JP5159947B2 - Electrical contact for vacuum valve and vacuum circuit breaker using the same - Google Patents

Electrical contact for vacuum valve and vacuum circuit breaker using the same Download PDF

Info

Publication number
JP5159947B2
JP5159947B2 JP2011500352A JP2011500352A JP5159947B2 JP 5159947 B2 JP5159947 B2 JP 5159947B2 JP 2011500352 A JP2011500352 A JP 2011500352A JP 2011500352 A JP2011500352 A JP 2011500352A JP 5159947 B2 JP5159947 B2 JP 5159947B2
Authority
JP
Japan
Prior art keywords
powder
vacuum
electrical contact
vacuum valve
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011500352A
Other languages
Japanese (ja)
Other versions
JPWO2010095163A1 (en
Inventor
菊池  茂
悟 梶原
隆 佐藤
馬場  昇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of JPWO2010095163A1 publication Critical patent/JPWO2010095163A1/en
Application granted granted Critical
Publication of JP5159947B2 publication Critical patent/JP5159947B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/0203Contacts characterised by the material thereof specially adapted for vacuum switches
    • H01H1/0206Contacts characterised by the material thereof specially adapted for vacuum switches containing as major components Cu and Cr
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/664Contacts; Arc-extinguishing means, e.g. arcing rings
    • H01H33/6643Contacts; Arc-extinguishing means, e.g. arcing rings having disc-shaped contacts subdivided in petal-like segments, e.g. by helical grooves

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Switches (AREA)
  • Contacts (AREA)

Description

本発明は、真空遮断器、真空開閉器等に用いられる新規な真空バルブ用電気接点に関する。   The present invention relates to a novel electrical contact for a vacuum valve used for a vacuum circuit breaker, a vacuum switch and the like.

真空遮断器等の受配電機器には、小型・低価格化が求められている。そのためには真空バルブ内の電気接点を低強度化し、ジュール熱により電気接点同士が溶着した際の引離し力を低減することによって、電気接点の開閉動作を行う操作機構部を小型化する必要がある。電気接点の多くはCuマトリックス中にCrを分散させたCr−Cu系焼結合金が用いられ、これを低強度化させる手段として、特許文献1〜3に示すようにTeなどの低融点金属を添加する方法が用いられている。   Power receiving and distribution equipment such as a vacuum circuit breaker is required to be small and inexpensive. For this purpose, it is necessary to reduce the strength of the electrical contacts in the vacuum valve and to reduce the pulling force when the electrical contacts are welded together by Joule heat, thereby reducing the size of the operating mechanism that performs the opening and closing operation of the electrical contacts. is there. Most of the electrical contacts are made of a Cr—Cu based sintered alloy in which Cr is dispersed in a Cu matrix. As a means for reducing the strength, a low melting point metal such as Te is used as shown in Patent Documents 1 to 3. The method of adding is used.

特開2005−135778号公報JP 2005-135778 A 特開2006−140073号公報JP 2006-140073 A 特開2003−223834号公報Japanese Patent Laid-Open No. 2003-223834

従来のCr−Cu系電気接点において、溶着発生時の接点の引離しを容易にする耐溶着成分、あるいは電流遮断後の接点表面の荒れの抑制成分としてTe等の低融点金属が数重量%添加されていた。この程度の量の低融点金属を添加すると、通電成分であるCuマトリックスに欠陥が生じたり焼結が不十分となりやすく、良好な通電性能や遮断性能が得られない場合がある。また、真空バルブを真空封止ろう付けして製作する場合、電気接点から低融点金属が揮散してろう付け部の健全性を損ない、真空バルブ内の真空度低下を招く恐れがあった。一方、低融点金属添加量が適正量よりも少ない場合には、電気接点の低強度化が十分でなく、引離し力の低減効果が不足する場合があった。   In conventional Cr-Cu-based electrical contacts, several parts by weight of low melting point metals such as Te are added as an anti-welding component that facilitates the separation of contacts when welding occurs, or as a component that suppresses contact surface roughness after current interruption. It had been. When this amount of low melting point metal is added, defects may be generated in the Cu matrix that is a current-carrying component or sintering may be insufficient, and good current-carrying performance and interruption performance may not be obtained. Also, when the vacuum valve is manufactured by vacuum sealing brazing, the low melting point metal is volatilized from the electrical contacts, which impairs the soundness of the brazed part and may cause a decrease in the degree of vacuum in the vacuum valve. On the other hand, when the amount of the low melting point metal added is less than the appropriate amount, the strength of the electrical contact is not sufficiently reduced, and the effect of reducing the separating force may be insufficient.

本発明の目的は、従来技術の問題を解消し、溶着引離し力の低減効果を十分に発揮し優れた遮断性能と通電性能を有するとともに、真空遮断器等の大幅な小型化を可能とする電気接点およびそれを用いた真空遮断器を提供することにある。   The object of the present invention is to solve the problems of the prior art, fully exhibit the effect of reducing the welding pull-off force, have excellent breaking performance and energization performance, and enable significant downsizing of vacuum circuit breakers and the like It is to provide an electrical contact and a vacuum circuit breaker using the same.

本発明の電気接点は、Cuマトリックス中に分散されたCr粉末を有し、前記Cr粉末表面にCuに対して非反応・非固溶成分からなる被覆層を設けたことを特徴とする。   The electrical contact of the present invention is characterized in that it has Cr powder dispersed in a Cu matrix, and a coating layer made of a non-reactive / non-solid component with respect to Cu is provided on the Cr powder surface.

また、前記非反応・非固溶成分からなる被覆層は、C、Mo、Wのいずれか1種からなることを特徴とする。   Further, the coating layer comprising the non-reacting / non-solid solution component is characterized by comprising any one of C, Mo, and W.

また、前記Cr粉末表面の非反応・非固溶成分からなる被覆層の厚さは、0.01μm以上であることを特徴とする。   Further, the thickness of the coating layer made of non-reactive and non-solid components on the surface of the Cr powder is 0.01 μm or more.

また、前記Cr粉末表面の75%以上が前記非反応・非固溶成分からなる被覆層により被覆されていることを特徴とする。   Further, 75% or more of the surface of the Cr powder is covered with a coating layer made of the non-reactive / non-solid solution component.

また、Cr粉末の前記被覆層とCuマトリックスとの界面は、その70%〜90%に空隙が存在することを特徴とする。   The interface between the coating layer of Cr powder and the Cu matrix is characterized in that voids are present in 70% to 90% thereof.

また、前記Cr粉末の含有量が15〜40重量%とし、電気接点の遮断性能を保証することを特徴とする。   Further, the content of the Cr powder is 15 to 40% by weight, and the electric contact breaking performance is guaranteed.

さらに、電気接点の製造方法において、Cu粉末と、Cuに対する非反応・非固溶成分を被覆したCr粉末とを混合して得られる混合粉末を加圧成形し、Cuの融点以下の温度で加熱焼結することを特徴とする。   Furthermore, in the electrical contact manufacturing method, a mixed powder obtained by mixing Cu powder and Cr powder coated with a non-reactive / non-soluble component with respect to Cu is pressed and heated at a temperature not higher than the melting point of Cu. It is characterized by sintering.

さらに、前記Cr粉末の粒径は104μm以下であり、前記Cu粉末の粒径は61μm以下とし、Cr粉末のCuマトリックス中の分散性を確保し、Cu粉末の焼結性を確保することを特徴とする。   Further, the Cr powder has a particle size of 104 μm or less, the Cu powder has a particle size of 61 μm or less, ensures dispersibility of the Cr powder in the Cu matrix, and ensures the sinterability of the Cu powder. And

また、円盤形状をなし、該円板形状の円中心に形成された中心孔と、該中心孔に対して非接触で円中心から外周部に向かって形成された複数本の貫通したスリット溝とを有し、前記円盤形状部材が上述の構成を有する電気接点からなり、前記円盤形状部材のアーク発生面の反対面に一体に接合された電極棒を有する電極であることを特徴とする。   A disk-shaped central hole formed at the center of the disk-shaped circle, and a plurality of through slit grooves formed from the center of the circle toward the outer periphery without contact with the center hole; And the disk-shaped member is an electrode having an electrode bar integrally formed on the surface opposite to the arc generating surface of the disk-shaped member.

また、真空容器内に一対の固定側電極及び可動側電極を備えた真空バルブにおいて、前記固定側電極及び可動側電極の少なくとも一方が、上述した電気接点を有することを特徴とする。   Further, in the vacuum valve provided with a pair of fixed side electrode and movable side electrode in the vacuum vessel, at least one of the fixed side electrode and the movable side electrode has the above-described electrical contact.

また、真空容器内に一対の固定側電極及び可動側電極を備えた真空バルブと、該真空バルブ内の前記固定側電極及び可動側電極の各々に前記真空バルブ外に接続された導体端子と、前記可動側電極を駆動する開閉手段とを備えた真空遮断器において、前記真空バルブが上述の真空バルブからなることを特徴とする。   A vacuum valve having a pair of fixed and movable electrodes in a vacuum vessel; and a conductor terminal connected to the fixed and movable electrodes inside the vacuum valve outside the vacuum valve; In a vacuum circuit breaker provided with opening / closing means for driving the movable side electrode, the vacuum valve is composed of the above-described vacuum valve.

本発明の電気接点はCrとCu、およびCuと非反応・非固溶の成分を有し、Cuマトリックス中にCr粉末が分散され、かつCr粉末表面にCuと非反応・非固溶の成分からなる被覆層を有し、焼結過程においてCrとCu間に空隙を生成してCrがCuに固溶することによる両者の強固な結合を防ぎCrとCuとの界面強度を低下させ、溶着した電気接点同士を引離す力を小さくすることができる。   The electrical contact of the present invention has Cr and Cu, and Cu and non-reactive / non-solid components, Cr powder is dispersed in the Cu matrix, and Cu and non-reactive / non-solid components are present on the surface of the Cr powder. The coating layer is made of, and in the sintering process, voids are formed between Cr and Cu, and the solid bonding of Cr and Cu prevents solid bonding between the two, reducing the interfacial strength between Cr and Cu, and welding Thus, the force for separating the electrical contacts can be reduced.

本発明の原理を示す模式図。The schematic diagram which shows the principle of this invention. 本発明の実施例1に係る電極の構造を示す水平断面図。The horizontal sectional view which shows the structure of the electrode which concerns on Example 1 of this invention. 図2におけるII−II線断面図。II-II sectional view taken on the line in FIG. 本発明の実施例2に係る真空バルブの模式図。The schematic diagram of the vacuum valve which concerns on Example 2 of this invention. 本発明の実施例3に係る真空遮断器の模式図。The schematic diagram of the vacuum circuit breaker which concerns on Example 3 of this invention. 本発明の実施例4に係る路肩設置変圧器用負荷開閉器の模式図。The schematic diagram of the load switch for roadside installation transformers which concerns on Example 4 of this invention.

符号の説明Explanation of symbols

1…電気接点、1a…固定側電気接点、1b…可動側電気接点、2…スリット溝、4、4a、4b…電極棒、6a…固定側電極、6b…可動側電極、14…真空バルブ、17…上部端子、18…集電子、G…空隙、A…被覆層 DESCRIPTION OF SYMBOLS 1 ... Electrical contact, 1a ... Fixed side electrical contact, 1b ... Movable side electrical contact, 2 ... Slit groove 4, 4a, 4b ... Electrode rod, 6a ... Fixed side electrode, 6b ... Movable side electrode, 14 ... Vacuum valve, 17 ... upper terminal, 18 ... current collector, G ... gap, A ... coating layer

本発明者らは、低融点金属を添加したCr−Cu焼結電気接点における強度低減をもたらす原因が、Cr粉末とCuマトリックスの間の物理的乖離によることを見出した。すなわち、従来の焼結過程において低融点金属は優先的に溶融移動してCrとCuの界面に空隙を形成させ、界面強度の低下をもたらし、接点材料としての強度を低下させる。このことから、Cr粉末表面をCuと非反応・非固溶の成分で被覆すれば、焼結過程におけるCuマトリックスの焼結収縮に伴って、より確実にCrとCuが物理的に乖離するとの知見を得た。   The present inventors have found that the cause of the strength reduction in the Cr—Cu sintered electrical contact to which the low melting point metal is added is due to a physical separation between the Cr powder and the Cu matrix. That is, in the conventional sintering process, the low melting point metal is preferentially melted and moved to form voids at the interface between Cr and Cu, resulting in a decrease in interface strength and a decrease in strength as a contact material. From this, if the Cr powder surface is coated with a non-reactive / non-solid component of Cu, Cr and Cu are more physically physically separated along with the sintering shrinkage of the Cu matrix during the sintering process. Obtained knowledge.

図1に本発明の原理を模式図で説明する。(a)はCuマトリックス中のCr粒子界面を示す。Cr−Cu系ではCrマトリックス中に若干のCrが拡散し固溶層Sを形成し強固な固着力を発生するため、耐溶着性が悪い。(b)は耐溶着性を改善するためにTeを添加した例を示す。焼結過程の進行に従いTeが溶融移動しCr−Cu間に(Cuマトリックスの収縮に伴う)空隙Gが形成されるため、耐溶着性が改善される。(c)は本発明の構成を示す。Cr表面にCrと非反応・非固溶成分である物質の被覆層Aを設けることにより、焼結過程でCr−Cu間に空隙Gが形成され耐溶着性が改善される。   FIG. 1 is a schematic diagram illustrating the principle of the present invention. (A) shows the Cr particle interface in the Cu matrix. In the case of the Cr—Cu system, some Cr diffuses in the Cr matrix to form the solid solution layer S and generate a strong fixing force, so that the welding resistance is poor. (B) shows an example in which Te is added to improve the welding resistance. As the sintering process proceeds, Te melts and moves to form a gap G between Cr and Cu (according to the shrinkage of the Cu matrix), so that the welding resistance is improved. (C) shows the configuration of the present invention. By providing the coating layer A of a substance that is a non-reactive / non-solid component with Cr on the Cr surface, voids G are formed between Cr and Cu during the sintering process, and the welding resistance is improved.

このCuと非反応・非固溶の被覆層Aの成分としては、C、Mo、Wのいずれか1種が望ましい。これらの成分をCr粉末に被覆することにより、CrがCuに固溶して両者の結合が強まることを防ぐことができる。また、C、Mo、Wのいずれか1種のみを使用することにより、非反応・非固溶成分同士の反応による化合物生成に伴う被覆層の脆化破壊を防ぐことができる。   As a component of the coating layer A that is non-reactive / non-solid solution with Cu, any one of C, Mo, and W is desirable. By coating these components with Cr powder, it is possible to prevent Cr from dissolving in Cu and strengthening the bond between them. Further, by using only one of C, Mo, and W, it is possible to prevent embrittlement destruction of the coating layer due to the compound generation due to the reaction between the non-reacting / non-solid solution components.

Cr粉末表面への非反応・非固溶成分の被覆層Aの被覆厚さは0.01μm以上とし、この被覆厚さを有する被覆面積をCr粉末表面の75%以上とすることにより、上述のCrとCuの界面強度低減効果が得られる。厚さ、面積ともこの値より小さいと、CrがCuに固溶するのを防ぐ効果が十分でなく、溶着引離し力を低減する効果が得られない。   The coating thickness of the coating layer A of the non-reactive / non-solid component on the Cr powder surface is set to 0.01 μm or more, and the coating area having this coating thickness is set to 75% or more of the Cr powder surface. The effect of reducing the interfacial strength between Cr and Cu is obtained. If the thickness and area are smaller than these values, the effect of preventing Cr from dissolving in Cu is not sufficient, and the effect of reducing the welding separation force cannot be obtained.

Cr粉末表面への非反応・非固溶成分の被覆層Aにより、焼結後の被覆層AとCuマトリックスとの界面には空隙Gが生じる。これは、被覆層AとCuマトリックスとの界面で化学的な結合が生じず、Cuの焼結収縮に伴って界面で物理的に乖離するためである。この空隙Gは、界面の70%〜90%に存在することが望ましい。この値より小さいと、界面強度低減効果が不十分となる。なお、空隙Gは界面の90%以上であることがより良いが、界面形状の影響などにより物理的に接触する箇所があるため、90%を越える空隙率は生じにくい。   Due to the coating layer A of the non-reactive / non-solid component on the surface of the Cr powder, a gap G is generated at the interface between the sintered coating layer A and the Cu matrix. This is because chemical bonding does not occur at the interface between the coating layer A and the Cu matrix, and physically separates at the interface with Cu sintering shrinkage. This gap G is desirably present in 70% to 90% of the interface. If it is smaller than this value, the effect of reducing the interface strength becomes insufficient. It is better that the gap G is 90% or more of the interface, but since there is a portion that physically contacts due to the influence of the interface shape or the like, a void ratio exceeding 90% hardly occurs.

以上のような、Cr粉末表面への非反応・非固溶成分の被覆層Aによる溶着引離し力の低減効果を得るためには、Cr粉末と非反応・非固溶成分との間で反応生成物(化合物)を形成しないことが望ましい。これは、Cr粉末の周囲に化合物が生成すると、化合物層が分解した場合に、含まれるCrがCuマトリックスに固溶し、CrとCuの界面の結合を促進して界面強度が低下しない可能性があるためである。また、化合物を生成すると、反応に伴いCr粉末が微細化して耐電圧性能が向上する可能性があるが、一方でCr特有の遮断性能が損なわれる恐れがある。したがって、Cr粉末表面は、C、Mo、Wのいずれか1種からなるCuと非反応・非固溶成分の単体層で被覆されることが、本発明の目的を解決する上で好ましい。   In order to obtain the effect of reducing the welding separation force by the coating layer A of the non-reactive / non-solid component on the Cr powder surface as described above, the reaction between the Cr powder and the non-reactive / non-solid component It is desirable not to form a product (compound). This is because, when a compound is formed around Cr powder, when the compound layer is decomposed, the contained Cr may be dissolved in the Cu matrix, and the bonding at the interface between Cr and Cu may be promoted and the interface strength may not be lowered. Because there is. Further, when the compound is produced, the Cr powder may be refined with the reaction and the withstand voltage performance may be improved. On the other hand, there is a risk that the interruption performance unique to Cr may be impaired. Therefore, the surface of the Cr powder is preferably coated with a single layer of Cu and non-reacting / non-solid component of any one of C, Mo and W in order to solve the object of the present invention.

本発明の電気接点におけるCrの含有量は15〜40重量%の範囲にあることが望ましい。Cr量がこれより少ないと耐電圧性能が低下し、これより多いと通電性能が低下するとともに焼結性が低下して緻密な電気接点の製造が困難になり、十分な遮断性能が得られない。   The Cr content in the electrical contact of the present invention is desirably in the range of 15 to 40% by weight. If the Cr content is less than this, the withstand voltage performance will be reduced, and if it is more than this, the current-carrying performance will be reduced and the sinterability will be reduced, making it difficult to produce dense electrical contacts, and sufficient breaking performance will not be obtained. .

本発明の電気接点の製造方法は、Cuの粉末と、Cuと非反応・非固溶の成分を被覆したCr粉末とを混合し、この混合粉末を加圧成形した後、Cuの融点以下の温度で加熱焼結するもので、比較的容易に低コストで製造することが可能になる。Cr粉末の非反応・非固溶成分による被覆は、蒸着などの物理気相析出法や、他の表面処理技術を応用することによって可能であり、メカノフュージョン法などの機械的複合化技術を応用することもできる。混合粉末の加圧成形は、最終形状の金型を用いて成形することにより、加熱焼結後に機械加工を用いることなく、最終形状の電気接点を製造することができる。この加熱焼結は真空中、または不活性あるいは還元性雰囲気中で行うことにより、加熱中の酸化を防止し、真空バルブを高真空に保つことができる。用いる原料粉末の粒径は、Cr粉末が104μm以下、Cu粉末が61μm以下とすることが望ましい。それぞれの粒径がこの値より大きいと、焼結後の組織の均一性が低下し、電流遮断時における接点面においてCuが溶出し、溶着が発生しやすくなる。   The method for producing an electrical contact of the present invention comprises mixing Cu powder and Cr powder coated with Cu and a non-reactive / non-soluble component, press-molding this mixed powder, and then having a melting point of Cu or lower. Since it is heated and sintered at a temperature, it can be manufactured relatively easily at low cost. Coating of Cr powder with non-reactive and non-solid components is possible by applying physical vapor deposition methods such as vapor deposition and other surface treatment technologies, and applying mechanical composite technology such as mechano-fusion methods. You can also The pressure forming of the mixed powder can be performed by using a final-shaped mold, whereby an electrical contact having a final shape can be manufactured without using machining after heat sintering. This heat sintering is performed in a vacuum or in an inert or reducing atmosphere, so that oxidation during heating can be prevented and the vacuum valve can be kept at a high vacuum. The particle size of the raw material powder used is desirably 104 μm or less for Cr powder and 61 μm or less for Cu powder. If each particle size is larger than this value, the uniformity of the structure after sintering is reduced, Cu is eluted at the contact surface at the time of current interruption, and welding tends to occur.

本発明の電気接点を用いた電極は、円盤形状をなし、この円板形状の円中心に形成された中心孔と、この中心孔に対して非接触で円中心から外周部に向かって形成された複数本の貫通したスリット溝とを有し、さらに円盤形状部材のアーク発生面の反対面に一体に接合された電極棒を有するもので、円盤形状部材が本発明の電気接点からなることにより、遮断性能に優れ、溶着引離し力の小さい所望の性能を有する電極が得られる。   The electrode using the electrical contact of the present invention has a disk shape, and a center hole formed at the center of the disk-shaped circle, and is formed from the center of the circle toward the outer periphery without contacting the center hole. A plurality of slit grooves penetrating through and an electrode rod integrally joined to the surface opposite to the arc generating surface of the disk-shaped member, the disk-shaped member comprising the electrical contact of the present invention. Thus, an electrode having a desired performance which is excellent in blocking performance and has a small welding separation force can be obtained.

本発明に係る真空バルブは、真空容器内に一対の固定側電極及び可動側電極を備え、その少なくとも一方が、本発明の電気接点を用いた電極からなるものである。また、本発明に係る真空遮断器は、少なくとも一方に本発明の電気接点を用いた固定側電極及び可動側電極を真空容器内に備えた真空バルブと、この真空バルブ内の固定側電極及び可動側電極の各々に真空バルブ外に接続された導体端子と、可動側電極を駆動する開閉手段とを備えたものである。これにより、優れた遮断性能や通電性能を有し、電気接点同士が溶着した際の引離し力が小さく、操作機構部を小型化することができ、小型で低価格の真空遮断器、さらには各種真空開閉装置が得られる。   The vacuum valve according to the present invention includes a pair of fixed and movable electrodes in a vacuum vessel, at least one of which is an electrode using the electrical contact according to the present invention. Further, the vacuum circuit breaker according to the present invention includes a vacuum valve provided with at least one of a fixed side electrode and a movable side electrode using the electric contact of the present invention in a vacuum vessel, and the fixed side electrode and the movable side electrode in the vacuum valve. Each of the side electrodes is provided with a conductor terminal connected to the outside of the vacuum valve and an opening / closing means for driving the movable side electrode. As a result, it has excellent breaking performance and energization performance, has a small pulling force when the electrical contacts are welded to each other, can reduce the size of the operation mechanism, and is a small and low-priced vacuum circuit breaker. Various vacuum switchgears are obtained.

以下、発明を実施するための最良の形態を実施例によって詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   Hereinafter, the best mode for carrying out the invention will be described in detail by way of examples, but the present invention is not limited to these examples.

表1に示す組成の電気接点を作製し、これを用いて電極を作製した。   An electrical contact having the composition shown in Table 1 was produced, and an electrode was produced using the electrical contact.

Figure 0005159947
図2は作製した電極の構造を示す水平断面図、図3は図2のII-II線断面図である。図2、図3において、1は電気接点、2はアークに駆動力を与えるためのスリット溝、3はステンレス製の補強板、4は電極棒、5はろう材、44は電気接点1の中央にアークが発生して停滞するのを防ぐための中央孔である。
Figure 0005159947
FIG. 2 is a horizontal sectional view showing the structure of the fabricated electrode, and FIG. 3 is a sectional view taken along the line II-II in FIG. 2 and 3, 1 is an electrical contact, 2 is a slit groove for applying a driving force to the arc, 3 is a stainless steel reinforcing plate, 4 is an electrode rod, 5 is a brazing material, and 44 is the center of the electrical contact 1. This is a central hole for preventing an arc from occurring and stagnating.

電気接点1の作製方法は次の通りである。まず、Cuと非反応・非固溶の成分であるMoを、Cr粉末に被覆した。本実施例では、Cr粉末(粒径88μm以下)とMo粉末(粒径0.7μm)をダンシングミキサで強負荷混合することによりMo被覆を施した。Mo被覆層の厚さおよびCr粉末表面に対する被覆面積率は、Mo粉末の混合量と混合時間によって調整した。   The manufacturing method of the electrical contact 1 is as follows. First, Mo, which is a non-reactive / non-solid component with Cu, was coated on a Cr powder. In this example, Cr coating (particle size of 88 μm or less) and Mo powder (particle size: 0.7 μm) were subjected to heavy load mixing with a dancing mixer to provide Mo coating. The thickness of the Mo coating layer and the coating area ratio with respect to the Cr powder surface were adjusted by the mixing amount and mixing time of the Mo powder.

次にこのMo被覆Cr粉末と、粒径60μm以下のCu粉末とを、表1のCr含有量となるような配合比でV型混合器により混合した。続いて、この混合粉末を、円盤形状の金型に充填し、油圧プレスにより400MPaの圧力で加圧成形した。成形体の密度は、およそ73%であった。これを圧力40Paの水素雰囲気中で、1060℃×2時間加熱して焼結し、電気接点1の素材となる焼結体を作製した。得られた焼結体の相対密度は、およそ96%であった。   Next, this Mo-coated Cr powder and Cu powder having a particle size of 60 μm or less were mixed by a V-type mixer at a blending ratio such that the Cr content in Table 1 was obtained. Subsequently, the mixed powder was filled in a disk-shaped mold and pressure-molded with a hydraulic press at a pressure of 400 MPa. The density of the molded body was approximately 73%. This was heated and sintered at 1060 ° C. for 2 hours in a hydrogen atmosphere at a pressure of 40 Pa to produce a sintered body as a material for the electrical contact 1. The relative density of the obtained sintered body was approximately 96%.

得られた焼結体を機械加工し、図2に示す形状の電気接点1を作製した。なお、スリット溝2および中央孔44を有する最終形状を形作ることのできる金型に混合粉末を充填し、焼結する方法によっても電気接点1を得ることができ、この方法では機械加工などの後加工が不要であるため、容易に製作が可能である。   The obtained sintered body was machined to produce an electrical contact 1 having the shape shown in FIG. The electrical contact 1 can also be obtained by a method in which a mixed powder is filled in a mold that can form a final shape having the slit groove 2 and the central hole 44 and sintered, and in this method, after machining, etc. Since processing is not required, it can be easily manufactured.

実施例1の比較例として、Cuに固溶するNiをCr粉末に被覆した電気接点(表1のNo.10)を作製した。Cr粉末へのNi被覆はめっき法により行い、その後の工程は上記と同様である。   As a comparative example of Example 1, an electrical contact (No. 10 in Table 1) in which Ni that was dissolved in Cu was coated with Cr powder was prepared. Ni coating on the Cr powder is performed by a plating method, and the subsequent steps are the same as described above.

また、別の比較例として、従来材の一つであるTeを添加した電気接点(表1のNo.11)を作製した。これは、上記Cr粉末およびCu粉末とともに、Te粉末(粒径45μm以下)をV型混合器により混合した後、成形・焼結して作製した。加圧成形条件、焼結条件は上記と同様である。   As another comparative example, an electrical contact (No. 11 in Table 1) to which Te which is one of conventional materials was added was produced. This was prepared by mixing Te powder (particle size of 45 μm or less) together with the Cr powder and Cu powder with a V-type mixer, followed by molding and sintering. The pressure molding conditions and sintering conditions are the same as above.

さらに別の比較例として、Cr以外の耐火性金属として、Cuと非反応・非固溶成分であるMoを用いた電気接点(表1のNo.12)を作製した。これは、上記のCu粉末とともにMo粉末(粒径63μm以下)をV型混合器により混合した後、成形・焼結して作製した。加圧成形条件、焼結条件は上記と同様である。   As another comparative example, an electrical contact (No. 12 in Table 1) using Cu as a refractory metal other than Cr and Mo which is a non-reactive / non-solid component was prepared. This was prepared by mixing Mo powder (particle size of 63 μm or less) together with the above Cu powder with a V-type mixer, followed by molding and sintering. The pressure molding conditions and sintering conditions are the same as above.

電極の作製方法は次の通りである。電極棒4を無酸素銅で、また、補強板3をSUS304であらかじめ機械加工により作製しておき、前記の焼結および機械加工で得られた電気接点1、補強板3、電極棒4それぞれの間にろう材5を載置し、これを8.2×10−4Pa以下の真空中で970℃×10分間加熱し、図3に示す電極を作製した。この電極は定格電圧7.2kV、定格電流600A、定格遮断電流20kA用の真空バルブに用いられる電極である。なお、電気接点1の強度が十分であれば、補強板3は省いてもよい。The method for producing the electrode is as follows. The electrode bar 4 is made of oxygen-free copper, and the reinforcing plate 3 is made by machining in advance with SUS304. The brazing material 5 was placed between them, and this was heated in a vacuum of 8.2 × 10 −4 Pa or less at 970 ° C. × 10 minutes to produce the electrode shown in FIG. This electrode is used for a vacuum valve for a rated voltage of 7.2 kV, a rated current of 600 A, and a rated breaking current of 20 kA. If the strength of the electrical contact 1 is sufficient, the reinforcing plate 3 may be omitted.

実施例1で作製した電極を用いて真空バルブを作製した。真空バルブの仕様は定格電圧7.2kV、定格電流600A、定格遮断電流20kAである。   A vacuum valve was produced using the electrode produced in Example 1. The specifications of the vacuum valve are a rated voltage of 7.2 kV, a rated current of 600 A, and a rated breaking current of 20 kA.

図4は、本実施例に係る真空バルブ14の構造を示す模式図である。図4において、1aは固定側電気接点、1bは可動側電気接点、3a、3bは補強板、4aは固定側電極棒、4bは可動側電極棒で、これらにより固定側電極6a、可動側電極6bを構成する。なお、実施例2では、固定側と可動側の電気接点のスリット溝2が接触面において一致するように設置している。   FIG. 4 is a schematic diagram showing the structure of the vacuum valve 14 according to the present embodiment. In FIG. 4, 1a is a fixed-side electrical contact, 1b is a movable-side electrical contact, 3a and 3b are reinforcing plates, 4a is a fixed-side electrode rod, and 4b is a movable-side electrode rod. 6b is configured. In the second embodiment, the slit grooves 2 of the electric contacts on the fixed side and the movable side are installed so as to coincide with each other on the contact surface.

可動側電極6bは、遮断時の金属蒸気等の飛散を防ぐ可動側シールド8を介して可動側ホルダー12にろう付け接合される。これらは、固定側端板9a、可動側端板9b及び絶縁筒13によって高真空にろう付け封止され、固定側電極6a及び可動側ホルダー12のネジ部をもって外部導体と接続される。絶縁筒13の内面には、遮断時の金属蒸気等の飛散を防ぐシールド7が設けられ、また、可動側端板9bと可動側ホルダー12の間には摺動部分を支えるためのガイド11が設けられる。可動側シールド8と可動側端板9bの間にはべローズ10が設けられており、真空バルブ14内を真空に保ったまま、可動側ホルダー12を上下させて固定側電極6aと可動側電極6bを開閉させることができる。   The movable side electrode 6b is brazed and joined to the movable side holder 12 via a movable side shield 8 that prevents scattering of metal vapor or the like at the time of interruption. These are brazed and sealed to a high vacuum by the fixed side end plate 9a, the movable side end plate 9b, and the insulating cylinder 13, and are connected to the external conductor through the screw portions of the fixed side electrode 6a and the movable side holder 12. A shield 7 is provided on the inner surface of the insulating cylinder 13 to prevent scattering of metal vapor or the like at the time of interruption, and a guide 11 for supporting a sliding portion is provided between the movable side end plate 9b and the movable side holder 12. Provided. A bellows 10 is provided between the movable side shield 8 and the movable side end plate 9b, and the fixed side electrode 6a and the movable side electrode are moved up and down by moving the movable side holder 12 while keeping the vacuum valve 14 in a vacuum. 6b can be opened and closed.

次に、実施例2で作製した真空バルブを搭載した真空遮断器を作製した。図5は、本発明に係る真空バルブ14とその操作機構を示す真空遮断器を示す模式図である。   Next, a vacuum circuit breaker equipped with the vacuum valve produced in Example 2 was produced. FIG. 5 is a schematic diagram showing a vacuum circuit breaker showing the vacuum valve 14 and its operation mechanism according to the present invention.

真空遮断器は、操作機構部を前面に配置し、背面に真空バルブ14を支持する3相一括型の3組のエポキシ筒15を配置した構造である。真空バルブ14は、絶縁操作ロッド16を介して操作機構部によって開閉される。   The vacuum circuit breaker has a structure in which three sets of three-phase epoxy cylinders 15 that support the vacuum valve 14 are disposed on the back surface with the operation mechanism portion disposed on the front surface. The vacuum valve 14 is opened and closed by the operation mechanism unit via the insulating operation rod 16.

真空遮断器が閉路状態の場合、電流は上部端子17、電気接点1a、1b、集電子18、下部端子19を流れる。電極間の接触力は、絶縁操作ロッド16に装着された接触バネ20によって保たれている。電極間の接触力および短絡電流による電磁力は、支えレバー21およびプロップ22で保持されている。投入コイル30を励磁すると開路状態からプランジャ23がノッキングロッド24を介してローラ25を押し上げ、主レバー26を回して電極間を閉じたあと、支えレバー21で保持している。   When the vacuum circuit breaker is closed, current flows through the upper terminal 17, the electrical contacts 1 a and 1 b, the current collector 18, and the lower terminal 19. The contact force between the electrodes is maintained by a contact spring 20 attached to the insulating operation rod 16. The contact force between the electrodes and the electromagnetic force due to the short-circuit current are held by the support lever 21 and the prop 22. When the closing coil 30 is excited, the plunger 23 pushes up the roller 25 through the knocking rod 24 from the open circuit state, rotates the main lever 26 to close the space between the electrodes, and then holds it with the support lever 21.

真空遮断器を開路する場合は、引き外しコイル27を励磁すると、引き外しレバー28がプロップ22の係合を外し、主レバー26が回って電極間が開かれる。真空遮断器が開路状態では、電極間が開かれたあと、リセットバネ29によってリンクが復帰し、同時にプロップ22が係合する。この状態で投入コイル30を励磁すると閉路状態になる。なお、31は排気筒である。   When opening the vacuum circuit breaker, when the tripping coil 27 is excited, the tripping lever 28 disengages the prop 22 and the main lever 26 rotates to open the electrodes. In the open circuit state of the vacuum circuit breaker, after the electrodes are opened, the link is restored by the reset spring 29 and the prop 22 is engaged at the same time. When the closing coil 30 is excited in this state, a closed state is obtained. In addition, 31 is an exhaust pipe.

実施例1で作製した電気接点を実施例2で示した定格電圧7.2kV、定格電流600A、定格遮断電流20kAの真空バルブに用い、実施例3で示した真空遮断器に搭載して性能試験を行った。   The electrical contact produced in Example 1 is used for the vacuum valve with the rated voltage of 7.2 kV, the rated current of 600 A, and the rated breaking current of 20 kA shown in Example 2, and is mounted on the vacuum circuit breaker shown in Example 3 for performance test. Went.

表1は、電気接点組成と性能試験結果を示す表であり、No.1〜No.5が本発明実施例、No.6〜No.12が比較例を示す。各性能は従来の接点材であるNo.11の結果を基準とし、相対値で表わした。   Table 1 is a table showing the electrical contact composition and performance test results. 1-No. No. 5 is an example of the present invention, No. 6-No. 12 shows a comparative example. Each performance is No. which is a conventional contact material. The results were expressed as relative values based on 11 results.

なお、Cr粉末の被覆層厚さは、被覆後のCr粉末を樹脂埋め後、粉末断面を研磨し、電子顕微鏡およびX線分析装置を用いて測定した値である。被覆層の面積率は、粉末表面における被覆成分分布をX線分析装置により測定し、粉末表面積に対する被覆成分検出面積の比で表わした。耐火性金属粉末あるいはその被覆層とCuマトリックスの界面における空隙率は、焼結後の電気接点断面を電子顕微鏡により観察し、界面長さに対する空隙存在長さの比で表わした。   The coating layer thickness of the Cr powder is a value measured using an electron microscope and an X-ray analyzer after polishing the coated Cr powder and polishing the powder cross section. The area ratio of the coating layer was represented by the ratio of the coating component detection area to the powder surface area measured by measuring the coating component distribution on the powder surface with an X-ray analyzer. The porosity at the interface between the refractory metal powder or its coating layer and the Cu matrix was expressed by the ratio of the void existing length to the interface length by observing a cross section of the sintered electrical contact with an electron microscope.

No.6はCr粉末表面のMo被覆層の厚さ、面積率ともに本発明の範囲に満たないもので、従来材のNo.11に比べて引離し性に劣る。   No. No. 6 does not satisfy the range of the present invention in both the thickness and area ratio of the Mo coating layer on the Cr powder surface. Compared to 11, it is inferior in separability.

No.7は被覆層の面積率が本発明の範囲に満たないもので、CrのCuに対する固溶がある程度抑制されて通電性が向上するものの引離し性は劣り、従来材のNo.11に代わるだけの利点がない。   No. No. 7 has an area ratio of the coating layer that is less than the range of the present invention. Although the solid solution of Cr to Cu is suppressed to some extent and the electrical conductivity is improved, the separability is inferior. There is no advantage to replace 11.

No.8およびNo.9は、電気接点におけるCr含有量が本発明の範囲外のものである。No.8は高抵抗のCrが少ないために通電性や電流遮断性能に優れ、Cr粉末のMo被覆により引離し性の向上が見られるが、耐電圧性能が低下する。No.9は耐火性金属であるCrが多いため耐電圧性能に優れるとともに、Mo被覆面積の絶対値が大きくなり引離し性の大幅な向上が見られるが、通電性や電流遮断性能が低下する。   No. 8 and no. In No. 9, the Cr content in the electrical contact is outside the scope of the present invention. No. No. 8 is excellent in current-carrying performance and current interruption performance because it has a small amount of high-resistance Cr, and the separability is improved by the Mo coating of Cr powder. No. No. 9 has excellent withstand voltage performance due to the large amount of Cr, which is a refractory metal, and the absolute value of the Mo coating area is increased and a significant improvement in the separability can be seen, but the conductivity and current interruption performance are reduced.

No.10は、Cuに固溶する成分であるNiをCr粉末に被覆したもので、Cr粉末のNi被覆面積率はほぼ100%であるものの、焼結後にはNiがCuマトリックスに固溶するため、界面の空隙はほとんど生じない。これにより、Cuマトリックスの導電性は低下し、通電性や電流遮断性能が大幅に低下するとともに、引離し性に劣る。このことから、Cr粉末の被覆成分はCuと非反応・非固溶であることが必要といえる。   No. 10 is a coating of Ni, which is a component that dissolves in Cu, on the Cr powder. Although the Ni coating area ratio of the Cr powder is almost 100%, Ni is dissolved in the Cu matrix after sintering. There are almost no voids at the interface. Thereby, the electroconductivity of Cu matrix falls, and while electroconductivity and electric current interruption performance fall significantly, it is inferior to separability. From this, it can be said that the coating component of Cr powder needs to be non-reactive and non-solid solution with Cu.

No.12は、Cuと非反応・非固溶成分であるMoを、耐火性金属としてCrに代えて含有させたものである。MoはCuマトリックスに固溶せず、界面の空隙が十分に生じているため、通電性や引離し性が向上するとともに耐電圧性も高いが、MoはCrに比べて電流遮断に対する寄与が小さいため、電流遮断性能の大幅な低下が見られる。   No. No. 12 contains Mo which is a non-reactive / non-solid component with Cu as a refractory metal instead of Cr. Mo does not dissolve in the Cu matrix, and there are sufficient gaps at the interface. Therefore, conductivity and detachability are improved and withstand voltage is high, but Mo contributes less to current interruption than Cr. For this reason, the current interruption performance is significantly reduced.

以上の比較例に比べて本発明実施例に係るNo.1〜No.5は、いずれも引離し性が大幅に向上し、他の性能に関しても著しい低下は見られない。なお、通電性、電流遮断性能および耐電圧性はCr含有量の影響が大きいため、No.3およびNo.5でCr量によってこれらの性能が低下するが、いずれも実用上は支障のない範囲である。   Compared to the above comparative example, the No. 1-No. In all cases, the separability of 5 is greatly improved, and no significant deterioration is observed in other performances. In addition, since the influence of Cr content is large for the current carrying performance, the current interruption performance and the voltage resistance, No. 3 and no. These performances are reduced by the amount of Cr at 5, but both are practically acceptable.

このように、本発明に係る電気接点によって、優れた遮断性能、通電性能および耐電圧性能を有しながら、CrとCuの界面強度を低下させることで溶着した接点同士の引離し力を大幅に低減することができ、操作機構部の小型化が実現可能な真空バルブおよび真空遮断器が得られる。   Thus, the electrical contact according to the present invention greatly improves the separation force between the welded contacts by reducing the interfacial strength of Cr and Cu while having excellent breaking performance, energization performance and withstand voltage performance. Thus, a vacuum valve and a vacuum circuit breaker that can be reduced and the operation mechanism portion can be reduced in size can be obtained.

実施例2で作製した真空バルブを、真空遮断器以外の真空開閉装置に搭載した。図6は、実施例2で作製した真空バルブ14を搭載した路肩設置変圧器用の負荷開閉器を示す模式図である。   The vacuum valve produced in Example 2 was mounted on a vacuum switchgear other than the vacuum circuit breaker. FIG. 6 is a schematic diagram showing a load switch for a roadside installation transformer on which the vacuum valve 14 produced in Example 2 is mounted.

この負荷開閉器は、主回路開閉部に相当する真空バルブ14が、真空封止された外側真空容器32内に複数対収納されたものである。外側真空容器32は、上部板材33と下部板材34及び側部板材35を備え、各板材の周囲(縁)が互いに溶接によって接合されているとともに、設備本体とともに設置されている。   In this load switch, a plurality of pairs of vacuum valves 14 corresponding to main circuit switching units are housed in a vacuum-sealed outer vacuum container 32. The outer vacuum container 32 includes an upper plate member 33, a lower plate member 34, and a side plate member 35, and the periphery (edge) of each plate member is joined to each other by welding and is installed together with the equipment main body.

上部板材33には、上部貫通孔36が形成されており、各上部貫通孔36の縁には環状の絶縁性上部ベース37が各上部貫通孔36を覆うように固定されている。そして、各上部ベース37の中央に形成された円形空間部には、円柱状の可動側電極棒4bが往復動(上下動)自在に挿入されている。すなわち、各上部貫通孔36は上部ベース37と可動側電極棒4bによって閉塞されている。   An upper through hole 36 is formed in the upper plate member 33, and an annular insulating upper base 37 is fixed to an edge of each upper through hole 36 so as to cover each upper through hole 36. A cylindrical movable electrode rod 4b is inserted into a circular space formed at the center of each upper base 37 so as to freely reciprocate (up and down). That is, each upper through hole 36 is closed by the upper base 37 and the movable electrode rod 4b.

可動側電極棒4bの軸方向端部(上部側)は、外側真空容器32の外部に設置される電磁操作器に連結されるようになっている。また、上部板材33の下部側には、各上部貫通孔36の縁に沿って外側ベローズ38が上下方向に往復動自在に配置されており、各外側ベローズ38は、軸方向の一端側が上部板材33の下部側に固定され、軸方向の他端側が各可動側電極棒4bの外周面に装着されている。すなわち、外側真空容器32を密閉構造とするために、各上部貫通孔36の縁には各可動側電極棒4bの軸方向に沿って外側ベローズ38が配置されている。また、上部板材33には排気管(図示省略)が連結され、この排気管を介して外側真空容器32内が真空排気されるようになっている。   The axial end (upper side) of the movable electrode rod 4b is connected to an electromagnetic operating device installed outside the outer vacuum vessel 32. Further, on the lower side of the upper plate member 33, an outer bellows 38 is disposed so as to reciprocate in the vertical direction along the edge of each upper through hole 36. Each outer bellows 38 has an upper plate member on one end side in the axial direction. The other end side in the axial direction is fixed to the outer peripheral surface of each movable electrode rod 4b. That is, in order to make the outer vacuum container 32 have a hermetically sealed structure, outer bellows 38 are arranged at the edge of each upper through hole 36 along the axial direction of each movable electrode rod 4b. In addition, an exhaust pipe (not shown) is connected to the upper plate member 33, and the inside of the outer vacuum vessel 32 is evacuated through the exhaust pipe.

一方、下部板材34には下部貫通孔39が形成されており、各下部貫通孔39の縁には絶縁性ブッシング40が各下部貫通孔39を覆うように固定されている。各絶縁性ブッシング40の底部には、環状の絶縁性下部ベース41が固定されている。そして、各下部ベース41の中央の円形空間部には、円柱状の固定側電極棒4aが挿入されている。すなわち、下部板材34に形成された下部貫通孔39は、それぞれ絶縁性ブッシング40、下部ベース41、及び固定側電極棒4aによって閉塞されている。そして、固定側電極棒4aの軸方向の下部側は、外側真空容器32の外部に配置された配電ケーブルに連結されるようになっている。   On the other hand, a lower through hole 39 is formed in the lower plate member 34, and an insulating bushing 40 is fixed to an edge of each lower through hole 39 so as to cover each lower through hole 39. An annular insulating lower base 41 is fixed to the bottom of each insulating bushing 40. A cylindrical fixed electrode rod 4a is inserted into the circular space at the center of each lower base 41. That is, the lower through holes 39 formed in the lower plate member 34 are closed by the insulating bushing 40, the lower base 41, and the fixed electrode rod 4a, respectively. The lower side in the axial direction of the fixed electrode rod 4a is connected to a power distribution cable disposed outside the outer vacuum vessel 32.

外側真空容器32の内部には、負荷開閉器の主回路開閉部に相当する真空バルブ14が収納されており、各可動側電極棒4bは、2つの湾曲部を有する可撓性をもつフレキシブル導体42を介して互いに連結されている。フレキシブル導体42は、軸方向において2つの湾曲部を有する導電性板材である銅板とステンレス板を交互に複数枚積層して構成されている。フレキシブル導体42には貫通孔43が形成されており、各貫通孔43に各可動側電極棒4bを挿入して互いに連結される。   Inside the outer vacuum vessel 32 is housed a vacuum valve 14 corresponding to the main circuit opening / closing portion of the load switch, and each movable electrode bar 4b has a flexible flexible conductor having two curved portions. They are connected to each other via 42. The flexible conductor 42 is configured by alternately laminating a plurality of copper plates and stainless steel plates, which are conductive plate materials having two curved portions in the axial direction. A through hole 43 is formed in the flexible conductor 42, and each movable electrode rod 4 b is inserted into each through hole 43 and connected to each other.

以上のように、実施例2で作製した本発明に係る真空バルブは、路肩設置変圧器用の負荷開閉器にも適用可能であり、これ以外の真空絶縁スイッチギアなどの各種真空開閉装置にも適用できる。

As described above, the vacuum valve according to the present invention produced in Example 2 can be applied to a load switch for a roadside installation transformer, and also applied to various vacuum switchgears such as a vacuum insulation switchgear. it can.

Claims (5)

Cuマトリックスと、Cuマトリックス中に分散されたCr粉末とを有する電気接点において、前記Cr粉末表面にCuに対して非反応・非固溶成分からなる被覆層を設け、前記被覆層は、C、Mo、Wのいずれか1種からなり、前記被覆層の厚さは、0.01μm以上であり、前記Cr粉末表面の75%以上が前記被覆層により被覆されており、前記Cr粉末の前記被覆層と前記Cuマトリックスとの界面は、その70%〜90%に空隙が存在することを特徴とする電気接点。 In an electrical contact having a Cu matrix and Cr powder dispersed in the Cu matrix, a coating layer made of a non-reactive and non-solid component with respect to Cu is provided on the surface of the Cr powder. It consists of any one of Mo and W, the thickness of the coating layer is 0.01 μm or more, and 75% or more of the surface of the Cr powder is coated with the coating layer, and the coating of the Cr powder An electrical contact characterized in that voids exist in 70% to 90% of the interface between the layer and the Cu matrix. 請求項1に記載の電気接点において、前記Cr粉末の含有量が15〜40重量%であることを特徴とする電気接点。The electrical contact according to claim 1 , wherein the content of the Cr powder is 15 to 40% by weight. 円盤形状をなし、該円板形状の円中心に形成された中心孔と、該中心孔に対して非接触で円中心から外周部に向かって形成された複数本の貫通したスリット溝とを有し、前記円盤形状部材が請求項1又は2に記載された電気接点からなり、前記円盤形状部材のアーク発生面の反対面に一体に接合された電極棒を有することを特徴とする電極。It has a disk shape, and has a center hole formed at the center of the disk-shaped circle and a plurality of through slit grooves formed from the center of the circle toward the outer periphery without contacting the center hole. An electrode comprising: an electrode rod comprising the electrical contact according to claim 1 or 2 and integrally joined to a surface opposite to an arc generating surface of the disk-shaped member. 真空容器内に一対の固定側電極及び可動側電極を備えた真空バルブにおいて、前記固定側電極及び可動側電極の少なくとも一方が、請求項に記載の電極からなることを特徴とする真空バルブ。A vacuum valve comprising a pair of fixed and movable electrodes in a vacuum vessel, wherein at least one of the fixed and movable electrodes comprises the electrode according to claim 3 . 真空容器内に一対の固定側電極及び可動側電極を備えた真空バルブと、該真空バルブ内の前記固定側電極及び可動側電極の各々に前記真空バルブ外に接続された導体端子と、前記可動側電極を駆動する開閉手段とを備えた真空遮断器において、前記真空バルブが請求項に記載の真空バルブからなることを特徴とする真空遮断器。A vacuum valve having a pair of fixed-side electrode and movable-side electrode in a vacuum vessel; a conductor terminal connected to each of the fixed-side electrode and movable-side electrode in the vacuum valve; and the movable terminal A vacuum circuit breaker comprising an opening / closing means for driving a side electrode, wherein the vacuum valve comprises the vacuum valve according to claim 4 .
JP2011500352A 2009-02-17 2009-02-17 Electrical contact for vacuum valve and vacuum circuit breaker using the same Expired - Fee Related JP5159947B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/000618 WO2010095163A1 (en) 2009-02-17 2009-02-17 Electrical contact for vacuum valve and vacuum circuit breaker using the same

Publications (2)

Publication Number Publication Date
JPWO2010095163A1 JPWO2010095163A1 (en) 2012-08-16
JP5159947B2 true JP5159947B2 (en) 2013-03-13

Family

ID=42633470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011500352A Expired - Fee Related JP5159947B2 (en) 2009-02-17 2009-02-17 Electrical contact for vacuum valve and vacuum circuit breaker using the same

Country Status (3)

Country Link
JP (1) JP5159947B2 (en)
CN (1) CN102308353B (en)
WO (1) WO2010095163A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112658243B (en) * 2020-11-21 2022-10-25 陕西斯瑞新材料股份有限公司 Preparation method of CuW/CuCr integral contact

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1173830A (en) * 1997-09-01 1999-03-16 Shibafu Eng Kk Vacuum valve
JP2003223834A (en) * 2002-01-31 2003-08-08 Hitachi Ltd Electrical contact member and manufacturing method therefor

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS598015B2 (en) * 1978-05-31 1984-02-22 三菱電機株式会社 Vacuum shield contact
JPS5619832A (en) * 1979-07-27 1981-02-24 Mitsubishi Electric Corp Vacuum breaker contact
DE3378439D1 (en) * 1982-08-09 1988-12-15 Meidensha Electric Mfg Co Ltd Contact material of vacuum interrupter and manufacturing process therefor
JPS603822A (en) * 1983-06-22 1985-01-10 株式会社明電舎 Electrode material of vacuum interrupter and method of producing same
JPH10199379A (en) * 1997-01-13 1998-07-31 Shibafu Eng Kk Contact material for vacuum breaker
JP3442644B2 (en) * 1998-03-02 2003-09-02 芝府エンジニアリング株式会社 Contact material for vacuum valve
JP2000188045A (en) * 1998-12-24 2000-07-04 Hitachi Ltd Vacuum breaker, vacuum bulb used therefor and its electrode
JP2003183749A (en) * 2001-12-13 2003-07-03 Toshiba Corp Vacuum circuit-breaker and contact material for this
CN1256744C (en) * 2002-08-08 2006-05-17 株式会社东芝 Vacuum breaker
CN100428386C (en) * 2005-01-31 2008-10-22 北京京东方真空电器有限责任公司 Arc-resistance piece structure and vacuum switch contact
JP2006233298A (en) * 2005-02-25 2006-09-07 Toshiba Corp Contact material for vacuum valve and its production method
JP2007018835A (en) * 2005-07-07 2007-01-25 Hitachi Ltd Electric contact for vacuum circuit breaker and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1173830A (en) * 1997-09-01 1999-03-16 Shibafu Eng Kk Vacuum valve
JP2003223834A (en) * 2002-01-31 2003-08-08 Hitachi Ltd Electrical contact member and manufacturing method therefor

Also Published As

Publication number Publication date
CN102308353A (en) 2012-01-04
JPWO2010095163A1 (en) 2012-08-16
WO2010095163A1 (en) 2010-08-26
CN102308353B (en) 2015-09-30

Similar Documents

Publication Publication Date Title
JP4979604B2 (en) Electrical contacts for vacuum valves
US7704449B2 (en) Electrode, electrical contact and method of manufacturing the same
JP2007018835A (en) Electric contact for vacuum circuit breaker and its manufacturing method
WO2011162398A1 (en) Method for producing electrode material for vacuum circuit breaker, electrode material for vacuum circuit breaker and electrode for vacuum circuit breaker
US7662208B2 (en) Electrical contacts for vacuum circuit breakers and methods of manufacturing the same
JP2005135778A (en) Electric contact and its manufacturing method, electrode for vacuum bulb, vacuum bulb using it, and vacuum interrupter
JP6051142B2 (en) Electrical contact for vacuum valve and manufacturing method thereof
WO2018142709A1 (en) Method for manufacturing electrode material, and electrode material
US20060081560A1 (en) Vacuum circuit breaker, vacuum interrupter, electric contact and method of manufacturing the same
JP2011108380A (en) Electric contact for vacuum valve, and vacuum interrupter using the same
JP5159947B2 (en) Electrical contact for vacuum valve and vacuum circuit breaker using the same
JP2010061935A (en) Electrical contacts, methods of manufacturing the same, and switchgear for electric power
JP4988489B2 (en) Electrical contact
JP2008021590A (en) Electrical contact for vacuum valve, its manufacturing method, electrode for vacuum valve, vacuum valve, and vacuum breaker
JPH1012103A (en) Vacuum circuit-breaker, and vacuum valve and electric contact using the breaker
WO2011024228A1 (en) Electric contact point for vacuum valve, and vacuum interrupter and vacuum switchgear using the electric contact point
JP2000188045A (en) Vacuum breaker, vacuum bulb used therefor and its electrode
JP2004342441A (en) Electric contact and its manifacturing method, vacuum valve using it and each use
JP3627712B2 (en) Vacuum circuit breaker and vacuum valve and electrical contact used therefor
JP3039552B2 (en) Electrode material for vacuum interrupter and method for manufacturing the same
JP2007059107A (en) Electrical contact
JP2011014240A (en) Electric contact for vacuum valve, and vacuum switching device using it
JP2007213813A (en) Electrical contact and its manufacturing method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121211

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees