
なってきた。
Therefore, it is necessary to remove the cause of sudden gas release in the Ag-WC alloy in advance, for example, by heating at a temperature higher than the melting temperature of Ag, or pores and structural segregation in the alloy of the Ag-WC alloy. By improving the sintering technology so as to suppress the occurrence of re-ignition phenomenon, the occurrence of re-ignition phenomenon was reduced and the breaking characteristics of the vacuum circuit breaker were improved. However, in recent years, as a result of increased use opportunities under severe conditions such as adaptation of voltage and current range and adaptation to diversifying loads, it is necessary to develop further new technology in addition to the above-mentioned conventional technology. Has become.

【0016】本発明は、上述の如き従来の課題を解決す
るためになされたもので、その目的は、従来のAgーW
C接点材料より低価格であって、且つ従来のAg−WC
接点材料の特性を凌駕する電流裁断特性と遮断特性とを
兼備した真空バルブ用接点材料を提供することである。
The present invention has been made to solve the above-mentioned conventional problems, and its purpose is to achieve the conventional Ag-W.
Lower cost than C contact material and conventional Ag-WC
It is an object of the present invention to provide a contact material for a vacuum valve that has both current cutting characteristics and interruption characteristics that surpass the characteristics of the contact material.

【0017】[0017]

【課題を解決するための手段】筆者等が上記目的を達成
すべく検討を重ねた結果、これに用いる第1の発明の特
徴は、耐弧成分として、TiCを30〜70%(容積
%)、Cuよりなる導電成分を70〜30%(容積%)
で構成された[Cu−TiC]接点合金であって、Al
よりなる補助成分を、前記耐弧成分量に対して、0.0
05〜0.75%(重量%)含有した[Cu−TiC]
+Al系真空バルブ用接点材料にある。
[Means for Solving the Problems] As a result of repeated studies by the authors to achieve the above object, the feature of the first invention used for this is that TiC is 30 to 70% (volume%) as an arc-resistant component. 70 to 30% (volume%) of the conductive component made of Cu
[Cu-TiC] contact alloy composed of
The auxiliary component consisting of 0.0
[Cu-TiC] containing 05 to 0.75% (wt%)
+ Al-based vacuum valve contact material.

【0018】第2の発明の特徴は、耐弧成分として、
0.1〜10μmの平均粒径を有するTiCが30〜7
0容積%、Cuよりなる導電成分が70〜30容積%、
大きさが0.01〜5μmの範面にあり、かつ、非固溶
状態若しくは化合物非形成状態にあるC(以下C)が、
前記TiC量に対して、0.005〜1.0重量%で構
成された[Cu−TiC−C]接点であって、Alより
なる補助成分を前記耐弧成分量に対して、0.005〜
0.75重量%含有した「Cu−TiC−C」+Al真
空バルブ用接点材料にある。
The feature of the second invention is that the arc-resistant component is
TiC having an average particle size of 0.1 to 10 μm is 30 to 7
0% by volume, 70 to 30% by volume of a conductive component made of Cu,
C in the size range of 0.01 to 5 μm and in the non-solid solution state or the compound non-forming state (hereinafter C) is
A [Cu-TiC-C] contact composed of 0.005 to 1.0% by weight with respect to the amount of TiC, and an auxiliary component of Al being 0.005 with respect to the amount of the arc resistance component. ~
It is a contact material for "Cu-TiC-C" + Al vacuum valve containing 0.75% by weight.

【0019】本発明の好適な一態様の特徴は、前記[C
u−TiC]系合金中の前記非固溶状態若しくは非化合
物形成状態にあるCは、そのC粒子の間隙Lは、最隣接
するC粒子の大きさdと同等、若しくはそれ以上大きく
隔離(L≧d)し、[Cu−TiC]系合金中に高度に
分散分布していることにある。
The characteristic feature of a preferred embodiment of the present invention is that [C
[C] in the non-solid solution state or the non-compound forming state in the [u-TiC] -based alloy, the gap L between the C particles is equal to or larger than the size d of the nearest C particles (L). ≧ d) and is highly dispersed and distributed in the [Cu—TiC] alloy.

【0020】本発明の好適に他の態様の特徴は、前記
[Cu−TiC]系合金中のTi炭化物の化学量論的な
比率Ti:Cは,1:1〜1:0.7(TiC10.7
の範囲にあることを特徴とする真空バルブ用接点材料に
ある。
A characteristic of another preferred embodiment of the present invention is that the stoichiometric ratio Ti: C of Ti carbide in the [Cu-TiC] alloy is 1: 1 to 1: 0.7 (TiC). 1 to 0.7
The contact material for a vacuum valve is characterized in that

【0021】本発明の好適な他の態様の特徴は、前記
[Cu−TiC]系合金中のTi炭化物の一部または総
てをv炭化物(バナジウム炭化物:VC)で置換したこ
とにある。
A feature of another preferred embodiment of the present invention is that a part or all of the Ti carbide in the [Cu-TiC] type alloy is replaced with v carbide (vanadium carbide: VC).

【0022】本発明の好適な他の態様の特徴は、Bi,
Sb,Teの少なくとも1っを前記Cu−TiC系合金
中に、0.05〜0.5%(重量%)含有したことにあ
る。本発明の好適な他の態様の特徴は、Alよりなる補
助成分は、所定量(最終的に必要とするA1量0.00
5〜0.5%の総て、若しくはその一部のA1をCu,
TiC,Cよりなる構成成分の少なくとも1つと、予め
複合若しくは合金化した後、得られた該複合体若しくは
合金若しくは化合物を、前記[Cu−TiC]、[Cu
−TIC−C]+Al系真空バルブ用接点材料の製造用
原料素材として供することにある。
The characteristics of another preferred embodiment of the present invention include:
At least one of Sb and Te is contained in the Cu—TiC alloy in an amount of 0.05 to 0.5% (wt%). Another preferred embodiment of the present invention is characterized in that the auxiliary component consisting of Al is contained in a predetermined amount (amount of A1 which is finally required is 0.00
5% to 0.5% of all or part of A1 is Cu,
After preliminarily compounding or alloying with at least one of the constituent components consisting of TiC and C, the obtained compound, alloy or compound is converted into the above [Cu-TiC], [Cu
-TIC-C] + Al as a raw material for manufacturing a contact material for a vacuum valve.

【0023】上記したように、Ag−WC合金は低裁断
接点材料として安定した特性を発揮する接点として使用
されている。しかし、上記した裁断特性と遮断特性とを
同時に改善する要求に対しては更に改良する必要があ
る。近年の遮断器では両特性を同時に向上させる共に、
特に裁断特性においては、所定回数を開閉させた後もそ
の値を低い範囲(特性良好)にすること、そのばらつき
幅も小さくすることが極めて重要となっている。
As described above, the Ag-WC alloy is used as a contact that exhibits stable characteristics as a low cut contact material. However, it is necessary to further improve the above-mentioned demand for simultaneously improving the cutting property and the blocking property. Recent circuit breakers improve both characteristics at the same time,
Particularly in the cutting characteristics, it is extremely important to keep the value in a low range (good characteristics) even after opening and closing a predetermined number of times and to reduce the variation width.

【0024】真空バルブの接点に外部磁界(例えば縦磁
界技術)を与えた状態で、電流を遮断した場合、遮断に
より発生したアークはアーク電圧の低い部分に停滞及び
集中することが抑止されるため、接点電極面上を移動す
る。この真空バルブに本発明の[Cu−TiC−C]系
接点を搭載した時、合金中のCは、合金中に非固溶状態
若しくは化合物非形成状態として存在するため、接点面
上の材料組成を平均化(均一化)させる方向に作用し、
これによって裁断特性の特にバラツキ幅を小さくするの
に寄与する。更にCは、合金中に非固溶状態若しくは化
合物非形成状態として存在するので、接点電極上のアー
クは容易に移動するため、アークの拡散が促進され、こ
れにより、アークの停滞と集中が低減化される結果、遮
断電流を処理し得る接点面積の実質的増加につながり、
遮断特性の向上にも寄与する。
When the external magnetic field (for example, the longitudinal magnetic field technology) is applied to the contacts of the vacuum valve, the current is interrupted, and the arc generated by the interruption is prevented from stagnating and concentrating in the low arc voltage portion. , Move on the contact electrode surface. When the [Cu-TiC-C] -based contact of the present invention is mounted on this vacuum valve, C in the alloy exists in the alloy in a non-solid solution state or a compound-free state, so that the material composition on the contact surface is Acts in the direction of averaging (uniformizing)
This contributes to reducing the variation width of the cutting characteristics. Furthermore, since C exists in the alloy in a non-solid solution state or a compound-free state, the arc on the contact electrode easily moves, which promotes the diffusion of the arc, thereby reducing the stagnation and concentration of the arc. As a result, the contact area that can handle the breaking current is substantially increased,
It also contributes to the improvement of blocking characteristics.

【0025】更にCは、合金中に非固溶状態若しくは化
合物非形成状態として存在するため、アークの停滞及び
集中が低減化される結果、接点電極の局部的異常蒸発現
象の阻止、表面荒れの軽減化の利益も得られ、耐消耗性
の向上にも寄与する。
Further, since C exists in the alloy as a non-solid solution state or a compound-free state, arc stagnation and concentration are reduced, and as a result, local abnormal evaporation phenomenon of the contact electrode is prevented and surface roughness is prevented. The benefit of reduction is also obtained, which contributes to the improvement of wear resistance.

【0026】しかし、一定値以上の電流値を遮断する
と、アークは予測出来ない一点若しくは複数点の場所で
停滞し、異常融解させ遮断限界に至る。また異常融解
は、[Cu−TiC−C]系接点材料の瞬時的爆発的な
蒸発によって発生した金属蒸気が開極過程にあった真空
遮断器の絶縁回復性を著しく阻害するため、遮断限界の
一層の劣化を招く。更に異常融解は、巨大な融滴を作っ
て接点電極面の荒れを招き耐電圧特性の低下、再点弧発
生率の増加、材料の異常な消耗をも招く。
However, when the current value of a certain value or more is interrupted, the arc stagnates at one or more unpredictable points, abnormally melts, and reaches the interruption limit. In addition, the abnormal melting causes the metal Cu generated by the instantaneous explosive evaporation of the [Cu-TiC-C] -based contact material to significantly impair the insulation recovery of the vacuum circuit breaker that was in the opening process. It causes further deterioration. Further, the abnormal melting causes huge droplets to be formed, which causes the contact electrode surface to be roughened, resulting in deterioration of withstand voltage characteristics, increase in re-ignition occurrence rate, and abnormal consumption of materials.

【0027】これらの現象の原因となるアークが、接点
電極面上のどこで停滞するかは前述したように全く予測
出来ない以上、発生したアークを停滞させることなく移
動拡散できるような表面条件を接点に与えることが望ま
しい。その望ましい条件として、本例では、[Cu−T
iC−C]+Al合金中のC(C量など)の存在形態を
最適化すると共にAl量を最適化した。その結果,Al
の添加効果による一層の遮断特性の向上と、CとAlと
の相乗効果による裁断特性と遮断特性との両立を達成し
た。
As described above, it is not possible to predict where the arc causing these phenomena is stagnant on the contact electrode surface. Therefore, the contact condition is such that the generated arc can be moved and diffused without stagnating. It is desirable to give to. As a desirable condition, in this example, [Cu-T
The existing form of C (C content etc.) in the iC-C] + Al alloy was optimized and the Al content was optimized. As a result, Al
It was possible to further improve the cutoff property by the effect of addition of Al and achieve both the cutting property and the cutoff property by the synergistic effect of C and Al.

【0028】即ちAlは、[Cu−TiC]合金、[C
u−TiC−C]合金中において、主としてCuに作用
して遮断(遮断)特性の改善に関与する。遮断特性を支
配する因子の1つとして、接点表面温度を支配する熱伝
導度などの熱物性が挙げられる。導電率の低下は接点表
面温度の上昇を招き、遮断瞬時に過度の蒸気を放出し、
遮断性能の低下をもたらす。即ち所定量範囲のAlは、
[Cu一TiC」合金、[Cu−TiC−C]合金中の
Cuの平衡蒸気圧が上昇するのを抑制および低減する効
果を発揮し、その結果遮断特性の向上に寄与する。Al
が所定量以下の時には、Alの均一分散が困難なため、
遮断特性にバラツキが大きく現れる。Alが所定量以上
の時には、[Cu−TiC−C]合金の導電率の著しい
低下のため、遮断電流値の著しい低下(特性劣化)が現
れ、更に、所定条件に制御したCとAlとの添加による
相乗的効果は、TiC粒子とC粒子との密着強度の向上
や接点材料中のCuとTiCとの組織的均一性をも図っ
た。
That is, Al is a [Cu-TiC] alloy, [C
In the [u-TiC-C] alloy, it mainly acts on Cu and participates in improving the blocking (blocking) characteristics. One of the factors that control the breaking characteristics is thermophysical properties such as thermal conductivity that controls the contact surface temperature. The decrease in conductivity causes the contact surface temperature to rise, and excessive steam is released at the moment of interruption,
It causes a decrease in the blocking performance. That is, Al in a predetermined amount range is
The effect of suppressing and reducing the rise in the equilibrium vapor pressure of Cu in the [Cu-TiC] alloy and the [Cu-TiC-C] alloy is exhibited, and as a result, it contributes to the improvement of the barrier property. Al
Is less than a predetermined amount, it is difficult to disperse Al uniformly,
There are large variations in the breaking characteristics. When the amount of Al is equal to or more than a predetermined amount, the conductivity of the [Cu-TiC-C] alloy is remarkably lowered, and thus the breaking current value is remarkably lowered (characteristic deterioration). The synergistic effect of the addition was also intended to improve the adhesion strength between the TiC particles and the C particles and to improve the organizational uniformity of Cu and TiC in the contact material.

【0029】その結果アークを受けた時に選択的に優先
して蒸発、飛散するCuを少なくなるように制御するの
みならず,被アーク時の熱衝撃によっても接点面上に
は、再点弧発生に対して有害で著しい亀裂発生も抑止さ
れ、TiC粒子の飛散脱落も軽減された。特に非固溶状
態若しくは化合物非形成状態にあるC量をTiC量に対
して1.0%(重量%)以下、好ましくは0.005〜
1.0%に最適量化し、且つその大きさを0.01〜5
μm以下(球に換算した時の直径)に制限した上で、A
lを最適範囲とした。この接点合金組織が再点弧特性の
劣化を最小限に止めた上で、裁断特性向上と安定化及び
遮断特性向上と安定化に寄与した。
As a result, not only is the control to preferentially preferentially reduce the amount of Cu that evaporates and scatters when an arc is received, but also re-ignition occurs on the contact surface due to thermal shock during arcing. However, the generation of cracks was suppressed, and TiC particles were prevented from falling off. Particularly, the amount of C in the non-solid solution state or the state of not forming a compound is 1.0% (% by weight) or less with respect to the amount of TiC, preferably 0.005 to
Optimized to 1.0% and its size 0.01-5
A after limiting to less than μm (diameter when converted to sphere)
1 was set as the optimum range. This contact alloy structure contributed to the improvement and stabilization of the cutting property and the stabilization and the improvement of the cutting property while minimizing the deterioration of the restriking property.

【0030】なお、非固溶状熊若しくは化合物非形成状
態にあるC量をTiC量に対して好ましくは0.005
%以上とするのは、裁断特性の特に開閉後半(1990
0〜20000回開閉中)におけるバラツキ幅が若干増
加する傾向が見られてるのを抑止できるためである。
The amount of C in a non-solid-solution bear or compound-free state is preferably 0.005 with respect to the amount of TiC.
% Or more means that the cutting characteristic is particularly in the latter half of opening and closing (1990
This is because it is possible to suppress the tendency that the variation width during the opening and closing of 0 to 20000 times) slightly increases.

【0031】以上は主として「Cu−TiC−C]系合
金を代表例として示したが、「Cu−TiC]+Alに
対しても,所定条件のC及びCとAlの存在は同じ傾向
の効果を得る。
Although the "Cu-TiC-C] -based alloy has been mainly described above as a representative example, the effect of C and C and Al existing under the predetermined conditions has the same tendency even with respect to" Cu-TiC] + Al. obtain.

【0032】なお筆者らの実験によれば、[Cu−Ti
C]中でのCの量や大きさ、Alの量を最適化すること
によって、合金組織中でのCu、TiC、Cの均一分布
化、Cu、TiC、Cの互いの密着強さ等の改良を図っ
たので、アークを受けた後でも再点弧発生に有害となる
巨大溶融痕跡、飛散損傷などが少なくなると共に再点弧
抑止上で重要な影響を及ぼす接点表面荒れも少なくな
り、耐アーク消耗性の向上にも有益となった。耐アーク
消耗性の向上は接点表面の平滑化を持たらし、多数回開
閉後でも裁断特性及び遮断特性のばらつき幅の縮小に有
益となっている。これらの相乗的効果によって、裁断特
性を向上させた上で[Cu−TiC]合金の遮断特性と
耐消耗性の向上を得た。
According to the experiments by the authors, [Cu-Ti
By optimizing the amount and size of C in C] and the amount of Al, it is possible to obtain a uniform distribution of Cu, TiC, and C in the alloy structure, adhesion strength of Cu, TiC, and C to each other. As a result of the improvements, even after receiving the arc, there will be less enormous traces of melting and spatter damage that are harmful to the re-ignition occurrence, and there will be less contact surface roughness that will have an important effect on the suppression of re-ignition. It was also useful for improving arc wear. The improvement of arc wear resistance has the effect of smoothing the contact surface, which is useful for reducing the variation width of the cutting and breaking characteristics even after opening and closing a large number of times. Due to these synergistic effects, the cutting property was improved and, at the same time, the barrier property and wear resistance of the [Cu-TiC] alloy were improved.

【0033】所定比率の[Cu−TiC]系合金中に存
在するCが非固溶状態若しくは化合物非形成状態にある
ことが好ましく、このような状態にないと、多数回開閉
後の裁断特性安定性特にそのバラツキ幅が増大する傾向
となると共に、多数回開閉後の遮断特性に大きなバラツ
キを生じさせしまう。
It is preferable that C existing in a predetermined ratio of [Cu-TiC] -based alloy is in a non-solid solution state or a compound non-forming state. If it is not in such a state, the cutting characteristics are stable after opening and closing a large number of times. In particular, the variation width tends to increase, and a large variation occurs in the breaking characteristic after opening and closing a large number of times.

【0034】[0034]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明する。[Cu−TiC]系接点および[Cu−T
iC−C]系接点を搭載した真空バルブにおいて、補助
的成分としてのAlは、Al量を所定量まで増加させる
と裁断特性を維持したまま電流遮断特性が向上するが、
Al量が所定量を越えると、遮断特性は急速に低下(劣
化)する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. [Cu-TiC] type contact and [Cu-T]
In a vacuum valve equipped with an [iC-C] system contact, Al as an auxiliary component improves the current cutoff property while maintaining the cutting property when the Al amount is increased to a predetermined amount.
When the amount of Al exceeds a predetermined amount, the cutoff characteristics rapidly deteriorate (deteriorate).

【0035】後者の[Cu−TiC−C]系接点を搭載
した真空バルブにおいて、補助的成分としてのCは、C
量を所定量まで増加させると、裁断特性は前者[Cu一
TiC]系より一層向上するが、遮断特性はC量が所定
量までは向上するが、所定量を越えると急速に劣下する
等の傾向を示す。
In the latter vacuum valve equipped with a [Cu-TiC-C] system contact, C as an auxiliary component is C
When the amount is increased up to a predetermined amount, the cutting property is further improved as compared with the former [Cu-TiC] system, but the breaking property is improved up to a predetermined amount of C, but when the amount exceeds the predetermined amount, it rapidly deteriorates. Shows the tendency of.

【0036】また[Cu−TiC]系接点および[Cu
−TiC−C]系接点を搭載した真空バルブの一般的傾
向として、裁断特性単独では、前者[Cu−TiC]系
接点より、後者[Cu−TiC−C]系接点の方が有利
の傾向であり、遮断特性単独では、後者[Cu−TiC
−C]系接点の方が有利の傾向である。裁断特性と遮断
特性を同時に考慮する場合には、Al量の制御及びCの
存在形態の管理がポイントとなっている。
[Cu-TiC] -based contacts and [Cu-TiC]
As a general tendency of a vacuum valve equipped with a -TiC-C] -type contact, the latter [Cu-TiC-C] -type contact tends to be more advantageous than the former [Cu-TiC] -type contact in terms of cutting characteristics alone. Yes, the latter [Cu-TiC
The -C] type contact tends to be more advantageous. When considering the cutting characteristics and the cutoff characteristics at the same time, control of the Al amount and management of the existing form of C are important.

【0037】本例では、従来の耐弧成分WCに替わって
TiC(若しくはVC)を採用すると共に接点素材価格
の改善のために導電成分として、Cuを採用したもので
あり、両者の面でTiC(若しくはVC)はWCより優
位にあることが判った。
In this example, TiC (or VC) is adopted in place of the conventional arc-resistant component WC, and Cu is used as a conductive component to improve the contact material price. (Or VC) was found to be superior to WC.

【0038】更に本例では、真空バルブの電流裁断特性
(低裁断化とその安定化)と遮断特性の向上とを同時に
達成させるために、[Cu−TiC]中に存在するCを
非固溶状態若しくは化合物非形成状態とし、その量をT
iC量(耐弧成分がVCの時にはVC量)に対して0.
005〜0.5(重量%)の範囲に管理すると共に、接
点中に存在するその大きさを0.01〜5μm(球に換
算した時の直径)の範囲に管理すと共に、Alの量も所
定量に管理して前記効果を得たものである。従って、
[Cu−TiC]系接点材料中のCの存在形態(平均粒
径と量とその分散度)とAl量の制御とが重要なポイン
トとなる。以下に本例の効果を明らかにした評価条件、
評価方法などを示す。
Further, in this example, in order to simultaneously achieve the current cutting characteristics (low cutting and stabilization thereof) of the vacuum valve and improvement of the breaking characteristics, C existing in [Cu-TiC] is not solid-dissolved. State or compound-free state, and
The iC amount (VC amount when the arc resistance component is VC) is 0.
It is controlled within the range of 005 to 0.5 (% by weight), and the size thereof existing in the contact is controlled within the range of 0.01 to 5 μm (diameter when converted into a sphere), and the amount of Al is also controlled. The effect is obtained by controlling the amount to a predetermined amount. Therefore,
The important points are the existence form of C in the [Cu-TiC] -based contact material (average particle size and amount and the degree of dispersion thereof) and control of the Al amount. Below, the evaluation conditions that clarify the effect of this example,
The evaluation method is shown.

【0039】(1)裁断特性 直径20mm、厚さ4mmで、一方は平面、他方が50
mmRの所定接点を着脱式の裁断電流テスト用真空遮断
器に装着する。10−3Pa以下に排気し、接点表面を
ベーキング、放電エージングなどで清浄化した後、この
装置を0.8m/秒の開極速度で開極させた。裁断電流
値はLC回路を経て50Hz、実効値44Aの回路電流
を開閉中の初期(1〜100回開閉中)および後期(1
9900〜20000回開閉中)の接点に直列に挿入し
た同軸型シャントの電圧降下を観測することによって求
めたものである。なお、測定結果は実施例2の裁断電流
値の平均値を1.0とし、その値と相対比較したもので
ある。この裁断電流値はその値が小さく、ばらつき範囲
も小さい程優れた裁断特性を有している。
(1) Cutting characteristics Diameter 20 mm, thickness 4 mm, one is flat and the other is 50
A predetermined contact of mmR is mounted on a detachable vacuum circuit breaker for cutting current test. After exhausting to 10 −3 Pa or less and cleaning the contact surface by baking, discharge aging, etc., this device was opened at an opening speed of 0.8 m / sec. The cutting current value is 50 Hz through the LC circuit, and the circuit current having an effective value of 44 A is opening and closing (1 to 100 times opening and closing) and the latter period (1).
It was obtained by observing the voltage drop of the coaxial shunt inserted in series at the contact (during 9900 to 20000 times). In addition, the measurement result is a relative comparison with the value of the cutting current value of Example 2 as 1.0. The smaller the cutting current value and the smaller the variation range, the better the cutting characteristics.

【0040】(2)遮断特性 表面粗さを5μmに仕上げたフラット接点と、同じ表面
粗さを持つ曲率半径1OORの凸状接点とを対向させ
る。両接点を開閉機構を持つ真空度10−3Pa.以下
に排気した着脱可能な真空遮断実験装置に取り付け、4
0kgの荷重を与えた上で、7.2kV−31.5kA
の電力を投入、遮断する。この投入、遮断を10回繰り
返した時、溶着や再点弧の発生状況を評価し、遮断特性
を判断した。投入、遮断の回数が、10回に至る前に溶
着の発生や著しい再点弧の発生が見られた時には、テス
トを中止した。
(2) Breaking characteristics A flat contact having a surface roughness of 5 μm and a convex contact having the same surface roughness and a radius of curvature of 1OOR are opposed to each other. A vacuum degree of 10-3 Pa. Attached to the detachable vacuum shut-off experimental device exhausted below, 4
After applying 0 kg load, 7.2 kV-31.5 kA
Power on and off. When this charging and blocking were repeated 10 times, the occurrence of welding and restriking was evaluated and the blocking characteristics were judged. The test was stopped when welding or remarkable re-ignition was observed before the number of times of turning on and off reached 10.

【0041】(3)耐アーク消耗性 各接点を着脱式の真空遮断器に装着し、接点電極表面の
ベーキング、電流、電圧エージング、開極速度条件を一
定同一とした後、7.2kV、4.4kAを1000回
遮断前後の表面凹凸から損失重量を求め、耐アーク消耗
性を判断した。次に本例の接点材料の製造に供した方法
例について説明する。
(3) Arc wear resistance Each contact was mounted on a detachable vacuum circuit breaker, and after the baking, current, voltage aging and opening speed conditions of the contact electrode surface were kept constant, 7.2 kV, 4 The loss weight was determined from the surface roughness before and after 1,000 times of interruption of 4 kA to determine the arc wear resistance. Next, an example of the method used for manufacturing the contact material of this example will be described.

【0042】本例の接点材料の製造方法を大別すると、
TiCとCあるいはTiCとCとAlとで構成したスケ
ルトンに、CuまたはCu−Alを溶かして流し込む溶
浸法と、TiCとC粉とCu粉とAl粉を所定割合で混
合した粉末を焼結または成型焼結する焼結法がある。ま
た原料としてのAlは、金属Al以外に予めCu、Ti
C)C粉の表面にAlを被覆した複合金属であっても、
また単にCu、TiC、C粉とAlとを混合した混合金
属であっても差支えない。その状態は合金化していて
も,また化合物を形成しいても、また単に混合の状態で
あっても問題なく、前記合金製造時のAl源として使用
できる。
The method of manufacturing the contact material of this example is roughly classified as follows.
An infiltration method in which Cu or Cu-Al is melted and poured into a skeleton composed of TiC and C or TiC and C and Al, and a powder obtained by mixing TiC, C powder, Cu powder, and Al powder at a predetermined ratio is sintered. Alternatively, there is a sintering method of forming and sintering. In addition, Al as a raw material includes Cu and Ti in addition to metallic Al.
C) Even if it is a composite metal in which the surface of C powder is coated with Al,
Also, a mixed metal obtained by simply mixing Cu, TiC, C powder and Al may be used. It can be used as an Al source at the time of producing the alloy without any problem whether it is alloyed, does not form a compound, or is in a mixed state.

【0043】本例では、再点弧発生率の引き金の1つと
されているCu−TiC合金中でのAl量やC(非固溶
若しくは化合物非形成状態)の存在状態(例えばその
量)とを最適化し、裁断特性と遮断特性との両立を可能
としたもので、従って、その製造方法は合金中でのCの
存在状態を左右するので重要となる。
In this example, the amount of Al in the Cu-TiC alloy, which is one of the triggers for the re-ignition rate, and the state of presence of C (non-solid solution or compound-free state) (for example, its amount), Is made possible by making the cutting properties and the breaking properties compatible with each other. Therefore, the manufacturing method thereof is important because it affects the existing state of C in the alloy.

【0044】即ち、本発明の実施の形態において、好適
なTiC粉は、例えば加熱処理温度及び時間、雰囲気な
どを制御することによって、非固溶若しくは化合物非形
勢状態にあるC量及びその粒径、粒度分布を調整すると
共に化学量論的には(TiC10.7 )の範囲にあるT
iCを選択する。また粒径、粒度分布は、機械的粉砕及
び篩わけも併用して調整した。
That is, in the embodiment of the present invention, the preferable TiC powder is, for example, the amount of C in a non-solid solution or non-compound state and its particle size by controlling the heat treatment temperature and time, atmosphere and the like. , T in the range of (TiC 1 to 0.7 ) stoichiometrically while adjusting the particle size distribution.
Select iC. The particle size and particle size distribution were adjusted by using mechanical pulverization and sieving together.

【0045】本例では、C、Al量を微量な範囲で制御
しなくてはならない。著しく微量なC(非固溶若しくは
化合物非形成状態)量の範囲を制御する技術としては、
上記したTiC粉を雰囲気、温度などを調節しながらT
iCを加熱処理し、一部分解させたり再析出させる方法
以外には、例えばTiCと共にある種の有機物を熱分解
させた時、TiC表面に分解析出したCを利用すること
によって微量のC量を制御しながら得ることが出来る。
またTiC表面にCスパッタ膜を付着させた後、これを
原料TiCとして利用する方法も選択した。同様に著し
く微量なAlの量の制御も同様にCu、TiCの表面に
Alをスパッタさせり、イオンプレーティングさせるこ
とによって行った。
In this example, the amounts of C and Al must be controlled within a very small range. As a technique for controlling the range of an extremely small amount of C (non-solid solution or compound non-formation state),
While controlling the atmosphere and temperature of the above TiC powder,
Other than the method of heat treating iC to partially decompose or reprecipitate it, for example, when a certain organic substance is thermally decomposed together with TiC, a minute amount of C is decomposed by utilizing the decomposed and precipitated C on the TiC surface. It can be obtained while controlling.
In addition, a method of depositing a C sputtered film on the surface of TiC and then using this as the raw material TiC was also selected. Similarly, the control of the extremely small amount of Al was similarly performed by sputtering Al on the surfaces of Cu and TiC and performing ion plating.

【0046】この[Cu−TiC]合金中のC(非固溶
若しくは化合物非形成状態)の量及び大きさは、C量を
多くすると裁断特性には影響が少ないが、遮断特性は劣
化する傾向にある。なお[Cu−TiC]合金中のTi
Cの総量も多くすると同様に遮断特性は低下する傾向に
ある。
The amount and size of C (non-solid solution or compound-free state) in this [Cu-TiC] alloy has a small effect on the cutting property as the C content increases, but the blocking property tends to deteriorate. It is in. Note that Ti in the [Cu-TiC] alloy
Similarly, when the total amount of C is increased, the blocking characteristic tends to be deteriorated.

【0047】Al量は、[Cu−TiC]合金、[Cu
−TiC−C]合金の遮断特性を向上させるが、過度の
存在は遮断特性を急速に劣化させる。[Cu−TiC]
合金の製造方法は、Cの量およびAlの量が、TiC
量、Cu量に比較し、極めて少量なため、均質混合性を
良くすることが重要な技術課題となる。その均質混合性
を良くする手段として、本例では、例えば最終的に必要
なTiC量(30〜70容積%)の内の一部から取り出
した極く少量のTiCとC粉若しくはAl粉とを(好ま
しくは近似の容積)を混合(必要によりBi、Sb、T
eの少なくとも1つを追加しても良い)して得た第1次
混合粉を得る(必要によりこれを第n次混合まで繰り返
す)。
The amount of Al is [Cu-TiC] alloy, [Cu
-TiC-C] alloys improve the barrier properties, but excessive presence rapidly degrades the barrier properties. [Cu-TiC]
The method for producing the alloy is such that when the amount of C and the amount of Al are TiC
The amount of Cu and Cu is extremely small compared to the amounts of Cu and Cu, so improving the homogeneity of mixing is an important technical issue. As a means for improving the homogeneous mixing property, in this example, for example, an extremely small amount of TiC and C powder or Al powder taken out from a part of the finally required TiC amount (30 to 70% by volume) are used. (Preferably approximate volume) mixed (if necessary Bi, Sb, T
At least one of e may be added) to obtain a primary mixed powder (this is repeated until the nth mixing if necessary).

【0048】この第1次混合粉(または第n次混合粉)
と残りのTiC粉とを再度混合し、最終的に十分に良好
な混合状態にある[TiC、C]粉、[TiC、Al]
粉、[TiC、C、Al]粉を得る。この[TiC、
C]粉または[TiC、Al]粉、[TiC、C、A
l]粉と所定量のCu粉とを混合の後、水素雰囲気中
(真空中でも可)で、例えば930℃の温度での焼結と
加圧とを1回若しくは複数回組合せて、[Cu−TiC
−C]接点素材(または[Cu−TiC]+Al、[C
u−TiC−C]+Al接点素材など)を製造(以下
[Cu−TiC]+Alで代表)し、所定形状に加工し
て接点とした(製法例1)。
This first-order mixed powder (or n-th order mixed powder)
And the remaining TiC powder are mixed again, and finally [TiC, C] powder, [TiC, Al] in a sufficiently good mixed state.
Powder, [TiC, C, Al] powder is obtained. This [TiC,
C] powder or [TiC, Al] powder, [TiC, C, A
l] powder and a predetermined amount of Cu powder are mixed, and then, in a hydrogen atmosphere (even in vacuum), for example, sintering at a temperature of 930 ° C. and pressurization are combined once or a plurality of times to obtain [Cu- TiC
-C] contact material (or [Cu-TiC] + Al, [C
u-TiC-C] + Al contact material) was manufactured (hereinafter represented by [Cu-TiC] + Al) and processed into a predetermined shape to form a contact (manufacturing example 1).

【0049】別の合金化の方法として、逆に最終的に必
要なCu量の内の一部から取り出した極く少量のCuと
Al粉(またはC粉、または両者)とを(好ましくは近
似の容積)を混合(必要によりBiを追加)して得た第
1次混合粉を得る(必要によりこれを第n次混合まで繰
り返す)。この第1次混合粉(または第n次混合粉)と
残りのCu粉とを再度混合し、最終的に十分に良好な混
合状態にある[Cu、C]粉を得る。この[Cu、C]
粉と所定TiC粉(最終的に必要なTiC量)とを混合
した後、水素雰囲気中(真空中でも可)で、例えば94
0℃の温度での焼結と加圧とを1回若しくは複数回組合
せて、[Cu−TiC−C]接点素材または[Cu−T
iC−C]+Al接点素材を製造した(製法例2)。
As another alloying method, conversely, a very small amount of Cu and Al powder (or C powder, or both) taken out from a part of the finally required Cu amount (preferably approximated). Volume) is mixed (Bi is added if necessary) to obtain a primary mixed powder (this is repeated until the n-th mixing if necessary). This primary mixed powder (or n-th mixed powder) and the remaining Cu powder are mixed again to finally obtain [Cu, C] powder in a sufficiently good mixed state. This [Cu, C]
After mixing the powder and a predetermined TiC powder (finally necessary TiC amount), in a hydrogen atmosphere (possible even in vacuum), for example, 94
[Cu-TiC-C] contact material or [Cu-T] by combining sintering at 0 ° C and pressurization once or multiple times.
iC-C] + Al contact material was manufactured (manufacturing example 2).

【0050】他の製造方法としては、上記方法で製造し
た第n次混合[TiC、C]粉または[TiC、C、A
l]粉を、1200℃の温度で焼結して所定空隙率を持
っ{TiC、C}スケルトン、{TiC、C、Al}ス
ケルトンを作製し、その空孔中にCu(必要によりBi
も追加)を例えば1150℃の温度で溶浸し、[Cu−
TiC−C]接点素材または[Cu−TiC−C]+A
l接点素材を製造した(製法例3)。
As another manufacturing method, the nth-order mixed [TiC, C] powder or [TiC, C, A] manufactured by the above method is used.
l] powder is sintered at a temperature of 1200 ° C. to prepare {TiC, C} skeletons and {TiC, C, Al} skeletons having a predetermined porosity, and Cu (Bi if necessary Bi
Is also added), for example, at a temperature of 1150 ° C., and [Cu-
TiC-C] contact material or [Cu-TiC-C] + A
An l-contact material was manufactured (manufacturing method example 3).

【0051】また別の合金化の方法としては、[Ti
C、C]粉または[TiC、C、Al]粉を1000℃
の温度で焼結し、所定空隙率を持つスケルトンを作製
し、その空孔中に別途用意したCuを例えば1150℃
の温度で溶浸し[Cu−TiCーC]接点素材、[Cu
−TiC−C]+Al接点素材を製造した(製法例
4)。
As another alloying method, [Ti
C, C] powder or [TiC, C, Al] powder at 1000 ° C
At a temperature of 1 to produce a skeleton having a predetermined porosity, and separately prepare Cu in the pores at, for example, 1150 ° C.
At the temperature of [Cu-TiC-C] contact material, [Cu
-TiC-C] + Al contact material was manufactured (Production Example 4).

【0052】また別の合金化の方法としては、イオンプ
レーティング装置を用いた物理的方法或いはボールミル
装置を用いた機械的方法で、Ti粉(TiC粉、Cu粉
でも良い)の表面にCを被覆(必要によりBiも同時
に)したC被覆Ti粉を得て、このC被覆Ti粉とCu
粉(必要によりBiを同時に添加)とを混合の後、水素
雰囲気中(真空中でも可)で、例えば1050℃の温度
での焼結と加圧とを1回若しくは複数回組合せて、[C
u−TiC−C]接点素材を製造した(製法例5a)。
As another alloying method, a physical method using an ion plating device or a mechanical method using a ball mill device is used, and C is added to the surface of Ti powder (TiC powder or Cu powder may be used). C-coated Ti powder coated (and optionally Bi at the same time) was obtained, and this C-coated Ti powder and Cu
After mixing with powder (Bi is added at the same time if necessary), in a hydrogen atmosphere (even in vacuum), for example, sintering at a temperature of 1050 ° C. and pressurization are combined once or a plurality of times, and [C
[u-TiC-C] contact material was produced (Production Example 5a).

【0053】また別の合金化の方法としては、イオンプ
レーティング装置を用いた物理的方法或いはボールミル
装置を用いた機械的方法で、Ti粉(TiC粉、Cu粉
でも良い)の表面にAlを被覆(必要によりBiも同時
に)したAl被覆Ti粉を得て、このAl被覆Ti粉と
Cu粉(必要によりBiを同時に添加)とを混合の後、
水素雰囲気中(真空中でも可)で、例えば1050℃の
温度での焼結と加圧とを1回若しくは複数回組合せて、
[Cu−TiC−C]+Al接点素材を製造した(製法
例5b) また別の合金化の方法としては、特にCu粉、TiC粉
とC粉とAl粉との均一混合技術において、揺動運動と
撹拌運動とを重畳させる方法も有益である。これによっ
て、混合粉は一般に行われているアセトンなど溶剤使用
時に見られる固まりとなったり凝集体となったりする現
象がなく、作業性も向上する。また混合作業での撹拌容
器の撹拌運動の撹拌数Rと撹拌容器に与える揺動運動の
揺動数Sとの比率R/Sをほぼ10〜0.1程度の好ま
しい範囲に選択すれば、解砕、分散、混合中の粉末への
エネルギー入力が好ましい範囲となり、混合作業での粉
末の変質や汚染の程度を低く押さえることができる特徴
を有する。
As another alloying method, a physical method using an ion plating device or a mechanical method using a ball mill device is used, and Al is applied to the surface of Ti powder (TiC powder or Cu powder may be used). After obtaining Al-coated Ti powder coated (and also Bi if necessary), and mixing the Al-coated Ti powder and Cu powder (adding Bi at the same time if necessary),
In a hydrogen atmosphere (even in vacuum), for example, sintering at a temperature of 1050 ° C. and pressurization are combined once or plural times,
A [Cu-TiC-C] + Al contact material was produced (Production Example 5b). As another alloying method, especially in the technique of uniformly mixing Cu powder, TiC powder, C powder, and Al powder, an oscillating motion is performed. The method of superposing the stirring motion with the stirring motion is also useful. As a result, the mixed powder does not have the phenomenon of becoming agglomerates or agglomerates, which is generally found when using a solvent such as acetone, and the workability is improved. Further, if the ratio R / S of the stirring number R of the stirring motion of the stirring container in the mixing work and the shaking number S of the shaking motion given to the stirring container is selected within a preferable range of about 10 to 0.1, the solution is obtained. The energy input to the powder during crushing, dispersing, and mixing is in a preferable range, and it has a feature that the deterioration and contamination of the powder during the mixing operation can be suppressed to a low level.

【0054】従来のらいかい機などによる混合、粉砕で
は粉体を押し潰す作用が加わるが、揺動運動と撹拌運動
とを重畳させる本方法では、前記R/S比率がほぼ10
〜0.1程度に分布しているため、粉体同士が絡み合う
程度の混合となり、良好な通気性を持つため焼結性が向
上し、良質な成型体または焼結体あるいはスケルトンを
得る。更に必要以上のエネルギー入力がなく、粉体が変
質することがない。このような状態の混合粉を原料とす
れば、焼結、溶浸後の合金も低ガス化が可能となり、裁
断特性、遮断性能の安定化に寄与している(製法例
6)。
Although the action of crushing the powder is added in the case of mixing and pulverizing with a conventional smelting machine or the like, in the present method in which the rocking motion and the stirring motion are superposed, the R / S ratio is approximately 10%.
Since it is distributed to about 0.1, the powder is mixed to the extent that the powder particles are entangled with each other and has good air permeability, so that the sinterability is improved and a high-quality molded body or sintered body or skeleton is obtained. Furthermore, there is no excessive energy input and the powder does not deteriorate. If the mixed powder in such a state is used as a raw material, the alloy after sintering and infiltration can be reduced in gas, which contributes to stabilization of cutting characteristics and barrier performance (Production Example 6).

【0055】[Cu−VC−C]の場合も同じ製法を選
択し、[Cu−TiC]+Al接点素材、[Cu−Ti
C−C]+Al接点素材を製造することができる。後述
する本発明の実施例、比較例では、これらの方法を適宜
選択し採用したもので、いずれの技術の選択でも本発明
の効果を発揮する接点材料を得ることができる。
In the case of [Cu-VC-C], the same manufacturing method is selected, and [Cu-TiC] + Al contact material, [Cu-Ti]
C-C] + Al contact material can be manufactured. In Examples and Comparative Examples of the present invention, which will be described later, these methods are appropriately selected and adopted, and a contact material exhibiting the effect of the present invention can be obtained by selecting any technique.

【0056】以下に本発明の実施の形態の実施例を図1
の表図に示した評価条件及び図2の表図に示した評価結
果を参照して説明する。
FIG. 1 shows an example of the embodiment of the present invention.
Will be described with reference to the evaluation conditions shown in the table and the evaluation results shown in the table of FIG.

【0057】まず、遮断テスト用実験バルブの組立ての
概要を示す。端面の平均表面粗さを約1.5μmに研磨
したセラミックス製絶縁容器(主成分:Al23 )を
用意し、このセラミックス製絶縁容器に対して組立て前
に1650℃の前加熱処理を施した。セラミックス製絶
縁容器の主成分がSi02 であっても問題無い。
First, the outline of the assembly of the experimental valve for the shutoff test will be described. Prepare a ceramics insulation container (main component: Al 2 O 3 ) whose end surface is polished to an average surface roughness of about 1.5 μm, and subject this ceramics insulation container to preheating treatment at 1650 ° C. before assembly. did. The main component of the ceramic insulation container is no problem even in the Si0 2.

【0058】封着金具として、板厚さ2mmの42%N
i−Fe合金を用意した。
42% N with a plate thickness of 2 mm as a sealing metal fitting
An i-Fe alloy was prepared.

【0059】ロウ材として、厚さ0.1mmの72%A
g−Cu合金板を用意した。
As a brazing material, 72% A with a thickness of 0.1 mm
A g-Cu alloy plate was prepared.

【0060】上記用意した各部材を被接合物間(セラミ
ックス製絶縁容器の端面と封着金具)に気密封着接合が
可能のように配置して、5×10-4Pa.の真空雰囲気
で封着金具とセラミックス製絶縁容器との気密封着工程
に供する。
The above-prepared members are arranged between the objects to be joined (the end surface of the ceramic insulating container and the sealing metal fitting) so that airtight bonding can be performed, and 5 × 10 −4 Pa. In a vacuum atmosphere, the sealing metal fitting and the ceramic insulating container are subjected to a hermetically sealing process.

【0061】次いで、供試接点材料の内容、評価内容と
結果などを表図1、2に示す。
Next, Tables 1 and 2 show the contents of the test contact material, the evaluation contents and the results.

【0062】実施例1〜3及び比較例1、2 1.3μmの平均粒径を有する15〜85%(容積%)
のTiC1.0 粉、補助成分として0.05%(重量%)
のAl、C粒子の分散度をL>d(但し、Lは再近接す
る2っのC粒子若しくはC集団の間隙、dは小さい方の
C粒子または小さい方のC集団の直径を示している。)
としたCu−TiC合金を、前記製造法1〜6の方法を
適宜選択または組み合わせながら、Al量を0.05重
量%ととした[Cu−15〜85容積%TiC]+Al
合金よりなる接点素材を製造した。これらの素材を厚さ
3mm、接触面の平均表面粗さを0.3μmの所定形状
に加工した試験片を得て、裁断特性、遮断特性、耐消耗
性を測定し、その内容を表1(評価条件)と表2(結
果)に示した。なお、本発明では、便宜上TiCと残部
のCuを容積%とし、他の元素は作業上便利なため、重
量%(TiC量に対する割合)として実施した。
Examples 1-3 and Comparative Examples 1, 2 15-85% (% by volume) with an average particle size of 1.3 μm
TiC 1.0 powder, 0.05% (wt%) as an auxiliary component
Of the Al and C particles of L> d (where L is the gap between two C particles or C groups that re-adjacent to each other, d is the diameter of the smaller C particle or the smaller C group) .)
The Cu-TiC alloy described above was appropriately selected or combined with the above-mentioned manufacturing methods 1 to 6, and the amount of Al was set to 0.05% by weight [Cu-15 to 85% by volume TiC] + Al.
A contact material made of alloy was manufactured. A test piece obtained by processing these materials into a predetermined shape having a thickness of 3 mm and an average surface roughness of the contact surface of 0.3 μm was obtained, and the cutting property, the blocking property, and the wear resistance were measured. Evaluation conditions) and Table 2 (results) are shown. Note that, in the present invention, TiC and the balance of Cu are set to volume% for convenience, and other elements are set to weight% (ratio to the amount of TiC) because they are convenient in operation.

【0063】TiC量を30〜70容積%とした[Cu
−TiC]+Al合金では、裁断特性、遮断特性、耐消
耗特性のいずれもが良好な特性を発揮している(実施例
1〜3)。
The amount of TiC is set to 30 to 70% by volume [Cu
In the -TiC] + Al alloy, all of the cutting characteristics, the interruption characteristics, and the wear resistance characteristics exhibit good characteristics (Examples 1 to 3).

【0064】即ち、裁断特性は実効値44Aの回路を1
〜100回開閉中100回(開閉初期)の裁断値の平均
値(0.95〜1.3)と最大値(1.05〜1.4
5)とは、その値が接近し安定している。同様に199
00〜20000回開閉中100回(開閉後期)の裁断
値の平均値と最大値との幅も小さく安定し、好ましい状
熊を示している。更に開閉初期と開閉後期との裁断値の
変化も少なく安定している。
That is, the cutting characteristic is 1 when the circuit having an effective value of 44 A is used.
The average value (0.95 to 1.3) and maximum value (1.05 to 1.4) of the cut value of 100 times (initial opening and closing) during opening and closing of 100 times
The value of 5) is close and stable. Similarly 199
The range between the average value and the maximum value of the cut values of 100 times (the latter half of the opening and closing) of the opening and closing times of 2000 to 20000 times is small and stable, which shows a favorable state bear. Furthermore, there is little change in the cutting value between the initial stage of opening and closing and the latter stage of opening and closing, and it is stable.

【0065】7.2kV−31.5kAを10回投入・
遮断させた時の遮断特性は、再点弧の発生、溶着の発生
もなく、遮断成功し、「合格」と判断される。
Apply 7.2 kV-31.5 kA 10 times.
The interruption characteristics when interrupted are judged to be "passed" with success of interruption without occurrence of restriking and welding.

【0066】7.2kV−4.4kAを1000回遮断
させ、その前後の接点の重量変化(重量損失)を測定し
て耐消耗特性とした評価(実施例2の重量損失値を1.
0とした)においても、実施例2と比較した相対値が、
1.0〜1.25の範囲にあり安定した消耗特性を示し
た。
7.2 kV-4.4 kA was cut off 1000 times, and the weight change (weight loss) of the contact points before and after the interruption was measured and evaluated as the wear resistance characteristic (the weight loss value of Example 2 was 1.
0), the relative value compared with Example 2 is
It was in the range of 1.0 to 1.25 and showed stable consumption characteristics.

【0067】ー方、TiC量を15容積%とし,残部を
Cuとした[Cu−TiC]+Al合金(比較例1)に
おいて、同様の評価を実施したところ、遮断特性は前記
7.2kV−31.5kAを10回投入、遮断中に2回
程軽微な溶着の発生が認められたものの実用上では問題
なく遮断に成功した。しかし、耐消耗性は標準としてい
る実施例2と比較して、比較対象としている実施例2の
5.2倍に大幅に増加(特性劣化)した。裁断特性は最
大値において変動が見られた。
On the other hand, when the same evaluation was carried out on a [Cu-TiC] + Al alloy (comparative example 1) in which the amount of TiC was 15% by volume and the balance was Cu, the breaking characteristic was 7.2 kV-31. Although 0.5 kA was applied 10 times and slight welding was observed about 2 times during the interruption, the interruption was successful without any problem in practical use. However, the wear resistance was greatly increased by 5.2 times (deterioration of characteristics) as compared with Example 2 as a standard, as compared with Example 2 as a comparison target. The cutting characteristics showed a variation in the maximum value.

【0068】更に、TiC量を80容積%とし残部をC
uとした[Cu−TiC]+Al合金(比較例2)にお
いて、同様の評価を実施したところ、開閉初期(1〜1
00回開閉中)、開閉後期(19900〜20000回
開閉中)の裁断電流値は標準とする実施例2の特性と比
較しても同等以上の極めて良好な特性を示したが、耐消
耗性を示す遮断前後の重量損失は、実施例2と比較して
1.3倍程度の消耗であり、許容限度内であったが、遮
断後の接点表面には著しい亀裂の生成が有り、この亀裂
などの表面劣化が一因となって、7.2kV−31.5
kAを10回投入、遮断させた時に、3回程再点弧の発
生が見られ、遮断特性は「不合格」と判断される。顕微
鏡観察の結果によれば、接点表面にはCuの不在部分の
点在、TiCの凝集とTiCの脱落が見られた。
Further, the amount of TiC is set to 80% by volume and the balance is C
When [Cu-TiC] + Al alloy (Comparative Example 2) with u was subjected to the same evaluation, the opening / closing initial stage (1 to 1)
The cutting current value during the opening and closing of 00 times) and the latter half of the opening and closing (while opening and closing the 19900 to 20000 times) showed extremely good characteristics equal to or higher than the characteristics of Example 2 as a standard. The weight loss before and after the interruption shown was about 1.3 times as great as that of Example 2, and was within the allowable limit. However, a significant crack was generated on the contact surface after the interruption. Due to the surface deterioration of
When kA was turned on and off 10 times, re-ignition was observed about 3 times, and the interruption characteristic was judged to be “fail”. According to the result of the microscopic observation, scattered spots of absent Cu, TiC agglomeration and TiC detachment were found on the contact surface.

【0069】従って、裁断特性と遮断特性と耐消耗性の
バランスを得るためには実施例1〜3で示したTiC量
30〜70容積%の範囲において、[Cu−TiC]合
金におけるAl添加の効果が有効に発揮される。
Therefore, in order to obtain a balance between the cutting property, the blocking property and the wear resistance, the addition of Al in the [Cu-TiC] alloy in the range of the TiC amount of 30 to 70% by volume shown in Examples 1 to 3 was performed. The effect is exerted effectively.

【0070】実施例4〜8、比較例3〜4 上記した実施例1〜3、比較例1〜2では、[Cu−T
iC]系合金中のAlの存在効果について、TiCの平
均粒径(粒子を球体とした時の直径)を3μmとした場
合について示したが、本発明Alの存在効果は、TiC
の平均粒径が3μmに限ることなく発揮される。
Examples 4 to 8 and Comparative Examples 3 to 4 In the above Examples 1 to 3 and Comparative Examples 1 and 2, [Cu-T
The presence effect of Al in the [iC] -based alloy is shown in the case where the average particle size of TiC (diameter when the particles are spherical) is 3 μm.
The average particle size is not limited to 3 μm.

【0071】TiCの平均粒径を0.01〜10μmと
した時には、裁断特性、遮断特性、耐消耗特性のいずれ
もが良好な特性を発揮している(実施例4〜8)。
When the average particle size of TiC is 0.01 to 10 μm, the cutting property, the blocking property, and the wear resistance property are all excellent (Examples 4 to 8).

【0072】即ち、裁断特性は実効値44Aの回路を1
〜100回開閉中100回(開閉初期)の裁断値の平均
値の幅(1.0〜1.5)と最大値の幅(1.15〜
1.55)は小さく安定している。同様に19900〜
20000回開閉中100回(開閉後期)の裁断値の平
均値の幅(1.2〜1.4)と最大値の幅(1.3〜
1.9)も小さく安定し、好ましい状態を示している。
更に開閉初期と開閉後期との裁断値の変化も小さく安定
している。
That is, the cutting characteristic is 1 when the circuit having an effective value of 44 A is used.
The width of the average value (1.0 to 1.5) and the width of the maximum value (1.15 to 100) of opening and closing 100 times (initial opening and closing) during opening and closing 100 times
1.55) is small and stable. Similarly from 1900
The width of the average value (1.2 to 1.4) and the maximum value (1.3 to 100) of the cut value during the opening and closing of 20000 times (late opening and closing)
1.9) is also small and stable, showing a preferable state.
Furthermore, the change in the cutting value between the early stage of opening and closing and the latter stage of opening and closing is small and stable.

【0073】7.2kV−31.5kAを10回投入、
遮断させた時の遮断特性は、再点弧の発生、溶着の発生
もなく遮断成功し、「合格」と判断される。また7.2
kV−4.4kAを1000回遮断させ、その前後の接
点の重量変化(重量損失)を測定して耐消耗特性とした
評価(実施例2の重量損失値を1.0とした)において
も、実施例2と比較した相対値が、0.9〜1.3の範
囲にあり、安定した消耗特性を示した。
Applying 7.2 kV-31.5 kA 10 times,
The interrupting characteristic when interrupted is that the interrupting is successful without the occurrence of re-ignition and the occurrence of welding, and is judged as "pass". See also 7.2
In the evaluation of the wear resistance characteristics by measuring the change in weight (weight loss) of the contact before and after kV-4.4 kA was cut off 1000 times (weight loss value of Example 2 was 1.0), The relative value compared with Example 2 was in the range of 0.9 to 1.3, and showed stable consumption characteristics.

【0074】これに対して、TiCの平均粒径を0.0
1μm以下とした時には(比較例3)、1〜100回開
閉中100回(開閉初期)の裁断値の平均値(1.1)
と最大値(1.25)は小さく安定している。しかし、
0.01μm以下の平均粒径を有するTiCを含む前記
[Cu−TiC]+Al合金を、一定厚さを持っ接点素
材を工業的規模で量産化するには、製造コストの観点か
ら好ましくないので(開閉後期)の裁断特性、遮断特
性、耐消耗性試験の各々を中止した(比較例3)。 ま
た、TiCの平均粒径を25μmとした時には(比較例
4)、開閉初期の裁断値では、平均値(2.05)と最
大値(2.35)は、やや増大の傾向を示している上
に、開閉後期の裁断特性の特に最大値が著しく増大の傾
向(6.55を示し、開閉回数の経過による裁断特性に
不安定性が見られる。また、遮断特性においては20k
Aで遮断不能を多発するなど、遮断特性にもバラツキが
見られ「不合格」と判断されると共に接触抵抗特性にも
バラツキが見られた。
On the other hand, the average grain size of TiC is 0.0
When the thickness is 1 μm or less (Comparative Example 3), the average cutting value (1.1) of 100 times of opening and closing (opening and closing) 100 times (initial opening and closing)
The maximum value (1.25) is small and stable. But,
From the viewpoint of manufacturing cost, it is not preferable to mass-produce the [Cu-TiC] + Al alloy containing TiC having an average particle diameter of 0.01 μm or less with a contact material having a constant thickness on an industrial scale ( The cutting property, the blocking property, and the wear resistance test in the latter stage of opening and closing) were stopped (Comparative Example 3). Further, when the average particle size of TiC is set to 25 μm (Comparative Example 4), the average value (2.05) and the maximum value (2.35) of the cutting values at the initial stage of opening and closing show a tendency of slightly increasing. In particular, the maximum value of the cutting characteristics in the latter half of opening and closing tends to increase remarkably (6.55, which shows instability in the cutting characteristics due to the number of opening and closing operations.
Variations were observed in the breaking characteristics, such as frequent occurrence of unbreakable state in A, and it was judged as "fail", and there were variations in the contact resistance characteristics.

【0075】実施例9〜11、比較例5〜6 前記実施例1〜8、比較例1〜4では、[Cu−Ti
C]合金中のTiCの量、TiCの平均粒子直径を制御
して、Al量を0.05%に一定とした時の本例の主眼
であるAlの存在効果にっいて示したが、このAlの存
在効果は、Al量が0.05%に限ることなく発揮され
る。即ちAl量を、0.005%〜0.75%として同
様の評価を実施したところ、TiC量を50容積%とし
た[Cu−TiC+Al]合金では、裁断特性、遮断特
性、耐消耗特性のいずれもが良好な特性を発揮している
(実施例9〜11)。
Examples 9-11, Comparative Examples 5-6 In the above Examples 1-8 and Comparative Examples 1-4, [Cu-Ti
C] The presence effect of Al, which is the main object of this example when the amount of TiC in the alloy and the average particle diameter of TiC are controlled to keep the amount of Al constant at 0.05%, is shown below. The effect of the presence of Al is exhibited without limiting the amount of Al to 0.05%. That is, when the same evaluation was carried out with the amount of Al being 0.005% to 0.75%, in the case of [Cu-TiC + Al] alloy with the amount of TiC being 50% by volume, any of cutting properties, interruption properties, and wear resistance properties was observed. The peach exhibits good characteristics (Examples 9 to 11).

【0076】即ち、裁断特性は実効値44Aの回路を1
〜100回開閉中100回(開閉初期)の裁断値の平均
値の幅(1.1〜1.25)と最大値の幅(1.15〜
1.3)とは小さく安定している。同様に19900〜
20000回開閉中100回(開閉後期)の裁断値の平
均値(1.2〜1.35)と最大値の幅(1.3〜1.
5)の幅も小さく安定して好ましい状態を示している。
更に開閉初期と開閉後期との裁断値の変化も小さく安定
している。
That is, as for the cutting characteristic, the circuit having an effective value of 44 A is set to 1
Width of average value of cut values (1.1 to 1.25) and width of maximum value (1.15 to 100) during opening and closing 100 times (initial opening and closing)
1.3) is small and stable. Similarly from 1900
The average value (1.2 to 1.35) of the cut values and the maximum value range (1.3 to 1.
The width of 5) is also small and shows a stable and preferable state.
Furthermore, the change in the cutting value between the early stage of opening and closing and the latter stage of opening and closing is small and stable.

【0077】7.2kV−31.5kAを10回投入、
遮断させた時の遮断特性は、再点弧の発生、溶着の発生
もなく、遮断成功し、「合格」と判断された。
Applying 7.2 kV-31.5 kA 10 times,
The interruption characteristics when interrupted were judged to be “passed” with success of interruption without occurrence of re-ignition and welding.

【0078】また7.2kV−4.4kAを1000回
遮断させ、その前後の接点の重量変化(重量損失)を測
定して耐消耗特性とした評価においても、実施例2と比
較した相対値が、0.95〜1.0の範囲にあり,極め
て安定した消耗特性を示した。 一方、Al量を0.0
05%以下とした50重量%TiCと残部Cuの合金
(比較例5)においても同様の評価を実施したところ、
裁断特性、耐消耗特性共に極めて安定した好ましい特性
を示したが、7.2kV−31.5kAのテストに進む
前の、25kAの遮断で既に遮断不能が多発したため、
7.2kV−31.5kAの投入、遮断テストは実施出
来ず、遮断特性は「不合格」と判断された。 従って、
[Cu−TiC]合金の遮断特性の向上に対するAlの
存在効果は、Al量が0.005%以下では十分には発
揮されない。
Also, in the evaluation of the wear resistance characteristics by breaking the 7.2 kV-4.4 kA 1000 times and measuring the weight change (weight loss) of the contact before and after that, the relative value compared with Example 2 was , 0.95 to 1.0, showing extremely stable consumption characteristics. On the other hand, the amount of Al is 0.0
The same evaluation was carried out on an alloy of 50% by weight TiC and the balance Cu which is less than 05% (Comparative Example 5).
Both the cutting characteristics and the wear resistance characteristics were extremely stable and desirable characteristics, but before the test at 7.2 kV-31.5 kA, 25 kA interruption had already occurred, so many interruptions were impossible.
The input of 7.2 kV-31.5 kA and the breaking test could not be conducted, and the breaking characteristic was judged to be "fail". Therefore,
The effect of the presence of Al on the improvement of the barrier property of the [Cu-TiC] alloy is not sufficiently exhibited when the Al content is 0.005% or less.

【0079】更に、Al量を5%とした50重量%Ti
Cと残部Cuの合金(比較例6)において同様の評価を
実施したところ、比較例5と同様に裁断特性、耐消耗特
性共に極めて安定した好ましい特性を示したが、7.2
kV−31.5kAのテストに進む前の、20kAの遮
断で,既に遮断不能が多発したため、7.2kV−3
1.5kAの投入,遮断テストは実施できず、遮断特性
は「不合格」と判断された。
Further, 50% by weight of Ti with Al content of 5%
When the same evaluation was carried out on an alloy of C and the balance Cu (Comparative Example 6), the cutting characteristics and the wear resistance characteristics were very stable and preferable, as in Comparative Example 5, but 7.2
Before the test of kV-31.5kA, with the interruption of 20kA, it was already impossible to cut off, so 7.2kV-3
The 1.5 kA injection / interruption test could not be performed, and the interruption characteristics were judged to be “fail”.

【0080】[Cu−TiC]合金の遮断特性の向上に
対するAlの存在効果は、Al量が5%では、素材の導
電率の著しい低下などが一因なって[Cu−TiC]合
金の遮断特性を向上させる効果はないことが判った。従
って、[Cu−TiC]合金の遮断特性を向上させるた
めのAlは、Al量を0.005〜0.75%重量%の
範囲とすることによって、裁断特性と耐消耗特性を維持
た上で、遮断特性を向上させることができる。
The effect of the presence of Al on the improvement of the barrier properties of the [Cu-TiC] alloy is that when the Al content is 5%, the barrier properties of the [Cu-TiC] alloy are significantly reduced due to a significant decrease in the conductivity of the material. It has been found that there is no effect to improve. Therefore, Al for improving the barrier property of the [Cu-TiC] alloy has an Al content in the range of 0.005 to 0.75% by weight, while maintaining the cutting property and the wear resistance property. The blocking characteristic can be improved.

【0081】実施例12〜15、比較例7 前記実施例1〜11、比較例1〜16では、[Cu−T
iC]合金の遮断特性の向上のための一施策として、A
lの存在効果について示した。本例の主眼であるAlの
存在効果は、前記した[Cu−TiC]合金以外に[C
u−TiC−C]合金に対しても、その効果が発揮され
ている。[Cu−TiC]合金中に、非固溶状態も若し
くは化合物非形成状態にあるCを、該合金の構成成分と
して0.005〜1.0%(重量%)含有させた[Cu
−TiC−C]+Al合金において、同等かそれ以上の
好ましい効果を発揮した(実施例12〜15)。
Examples 12 to 15 and Comparative Example 7 In the above Examples 1 to 11 and Comparative Examples 1 to 16, [Cu-T
iC] As a measure for improving the breaking characteristics of alloys,
The presence effect of 1 was shown. The effect of the presence of Al, which is the main object of this example, is that [C-TiC] alloy is used in addition to [C
The effect is exhibited also for the [u-TiC-C] alloy. In the [Cu-TiC] alloy, 0.005 to 1.0% (% by weight) of C in a non-solid solution state or a compound-free state was contained as a constituent component of the alloy [Cu
In the -TiC-C] + Al alloy, the same or more favorable effects were exhibited (Examples 12 to 15).

【0082】TiC量を50%(容積%)、その平均粒
子直径を3.0μmに一定とし、C量を0.005%〜
1.0%(重量%)とした[Cu−TiC−C]+Al
合金では、裁断特性、遮断特性、耐消耗特性のいずれも
が良好な特性を発揮している(実施例12〜15)。即
ち、裁断特性は実効値44Aの回路を1〜100回開閉
中100回(開閉初期)の裁断値の平均値の幅(0.8
5〜1.0)と最大値の幅(1.1〜1.25)は、小
さく安定している。同様に19900〜20000回開
閉中100回(開閉後期)の裁断値の平均値の幅(1.
1〜1.25)と、最大値の幅(1.25〜1.45)
の幅も小さく安定し、両者とも好ましい状態を示してい
る。更に開閉初期と開閉後期との裁断値の変化も小さ
く、開閉回数の経過に対しても安定している。
The TiC content was 50% (volume%), the average particle diameter was kept constant at 3.0 μm, and the C content was 0.005%-.
[Cu-TiC-C] + Al with 1.0% (wt%)
The alloy exhibits good cutting properties, blocking properties, and wear resistance properties (Examples 12 to 15). That is, the cutting characteristics are such that the circuit having an effective value of 44 A is opened and closed 1 to 100 times, and the width of the average cutting value is 100 times (initial opening and closing) (0.8
5 to 1.0) and the maximum value width (1.1 to 1.25) are small and stable. Similarly, the range of the average value of the cut values of 100 times (late opening and closing) during the opening and closing of 19,900 to 20,000 times (1.
1 to 1.25) and the maximum width (1.25 to 1.45)
Has a small width and is stable, and both are in a preferable state. Further, the change in the cutting value between the initial stage of opening and closing and the latter stage of opening and closing is small, and it is stable with respect to the number of times of opening and closing.

【0083】7.2kV−31.5kAを10回投入、
遮断させた時の遮断特性は、再点弧の発生、溶着の発生
もなく、遮断成功であった。また7.2kV−4.4k
Aを1000回遮断させ、その前後の接点の重量変化
(重量損失)を測定して耐消耗特性とした評価(実施例
2の重量損失値を1.0とした)においても、実施例2
と比較した相対値が、1.0〜1.2の範囲にあり極め
て安定した消耗特性を示した。これに対して、[Cu−
TiC]合金において、非固溶状態若しくは化合物非形
成状態にあるC量を5.5%にした時には、裁断特性は
1〜100回開閉中100回(開閉初期)の裁断値の平
均値の幅(0.75)と最大値の幅(0.95)は小さ
く安定している。同様に19900〜20000回開閉
中100回(開閉後期)の裁断値の平均値の幅(0.9
5)と最大値の幅(1.1)の幅も小さく安定し、好ま
しい状態を示している。更に開閉初期と開閉後期との裁
断値の変化も小さく安定している。
Applying 7.2 kV-31.5 kA 10 times,
The interruption characteristics when interrupted were that the interruption was successful without re-ignition or welding. Also 7.2kV-4.4k
In the evaluation of the wear resistance characteristic by measuring the weight change (weight loss) of the contact point before and after A was interrupted 1000 times (weight loss value of Example 2 was 1.0), Example 2 was also used.
The relative value compared with that was in the range of 1.0 to 1.2, indicating extremely stable consumption characteristics. On the other hand, [Cu-
In the TiC] alloy, when the amount of C in the non-solid solution state or the compound-unformed state is set to 5.5%, the cutting property is 1 to 100 times of opening and closing, and the range of the average cutting value of 100 times (initial opening and closing). The width of the maximum value (0.75) (0.95) is small and stable. Similarly, the range of the average cutting value of 100 times (later opening and closing) during opening and closing from 19,900 to 20,000 times (0.9
The width of 5) and the width of the maximum value (1.1) are also small and stable, showing a preferable state. Furthermore, the change in the cutting value between the early stage of opening and closing and the latter stage of opening and closing is small and stable.

【0084】しかし、7.2kV−31.5kAのテス
トに進む前の、7.2kV−20kAの遮断で既に遮断
不能が多発したため、7.2kV−31.5kAの投
入、遮断テストは実施せず、遮断特性は「不合格」と判
断した。
However, before the test of 7.2 kV-31.5 kA proceeded, it was already impossible to cut off at the cutoff of 7.2 kV-20 kA. Therefore, the test of 7.2 kV-31.5 kA was not applied and the cutoff test was not conducted. The breaking characteristic was judged to be “fail”.

【0085】また7.2kV−4.4kAを1000回
遮断させ、その前後の接点の重量変化(重量損失)を測
定した耐消耗特性においても、(実施例2の重量損失値
を1.0とした〕、実施例2と比較した相対値が4.6
倍を示し、消耗特性は好ましくなかった(比較例6)。
Also, in the wear resistance characteristics in which the weight change (weight loss) of the contact point before and after the interruption of 7.2 kV-4.4 kA 1,000 times was measured, the weight loss value of Example 2 was set to 1.0. The relative value compared to Example 2 is 4.6.
And the consumption characteristics were unfavorable (Comparative Example 6).

【0086】以上より、本例の主眼であるAl添加によ
る遮断特性の向上効果は、前記[Cu一TiC]合金の
みでなく、非固溶状態若しくは化合物非形成状態にある
C量を0.005〜0.75%の範囲に制御した[Cu
−TiC−C]合金に対しても、所定条件のAlを添加
させた[Cu−TiC−C]+Al合金においても、有
効に発揮された(実施例12〜15)。
As described above, the main effect of this example is to improve the barrier property by adding Al, not only for the [Cu-TiC] alloy but also for the amount of C in the non-solid solution state or the compound-free state of 0.005. Controlled to the range of 0.75% [Cu
It was effectively exhibited both in the -TiC-C] alloy and in the [Cu-TiC-C] + Al alloy to which Al was added under the predetermined conditions (Examples 12 to 15).

【0087】実施例16〜17、比較例8 前記実施例1〜15、比較例1〜8では、TiとCとの
化学量論的な比率として、TiC1.0 を使用した合金中
について、[Cu−TiC]合金、[Cu−TiC−
C]合金に対して、本例の主眼であるAlの存在効果を
示したが、本例で使用するチタン炭化物は、TiC1.0
に限ることなく実施できる。TiCとして、Ti
0.95、TiC0.70においても同様に効果を示した(実
施例16〜17)。 即ち、上記同様の評価を実施した
ところ、裁断特性としては開閉初期(1〜100回開閉
中)では、1.15〜1.3、開閉後期(19900〜
20000回開閉中)でも、1.25〜1.5の範囲で
あり、許容される範囲内であった。遮断特性も、7.2
kV−31.5kAを10回投入、遮断させた時の遮断
特性は、再点弧の発生、溶着の発生もなく、遮断[合
格]と判断される。耐消耗性(7.2kV、4.4kA
を1000回遮断させた後の重量変化)も、標準として
いる実施例2の消耗を1.0とした時の消耗特性は、ほ
ぼ変化のない1.0倍の消耗量を示した。以上、いずれ
もがほぼ同等の良好な特性を発揮している(実施例16
〜17)。
Examples 16 to 17 and Comparative Example 8 In Examples 1 to 15 and Comparative Examples 1 to 8 described above, in the alloy using TiC 1.0 as the stoichiometric ratio of Ti and C, [Cu -TiC] alloy, [Cu-TiC-
The presence effect of Al, which is the main object of this example, was shown for the C] alloy. The titanium carbide used in this example is TiC 1.0.
It can be implemented without limitation. As TiC, Ti
Similar effects were exhibited with C 0.95 and TiC 0.70 (Examples 16 to 17). That is, when the same evaluation as the above was carried out, the cutting characteristics were 1.15 to 1.3 in the initial stage of opening and closing (while opening and closing 1 to 100 times), and the latter period of opening and closing (19900 to
Even during opening and closing 20000 times), the range was 1.25 to 1.5, which was within the allowable range. The breaking characteristic is also 7.2.
The interruption characteristics when kV-31.5 kA was turned on and off 10 times were judged to be interruption [pass] without re-ignition or welding. Wear resistance (7.2kV, 4.4kA
(The change in weight after 1000 times of interruption) was 1.0, and the wear characteristics were 1.0 times as much as the standard wear. As described above, all of them exhibit almost the same good characteristics (Example 16).
~ 17).

【0088】これに対して、TiとCとの化学量諭的な
比率として、TiC0.55(比較例18)のチタン炭化物
を原料として使用した時には、開閉初期の裁断値では、
平均値(1.5)と最大値(1.85)は、許容の範囲
を示しているが、開閉後期の裁断特性では、平均値
(2.35)と最大値(2.85)を示し、後半に増大
の傾向にあった。また、耐消耗性は1.2倍程度であっ
たが、遮断特性においては、目標としている7.2kV
−31.5kAのテストに進む前の、25kAで遮断不
能を多発するなど、遮断特性にバラツキが見られ「不合
格」と判断された(比較例8)。
On the other hand, when the titanium carbide of TiC 0.55 (Comparative Example 18) was used as a raw material as a stoichiometric ratio of Ti and C, the cut value at the initial stage of opening and closing was:
The average value (1.5) and the maximum value (1.85) show the allowable range, but the cutting characteristics in the latter half of the opening and closing show the average value (2.35) and the maximum value (2.85). , There was a tendency to increase in the latter half. The wear resistance was about 1.2 times, but the target of the cutoff characteristics was 7.2 kV.
Before proceeding to the -31.5 kA test, there were variations in the blocking characteristics, such as frequent failure of blocking at 25 kA, and it was judged as "fail" (Comparative Example 8).

【0089】実施例18〜21、比較例9 前記実施例1〜17、比較例1〜8では、[Cu−Ti
C]合金、[Cu−TiC−C]合金中のCの大きさは
格別には制御しなかったが、[Cu−TiC]合金、
[Cu−TiC−C]合金へのAl添加の効果を十分発
揮させるためには、合金中で非固溶状態若しくは化合物
非形成状態で存在しているCの大きさ(Cの粒径、Cが
凝集している時にはその集団を指す。Cが不定形の時に
はその不定形を球に換算した時の直径で示す)も、所定
条件範囲内に管理することによって、遮断特性の安定化
に有益であることが判った。
Examples 18 to 21, Comparative Example 9 In the above Examples 1 to 17 and Comparative Examples 1 to 8, [Cu-Ti
Although the size of C in the C] alloy and the [Cu-TiC-C] alloy was not particularly controlled, the [Cu-TiC] alloy,
In order to sufficiently exert the effect of Al addition to the [Cu-TiC-C] alloy, the size of C existing in the alloy in a non-solid solution state or a compound-free state (grain size of C, C Refers to the group when they are agglomerated. When C is indefinite, it is also indicated by the diameter when the indefinite form is converted into a sphere). Was found.

【0090】即ち、合金中のCの大きさが0.01〜5
μm(実施例18〜21)では、裁断特性、耐消耗特性
を好ましい範囲に維持した上で、Al添加の効果が十分
発揮され、7.2kV−31.5kAを10回投入、遮
断させた時の遮断特性は、再点弧の発生、溶着の発生も
なく遮断「合格」となった。しかし、合金中のCの大き
さが25μm(比較例9)では、裁断特性は、開閉初期
(1〜100回開閉中)では平均値が0.9、最大値は
1.8を示して問題はなかったが、開閉後期(1990
0〜20000回開閉中)では、平均値が2.5、最大
値は3.45に増大(特性劣化)した上、耐消耗性
(7.2kV、4.4kAを1000回遮断させた後の
重量変化)も、標準としている実施例2の消耗を1、0
とした時の消耗率の、6.3倍に達し、大幅な消耗量の
増加(特性劣化)を示すと共に、7.2kV−31.5
kAを10回投入、遮断させる遮断テストにおいて、1
0回の投入、遮断中に5回程再点弧の発生が見られ、遮
断「不合格」の判断となった(比較例9)。
That is, the size of C in the alloy is 0.01-5.
In the case of μm (Examples 18 to 21), while maintaining the cutting characteristics and the wear resistance characteristics in the preferable ranges, the effect of Al addition was sufficiently exerted, and when 7.2 kV-31.5 kA was turned on and off 10 times. The breaking characteristics of the test piece were "passed" without re-ignition and welding. However, when the size of C in the alloy is 25 μm (Comparative Example 9), the cutting characteristics show an average value of 0.9 and a maximum value of 1.8 at the initial stage of opening and closing (during 1 to 100 times of opening and closing), which is a problem. There was not, but late opening and closing (1990
After opening and closing 0 to 20,000 times), the average value increased to 2.5 and the maximum value increased to 3.45 (deterioration of characteristics), and the wear resistance (7.2 kV, 4.4 kA) was cut off 1000 times. (Weight change), the consumption of Example 2 which is the standard is 1,0
The consumption rate reached 6.3 times, and showed a large increase in consumption (characteristic deterioration) and 7.2 kV-31.5.
In the interruption test that turns on and off kA 10 times, 1
Occurrence of re-ignition was observed about 5 times during the turning-on and turning-off of 0 times, and it was judged that the turning-off was "fail" (Comparative Example 9).

【0091】なお、[Cu−TiC]合金、[Cu−T
iC−C]合金中に、補助成分としてAlとCとを同時
に存在させる相乗効果は、耐溶着性の大幅な改善にあ
る。即ち[Cu−TiC]+Alと、[Cu−TiC−
C]+Alとでは、7.2kV−31.5kAを遮断さ
せた場合に、両者が同時に存在する[Cu−TiC−
C]+Alの方が、前者[Cu−TiC]+Alより
も、溶着時の溶着引き外し力が約20%〜30%低減さ
れ、機器の小型化に寄与している。
[Cu-TiC] alloy, [Cu-T]
The synergistic effect of simultaneously presenting Al and C as auxiliary components in the [iC-C] alloy is a significant improvement in the welding resistance. That is, [Cu-TiC] + Al and [Cu-TiC-
With C] + Al, when 7.2 kV-31.5 kA is cut off, both are present simultaneously [Cu-TiC-
Compared to the former [Cu-TiC] + Al, C] + Al has a welding detachment force at the time of welding reduced by about 20% to 30%, which contributes to downsizing of the device.

【0092】一方、[Cu−TiC]合金中の補助成分
がAlのみの[Cu−TiC]+Al合金の特徴は、A
lとCとを同時に存在た[Cu−TiC−C]+Alと
比較して、前記7.2kV−31.5kAの10回の投
入、遮断テストを更に続けた場合に、再点弧の発生率な
ど遮断性能に余裕が見られることにある。従って補助成
分をAlのみとするか、AlとCの両者にするかは、適
宜に目的に応じて選択することができる。
On the other hand, the characteristics of the [Cu-TiC] + Al alloy in which the auxiliary component in the [Cu-TiC] alloy is only Al are:
1 and C were compared with [Cu-TiC-C] + Al, which was present at the same time, and the rate of occurrence of re-ignition was observed when the above-mentioned 7.2 kV-31.5 kA 10-time closing and interruption test was further continued. There is a margin in the blocking performance. Therefore, whether to use only Al as the auxiliary component or to use both Al and C can be appropriately selected according to the purpose.

【0093】なお、顕微鏡観察の結果によれば、Cの平
均粒径を25μmとした比較例9では、接点表面にCの
凝集とCの欠落部分が存在した。
According to the result of microscopic observation, in Comparative Example 9 in which the average particle size of C was 25 μm, there were agglomeration of C and a lacking portion of C on the contact surface.

【0094】実施例22〜24、比較例10 前記実施例、比較例において、[Cu−TiC]系接点
材料、[Cu−TiC−C]系接点材料に対して、前記
所定条件のAlの添加は遮断特性の向上に有益であるこ
とを示した。また[Cu−TiC−C]系接点材料で
は、合金中に非固溶状態若しくは化合物非形成状態で存
在しているCの存在形態もAlの遮断特性の向上効果に
影響を与えることを示した。前記実施例12〜21、比
較例7〜9では、合金中でのCの分散度(最近接するC
粒子間の間隔)を、最近接する2個のC粒子またはC集
合体間の間隔Lが、2個のC粒子またはC集合体の内の
小さい方の直径d以上に隔離している場合(L>d)記
号;X)について示した。しかし、本例のAlの存在効
果は、前記Xに限ることなく遮断特性の向上効果を得る
(以下C粒子はC集合体を包含)。
Examples 22 to 24, Comparative Example 10 In the above Examples and Comparative Examples, addition of Al under the above-mentioned predetermined conditions to the [Cu-TiC] -based contact material and the [Cu-TiC-C] -based contact material. Show that it is beneficial for improving the blocking characteristics. In addition, in the [Cu-TiC-C] -based contact material, it was shown that the existing form of C existing in the alloy in the non-solid solution state or the compound-free state also affects the improving effect of the Al barrier property. . In Examples 12 to 21 and Comparative Examples 7 to 9, the dispersity of C in the alloy (the closest C
(The distance between particles) is such that the distance L between the two closest C particles or C aggregates is greater than or equal to the smaller diameter d of the two C particles or C aggregates (L > D) symbol; X). However, the effect of the presence of Al in this example is not limited to the above-mentioned X, and the effect of improving the blocking property is obtained (hereinafter, C particles include C aggregates).

【0095】即ち、Cの分散度として、最近接する2個
のC粒子間の間隔Lが、2個のC粒子の内の小さい方の
C粒子の直径d以上に隔離しているL>dの場合(記
号;X)、最近接する2個のC粒子間の間隔Lが、2個
のC粒子の内の小さい方のC粒子の直径dと同等かそれ
以上に隔離しているL≧dの場合(記号;Y)、最近接
する2個のC粒子間の間隔Lが、2個のC粒子の内の小
さい方のC粒子の直径d以下しか隔離していないL<d
の場合(記号;Z)の各々にっいて、同様の評価を実施
した。
That is, as the dispersity of C, the interval L between the two C particles closest to each other is L> d such that the distance C between the two C particles is larger than the diameter d of the smaller C particle. In case (symbol; X), the distance L between the two closest C particles is equal to or larger than the diameter d of the smaller C particle of the two C particles, and L ≧ d In the case (symbol: Y), the distance L between the two closest C particles is separated by less than the diameter d of the smaller C particle of the two C particles L <d
In each case (symbol: Z), the same evaluation was performed.

【0096】その結果X、X〜Y、Y−Zの場合には、
裁断特性、耐消耗特性を好ましい値に維持した上で、
7.2kV−31.5kAを10回投入、遮断させた時
の遮断特性も、再点弧の発生、溶着の発生もなく遮断し
「合格」となった(実施例22〜24)。しかし、最近
接する2個のC粒子間の間隔Lが、C粒子の直径dと比
較してL<dの場合(記号;Ζ)には、裁断特性は好ま
しい値の範囲にあったが、耐消耗性(7.2kV、4.
4kAを1000回遮断させた後の重量変化)は、標準
としている実施例2の消耗を1、0とした時の消耗率の
2.4倍に達し、消耗量の増加(特性劣化)を示すと共
に、7.2kV−31.5kAを10回投入、遮断させ
る遮断テストにおいて、10回の投入、遮断中に4回
程、再点弧の発生が見られ、「不合格」の判断となった
(比較例9)。Cの分散度が逆に近接する2個のC粒子
間の間隔Lが、2個のC粒子の内の小さい方のC粒子の
直径d以下に近接しているL≦dの場合(記号;Ζ)で
は、著しい特性の低下を示し、好ましくなかった(比較
例11)。
As a result, in the case of X, X to Y, YZ,
After maintaining the cutting characteristics and wear resistance characteristics at desirable values,
The breaking characteristics when 7.2 kV-31.5 kA was applied and cut off 10 times were also "passed" with no interruption of re-ignition or welding (Examples 22 to 24). However, when the distance L between the two closest C particles is L <d compared with the diameter d of the C particles (symbol; Z), the cutting characteristics were in the preferable value range, but Consumable (7.2 kV, 4.
The weight change after interrupting 4 kA 1000 times) reached 2.4 times the consumption rate when the standard consumption of Example 2 was 1, 0, indicating an increase in consumption (characteristic deterioration). At the same time, in a breaking test in which 7.2 kV-31.5 kA was turned on and off 10 times, re-ignition was observed about 4 times during 10 times making and breaking, and it was judged as “fail” ( Comparative Example 9). On the contrary, when the dispersity of C is such that the distance L between two adjacent C particles is close to or less than the diameter d of the smaller C particle of the two C particles, L ≦ d (symbol; In (Z), the characteristics were significantly deteriorated, which was not preferable (Comparative Example 11).

【0097】実施例25〜26 前記実施例1〜24では、接点合金中の耐弧成分とし
て、チタン炭化物(TiC)を使用した場合について示
したが、本発明ではTiCの一部若しくは総てをバナジ
ウム炭化物(VC)に置換しても全く同等の特性効果を
得ることができる。
Examples 25 to 26 In Examples 1 to 24, the case where titanium carbide (TiC) was used as the arc resistant component in the contact alloy was shown, but in the present invention, a part or all of TiC is used. Even if it is replaced with vanadium carbide (VC), exactly the same characteristic effects can be obtained.

【0098】実施例27〜29 [Cu−TiC]+Alと、[Cu−TiC−C]+A
lに対して、所定量のBi、Te、Sbを添加した合金
では、実施例2の標準材料と比較して、7.2kV−3
1.5kAを遮断させた場合に、溶着引き外し力が約1
/2〜1/5に低減されて、機器の小型化に寄与した
(実施例27〜29)。
Examples 27 to 29 [Cu-TiC] + Al and [Cu-TiC-C] + A
In the alloy in which a predetermined amount of Bi, Te, and Sb were added to 1, the amount of the alloy was 7.2 kV-3 as compared with the standard material of Example 2.
Welding removal force is about 1 when 1.5kA is cut off.
It was reduced to / 2-1 / 5 and contributed to downsizing of the device (Examples 27-29).

【0099】[0099]

【発明の効果】以上詳細に説明したように、本発明であ
る真空バルブ用接点材料によれば、[Cu−TiC]系
合金、[Cu−TiC−C]系合金に対して、補助成分
としてAlを添加して[Cu−TiC]+Al合金、
[Cu−TiC−C]+Al合金としたので、裁断特
性、耐消耗特性を好ましい値に維持た上で、遮断特性を
向上さることができ、接点材料としての性能を大幅に向
上させることができる。
As described in detail above, according to the contact material for a vacuum valve of the present invention, as an auxiliary component to the [Cu-TiC] type alloy and the [Cu-TiC-C] type alloy. By adding Al, [Cu-TiC] + Al alloy,
Since it is made of [Cu-TiC-C] + Al alloy, the breaking property can be improved while maintaining the cutting property and the wear resistance property at a preferable value, and the performance as the contact material can be greatly improved. .

【0100】特に[Cu−TiC−C]+Al合金で
は、化学量論的な形態、TiCの大きさ(平均粒子直
径)、更に[Cu−TiC−C]系合金中に非固溶状態
若しくは化合物非形成状態で存在しているC量、Cの大
きさ、Cの分散度を、好ましい範囲に制御すると共に、
補助成分としてAlを合金化させることによって、安定
した素材を得て、接点特性の安定性を向上させることが
できる。
Particularly, in the [Cu-TiC-C] + Al alloy, the stoichiometric morphology, the size of TiC (average particle diameter), and the non-solid solution state or compound in the [Cu-TiC-C] type alloy. While controlling the amount of C existing in the non-formed state, the size of C, and the dispersity of C within a preferable range,
By alloying Al as an auxiliary component, a stable material can be obtained and the stability of contact characteristics can be improved.

【0101】また、非固溶状態若しくは化合物非形成状
態にあるC量とC粒子の間隙の最適化を図ることによ
り、その結果アークを受けた時に選択的に優先して蒸
発、飛散するCuを少なくなるように制御するのみなら
ず、被アーク時の熱衝撃によっても接点面上には、再点
弧発生に対して有害で著しい亀裂発生を抑止することが
でき、TiC粒子の飛散脱落を軽減することができる。
Further, by optimizing the amount of C and the gap between C particles in the non-solid solution state or the compound non-forming state, Cu which is selectively evaporated and scattered when an arc is received as a result is obtained. Not only control to reduce the number, but also it is possible to suppress the generation of significant cracks on the contact surface due to the re-ignition due to the thermal shock at the time of arcing, and reduce the scattering and dropping of TiC particles. can do.

【0102】このように合金組織の均一化等の改良を図
ったので、アークを受けた後でも接点表面の溶融、飛散
損傷が少なくなり、再点弧抑止に重要な影響を及ぼす接
点表面荒れを少なくし、耐アーク消耗性の向上にも有益
となり、裁断特性、耐消耗特性を維持した上で、遮断特
性をも向上させることができる。
As described above, since the alloy structure is improved to be uniform, the contact surface is less melted and scattered even after it is subjected to an arc, and the contact surface is roughened, which has an important effect on the suppression of re-ignition. It is possible to improve the arc wear resistance by reducing the amount, and it is possible to improve the breaking property while maintaining the cutting property and the wear resistance property.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の真空バルブ用接点材料の実施例及び比
較例の各評価条件を一覧として示した表図である。
FIG. 1 is a table showing a list of respective evaluation conditions of examples and comparative examples of a contact material for a vacuum valve of the present invention.

【図2】本発明の真空バルブ用接点材料の実施例及び比
較例の各評価結果を一覧として示した表図である。
FIG. 2 is a table showing a list of evaluation results of examples and comparative examples of the vacuum valve contact material of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 敦史 東京都府中市東芝町1番地 株式会社東 芝 府中工場内 (72)発明者 関 経世 東京都府中市東芝町1番地 株式会社東 芝 府中工場内 (72)発明者 大島 巖 東京都府中市東芝町1番地 株式会社東 芝 府中工場内 (72)発明者 本間 三孝 東京都府中市東芝町1番地 株式会社東 芝 府中工場内 (72)発明者 染井 宏通 東京都府中市東芝町1番地 株式会社東 芝 府中工場内 (56)参考文献 特開 平5−230565(JP,A) 特開 平4−206121(JP,A) 特開 平8−264082(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01H 33/66 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Atsushi Yamamoto 1st Toshiba Town Fuchu-shi, Tokyo Inside Toshiba Fuchu Factory Co., Ltd. (72) Inventor Kansei Kei 1st Toshiba Town Fuchu-shi Tokyo Toshiba Fuchu Factory Co., Ltd. (72) Inventor Iwao Oshima No. 1 in Toshiba Town Fuchu, Tokyo Fuchu factory (72) Inventor Mitaka Honma No. 1 in Toshiba Town Fuchu, Tokyo Tokyo Fuchu factory (72) Inventor Hiromichi Somei, 1st floor, Toshiba Town, Fuchu City, Tokyo (56) References Japanese Patent Laid-Open No. 5-230565 (JP, A) Japanese Patent Laid-Open No. 4-206121 (JP, A) Japanese Patent Laid-Open No. 8-264082 (JP, A) (58) Fields surveyed (Int.Cl. 7 , DB name) H01H 33/66

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 30〜70容積%の含有量のTiCより
なる耐弧成分と、 70〜30容積%の含有量のCuよりなる導電成分とを
有し、 Alよりなる補助成分を、前記耐弧成分量に対して、
0.005〜0.75重量%含有することを特徴とする
真空バルブ用接点材料。
1. An arc-resistant component made of TiC having a content of 30 to 70% by volume and a conductive component made of Cu having a content of 70 to 30% by volume. For the amount of arc component,
A contact material for a vacuum valve, which contains 0.005 to 0.75% by weight.
【請求項2】 耐弧成分として、0.1〜10μmの平
均粒径を有するTiCが30〜70容積%、Cuよりな
る導電成分が70〜30容積%、大きさが0.01〜5
μmの範面にあり、かつ、非固溶状態若しくは化合物非
形成状態にあるC(以下C)が、前記TiC量に対し
て、0.005〜1.0重量%で構成された[Cu−T
iC−C]接点であって、Alよりなる補助成分を前記
耐弧成分量に対して、0.005〜0.75重量%含有
することを特徴とする真空バルブ用接点材料。
2. As an arc-resistant component, TiC having an average particle diameter of 0.1 to 10 μm is 30 to 70% by volume, a conductive component made of Cu is 70 to 30% by volume, and a size thereof is 0.01 to 5.
C in the range of μm and in a non-solid solution state or a compound-free state (hereinafter C) is composed of 0.005 to 1.0% by weight with respect to the amount of TiC [Cu- T
iC-C] contact material, wherein the auxiliary component made of Al is contained in an amount of 0.005 to 0.75% by weight based on the amount of the arc resistant component.
【請求項3】 前記CuとTiCと、これらにAlを添
加して構成される合金、または前記CuとTiCとC
と、これらにAlを添加して構成される合金中の非固溶
状態若しくは非化合物形成状態にあるCにおける各C粒
子の間隙Lは、最隣接するC粒子の大きさdと同等、若
しくはそれ以上大きくし、前記合金中に高度に分散分布
していることを特徴とする請求項1または2記載の真空
バルブ用接点材料。
3. The Cu and TiC and an alloy formed by adding Al to these, or the Cu, TiC and C
And the gap L between the C particles in C in the non-solid solution state or the non-compound forming state in the alloy formed by adding Al to these is equal to the size d of the most adjacent C particles, or The contact material for a vacuum valve according to claim 1 or 2, wherein the contact material is made larger and is highly dispersed and distributed in the alloy.
【請求項4】 前記CuとTiCと、これらにAlを添
加して構成される合金、または前記CuとTiCとC
と、これらにAlを添加して構成される合金中のTi炭
化物の化学量論的な比率Ti:Cは、1:1〜1:0.
7の範囲にあることを特徴とする請求項1乃至3いずれ
か1記載の真空バルブ用接点材料。
4. The Cu and TiC and an alloy formed by adding Al to these, or the Cu, TiC and C
And the stoichiometric ratio Ti: C of Ti carbide in the alloy formed by adding Al to these is 1: 1 to 1: 0.
7. The vacuum valve contact material according to claim 1, wherein the contact material is in the range of 7.
【請求項5】 前記CuとTiCと、これらにAlを添
加して構成される合金、または前記CuとTiCとC
と、これらにAlを添加して構成される合金中のTi炭
化物の一部または総てをバナジウム炭化物であるVCで
置換したことを特徴とする請求項1乃至4いずれか1記
載の真空バルブ用接点材料。
5. The Cu and TiC and an alloy formed by adding Al to these, or the Cu, TiC and C
5. A vacuum valve according to any one of claims 1 to 4, characterized in that a part or all of the Ti carbide in the alloy formed by adding Al to these is replaced with VC which is vanadium carbide. Contact material.
【請求項6】 前記補助成分のAlとして、最終的に必
要とするAl量の全て若しくは一部を、Cu,TiC,
Cよりなる構成成分の少なくともーつと予め複合化また
は合金化して複合体または合金若しくは化合物にしたも
のを用いることを特徴とする請求項1乃至5いずれか1
記載の真空バルブ用接点材料。
6. As the auxiliary component Al, all or part of the finally required amount of Al is Cu, TiC,
6. A composite, an alloy or a compound which has been previously compounded or alloyed with at least one of the constituent components of C is used.
The contact material for a vacuum valve described.
JP04984898A 1998-03-02 1998-03-02 Contact material for vacuum valve Expired - Fee Related JP3442644B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04984898A JP3442644B2 (en) 1998-03-02 1998-03-02 Contact material for vacuum valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04984898A JP3442644B2 (en) 1998-03-02 1998-03-02 Contact material for vacuum valve

Publications (2)

Publication Number Publication Date
JPH11250783A JPH11250783A (en) 1999-09-17
JP3442644B2 true JP3442644B2 (en) 2003-09-02

Family

ID=12842493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04984898A Expired - Fee Related JP3442644B2 (en) 1998-03-02 1998-03-02 Contact material for vacuum valve

Country Status (1)

Country Link
JP (1) JP3442644B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003031066A (en) 2001-07-17 2003-01-31 Hitachi Ltd Electrode and manufacturing method therefor, breaker and processing method therefor and product
JP5159947B2 (en) * 2009-02-17 2013-03-13 株式会社日立製作所 Electrical contact for vacuum valve and vacuum circuit breaker using the same
CN103981418B (en) * 2014-06-04 2016-03-09 攀枝花学院 TiC/TiB 2/ Al/Cu electrical contact material and its production and use

Also Published As

Publication number Publication date
JPH11250783A (en) 1999-09-17

Similar Documents

Publication Publication Date Title
JP3598195B2 (en) Contact material
JP2778826B2 (en) Contact material for vacuum valve
JP2768721B2 (en) Contact material for vacuum valve
JP3773644B2 (en) Contact material
JPS6277439A (en) Contact point material for vacuum valve
JP3663038B2 (en) Vacuum valve
JP3442644B2 (en) Contact material for vacuum valve
JP4404980B2 (en) Vacuum valve
JP4515696B2 (en) Contact materials for vacuum circuit breakers
JP4159719B2 (en) Method of manufacturing contact material for power vacuum circuit breaker
JPH10199379A (en) Contact material for vacuum breaker
JP3688473B2 (en) Manufacturing method of contact material for vacuum valve
JP2004332046A (en) Contact material for circuit breaker, and vacuum circuit breaker
JP3827991B2 (en) Contact materials for vacuum circuit breakers
JP4515695B2 (en) Contact materials for vacuum circuit breakers
JP3840044B2 (en) Vacuum circuit breaker
JP2692945B2 (en) Contact material for vacuum valve
JP2937620B2 (en) Manufacturing method of contact alloy for vacuum valve
JP2002008499A (en) Vacuum circuit breaker
JP2001243857A (en) Vacuum valve
JPH0779013B2 (en) Contact material for vacuum valve
JP4156867B2 (en) Contact and vacuum circuit breaker equipped with the same
WO2018154848A1 (en) Contact material, method for manufacturing same, and vacuum valve
JP2511019B2 (en) Contact material for vacuum valve
JPH09213153A (en) Contact material for vacuum breaker and manufacture of contact material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090620

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090620

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100620

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100620

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees