JP2011014240A - Electric contact for vacuum valve, and vacuum switching device using it - Google Patents

Electric contact for vacuum valve, and vacuum switching device using it Download PDF

Info

Publication number
JP2011014240A
JP2011014240A JP2009154512A JP2009154512A JP2011014240A JP 2011014240 A JP2011014240 A JP 2011014240A JP 2009154512 A JP2009154512 A JP 2009154512A JP 2009154512 A JP2009154512 A JP 2009154512A JP 2011014240 A JP2011014240 A JP 2011014240A
Authority
JP
Japan
Prior art keywords
contact
layer
conductive layer
highly conductive
electrical contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009154512A
Other languages
Japanese (ja)
Inventor
Shigeru Kikuchi
茂 菊池
Masahito Kobayashi
将人 小林
Satoru Kajiwara
悟 梶原
Miki Yamazaki
美稀 山崎
Takashi Sato
隆 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2009154512A priority Critical patent/JP2011014240A/en
Publication of JP2011014240A publication Critical patent/JP2011014240A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Switches (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
  • Contacts (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electric contact for a vacuum valve with excellent breaking performance, and a vacuum switching device for responding to enlargement of capacity.SOLUTION: The electrical contact consists of at least two layer of a contact layer and a highly-conductive layer fitted on a side connecting to a conductor against the contact layer. The contact layer consists of a sintered body containing Cr, Cu and Te, the highly-conductive layer consists of a sintered body containing Cu and carbon fiber, and Cr carbide exits between the contact layer and the highly-conductive layer. The conductivity of the highly-conductive layer is improved through the carbon fiber, and peeling between layers is prevented through existence of Cr carbide between the contact layer and the highly-conductive layer.

Description

本発明は、真空遮断器,真空スイッチギヤ等に用いられる新規な真空バルブ用電気接点に関する。   The present invention relates to a novel electric contact for a vacuum valve used for a vacuum circuit breaker, a vacuum switchgear and the like.

真空遮断器等,真空を媒体とした電流開閉機器は、環境への影響が小さいことから、ガス遮断器等への代替が進められている。その場合、真空遮断器等では大容量化(大電流の遮断性能)が求められている。   Current switchgear using vacuum as a medium, such as a vacuum circuit breaker, has little influence on the environment, and is therefore being replaced by a gas circuit breaker. In that case, a large capacity (breaking performance of a large current) is required for a vacuum circuit breaker or the like.

一般の真空開閉機器では、Cr−Cu系の電気接点が用いられる。大電流遮断のための電気接点部材は、通電容量を大きくし、良好な熱伝導を保つため、高密度であることが必要である。また、通電ジュール熱により接点同士が溶着した際の引離し力を小さくするため、接点部材強度は小さいことが望ましい。例えば特開2005−135778号公報(特許文献1),特開2006−140073号公報(特許文献2),特開2009−076218号公報(特許文献3)では、Cr−Cu系の高密度成形体を不活性雰囲気中で焼結するとともに、Teなどの低融点金属を添加することにより、高密度化と低強度化の両立を図っている。   In general vacuum switchgear, Cr—Cu electric contacts are used. The electrical contact member for interrupting a large current needs to have a high density in order to increase the current carrying capacity and maintain good heat conduction. Further, it is desirable that the strength of the contact member is small in order to reduce the pulling force when the contacts are welded by the energized Joule heat. For example, in JP-A-2005-135778 (Patent Document 1), JP-A-2006-140073 (Patent Document 2), and JP-A-2009-076218 (Patent Document 3), a Cr-Cu-based high-density molded body Is sintered in an inert atmosphere and a low melting point metal such as Te is added to achieve both high density and low strength.

特開2005−135778号公報JP 2005-135778 A 特開2006−140073号公報JP 2006-140073 A 特開2009−076218号公報JP 2009-076218 A

電気接点の接点面と反対の側にCuを主成分とする高導電層を設けると、高電気伝導化を図ることが可能となる。電気抵抗は小さくなり、通電容量を更に大きくし、発生ジュール熱量を抑えるために有効である。   When a highly conductive layer containing Cu as a main component is provided on the side opposite to the contact surface of the electrical contact, high electrical conductivity can be achieved. This is effective for reducing the electrical resistance, further increasing the current carrying capacity, and suppressing the amount of generated Joule heat.

電気接点を焼結製法により製造した場合、ニアネット成形により後加工を不要とすることができ、製造の容易化が可能であり、量産がしやすい。しかしながら、焼結製法で製造された高導電層には少なからず気孔等の欠陥が存在するため、Cuインゴット(溶製材)並みの導電率は得られにくい。また、接点層と高導電層の界面の剥離を抑制するために、熱変形を吸収するための溝を設けるなどの形状上の対策が必要で、生産性が低下する恐れがある。   When electrical contacts are manufactured by a sintering method, post-processing can be eliminated by near net molding, manufacturing can be facilitated, and mass production is easy. However, since the highly conductive layer manufactured by the sintering method has defects such as pores, it is difficult to obtain a conductivity equivalent to that of a Cu ingot (melted material). In addition, in order to suppress peeling at the interface between the contact layer and the highly conductive layer, a countermeasure on the shape such as providing a groove for absorbing thermal deformation is required, which may reduce productivity.

したがって本発明の目的は、二層以上からなる電気接点において、従来よりも電気・熱伝導性に優れた高導電層とするとともに、二層間の剥離を抑制し、大容量化に対応可能な電気接点を提供することにある。   Accordingly, an object of the present invention is to provide a high-conductivity layer that is superior in electrical and thermal conductivity compared to conventional electrical contacts consisting of two or more layers, and suppresses the separation between the two layers, and can be used for a large capacity. It is to provide a contact.

通常、電気接点は円盤形状を有する。本発明の電気接点は厚さ方向に少なくとも2つの層、具体的には接点層と、前記接点層に対し導体に接続する側に設けられた高導電層からなるものである。前記接点層はCrとCuとTeを含む。また、前記高導電層はCuと炭素繊維を含む。高導電層は、焼結により接点層側にCr炭化物を生成している。   Usually, the electrical contact has a disk shape. The electrical contact of the present invention comprises at least two layers in the thickness direction, specifically, a contact layer and a highly conductive layer provided on the side of the contact layer connected to the conductor. The contact layer includes Cr, Cu, and Te. The highly conductive layer includes Cu and carbon fiber. The highly conductive layer generates Cr carbide on the contact layer side by sintering.

炭素繊維は、アスペクト比(繊維長さ/繊維径)が50〜150で、かつ、繊維径は300nm以下のものが好ましい。また、高導電層に含まれる炭素繊維の量は、0.1〜1.5重量%であることが好ましい。   The carbon fiber preferably has an aspect ratio (fiber length / fiber diameter) of 50 to 150 and a fiber diameter of 300 nm or less. Moreover, it is preferable that the quantity of the carbon fiber contained in a highly conductive layer is 0.1 to 1.5 weight%.

接点層と高導電層の間には、接点層と高導電層の中間的な組成よりなる層(CrとCuとTeを含む層)を設けてもよい。接点層と中間層との間に、前記Cr炭化物が存在する。   A layer (a layer containing Cr, Cu, and Te) having an intermediate composition between the contact layer and the highly conductive layer may be provided between the contact layer and the highly conductive layer. The Cr carbide is present between the contact layer and the intermediate layer.

上記の電気接点は、固定側,可動側のいずれの電極として使用してもよい。接点層側が相対する電極に近接して配置され、高導電層は、導体に接続される。   The above-mentioned electrical contact may be used as either a fixed side or a movable side electrode. The contact layer side is disposed close to the opposing electrode, and the highly conductive layer is connected to the conductor.

上記の電気接点は、接点層をなす成分の粉末を所望の組成に配合し、接点層の混合粉末とし、同様に中間層をなす成分の混合粉末,高導電層をなす成分の混合粉末を用意し、これらを層状に成型容器内に入れて一体に加圧成型し、成型体を銅の融点以下で加熱焼結することにより提供される。加熱焼結は還元雰囲気中あるいは不活性雰囲気中で行う。   For the above electrical contacts, the powder of the component forming the contact layer is blended into the desired composition to make the mixed powder of the contact layer. Similarly, the mixed powder of the component forming the intermediate layer and the mixed powder of the component forming the highly conductive layer are prepared. Then, these are provided in a layered form in a molding container and integrally pressure-molded, and the molded body is heated and sintered below the melting point of copper. Heat sintering is performed in a reducing atmosphere or an inert atmosphere.

本願でいう電極とは、電気接点の高導電層の面に一体に接合された電極棒を有する部材である。本願でいう真空バルブとは、真空容器内に一対の電極(固定側電極および可動側電極)を備えたものである。さらに、本願でいう真空遮断器は、真空容器内に一対の電極(固定側電極および可動側電極)を備えた真空バルブを有し、真空バルブ内の固定側電極および可動側電極の各々に接続され、バルブ外に引き出された導体端子と、前記可動側電極を駆動する開閉手段とを備えたものである。本願でいう真空開閉機器とは、真空バルブを導体によって複数接続し、可動側電極を駆動する開閉手段を備えたものである。上記の一対の電極のうち、少なくともいずれか一方を上述の炭素繊維を含む電極とすることが好ましい。   The electrode referred to in the present application is a member having an electrode bar integrally joined to the surface of the highly conductive layer of the electrical contact. The vacuum valve referred to in the present application includes a pair of electrodes (a fixed electrode and a movable electrode) in a vacuum vessel. Furthermore, the vacuum circuit breaker referred to in the present application has a vacuum valve having a pair of electrodes (a fixed side electrode and a movable side electrode) in a vacuum vessel, and is connected to each of the fixed side electrode and the movable side electrode in the vacuum valve And a conductor terminal drawn out of the bulb and an opening / closing means for driving the movable electrode. The vacuum opening / closing device referred to in the present application includes an opening / closing means for connecting a plurality of vacuum valves with a conductor and driving a movable electrode. It is preferable that at least one of the pair of electrodes is an electrode including the above-described carbon fiber.

上記の本発明によれば、容易、安価に製造可能、かつ、大容量化の可能な電気接点を提供することができ、真空バルブ,真空遮断器等に適用できる。   According to the present invention, it is possible to provide an electrical contact that can be easily and inexpensively manufactured and can have a large capacity, and can be applied to a vacuum valve, a vacuum circuit breaker, and the like.

電気接点および電極の構造を示す図。The figure which shows the structure of an electrical contact and an electrode. 真空バルブの構造を示す図。The figure which shows the structure of a vacuum valve. 真空遮断器の構造を表す図。The figure showing the structure of a vacuum circuit breaker. 路肩設置変圧器用負荷開閉器の構造を表す図。The figure showing the structure of the load switch for roadside installation transformers.

以下、本発明の電気接点のさらに細部を説明する。電気接点は一般的に略円盤形状を有し、本発明は少なくとも厚さ方向に2つの層からなる電気接点部材を想定している。接点層をCr−Cu系の合金とすることで、優れた遮断性能,耐電圧性能を有し、電気接点として必要な性能を満足することができる。接点面と反対の側に高導電層を設けることによって、電気接点全体の熱および電気の伝導性を向上させ、通電時のジュール熱の発生を抑制し、耐溶着性および通電性能に優れた電気接点とすることができる。   Hereinafter, further details of the electrical contact of the present invention will be described. The electrical contact generally has a substantially disk shape, and the present invention assumes an electrical contact member composed of at least two layers in the thickness direction. By using a Cr—Cu alloy as the contact layer, it has excellent breaking performance and withstand voltage performance, and can satisfy the performance required as an electrical contact. By providing a highly conductive layer on the opposite side of the contact surface, the heat and electrical conductivity of the entire electrical contact is improved, the generation of Joule heat during energization is suppressed, and the electric resistance is excellent in welding resistance and energization performance. It can be a contact.

接点層と高導電層の間に、それらの中間的な組成からなる一または複数の中間層を設けてもよい。この場合、電気接点は厚さ方向に複数の層からなる。中間層を設けることで、製造過程における接点層と高導電層の収縮差から生ずる応力を緩和し、反りや層間剥離などの不具合の発生を防止できるとともに、通電時における熱膨張差を緩和し、反りによる接触抵抗増加を抑えることができる。   One or a plurality of intermediate layers having an intermediate composition may be provided between the contact layer and the highly conductive layer. In this case, the electrical contact is composed of a plurality of layers in the thickness direction. By providing an intermediate layer, the stress resulting from the shrinkage difference between the contact layer and the highly conductive layer in the manufacturing process can be relaxed, the occurrence of defects such as warpage and delamination can be prevented, and the thermal expansion difference during energization can be mitigated, An increase in contact resistance due to warping can be suppressed.

上記の接点層はCrとCuとTeからなる。一方、導体に接続する側の高導電層はCuと炭素繊維からなる。接点層にTeを含むことによって、Cr粒子とCuマトリックスとの界面結合を弱めることができ、接点層の強度低下に伴う溶着引離し力の低減が可能となる。なお、実施例で後述する溶浸製法においては、加熱温度が比較的高いためにTeの揮散減少が生じ、上記効果が期待できないため、Teの添加は特に焼結法において有効である。   The contact layer is made of Cr, Cu and Te. On the other hand, the highly conductive layer on the side connected to the conductor is made of Cu and carbon fiber. By including Te in the contact layer, it is possible to weaken the interface bond between the Cr particles and the Cu matrix, and it is possible to reduce the welding separation force accompanying a decrease in the strength of the contact layer. In addition, in the infiltration manufacturing method described later in the examples, since the heating temperature is relatively high, the volatilization reduction of Te occurs, and the above effect cannot be expected. Therefore, the addition of Te is particularly effective in the sintering method.

接点層(もしくは接点層と高導電層の間に設けられた中間層)にCrを含み、高導電層に炭素繊維を含むことにより、接点層(もしく中間層)のCrと高導電層の炭素繊維との反応により界面にCr炭化物が生成する。Cr炭化物により、接点層(もしく中間層)と高導電層の結合が強固になり、層間剥離などの不具合を抑制できる。   By including Cr in the contact layer (or an intermediate layer provided between the contact layer and the highly conductive layer) and carbon fiber in the highly conductive layer, the Cr of the contact layer (or intermediate layer) and the highly conductive layer Cr carbide is generated at the interface by reaction with the carbon fiber. Cr carbide strengthens the bond between the contact layer (or intermediate layer) and the highly conductive layer, and can suppress problems such as delamination.

上記の炭素繊維は、高い導電率・熱伝導率を有し、電気接点全体の熱・電気伝導率の向上に寄与する。特に、繊維長さ/繊維径で表わされるアスペクト比が50〜150で、かつ、繊維径は300nm以下のものが望ましい。アスペクト比がこの範囲であると、導電率、および熱伝導率の向上が十分であるとともに、繊維の屈折などが生じにくい。アスペクト比が小さすぎると、導電率、および熱伝導率の向上が小さい。またアスペクト比が大きすぎると、繊維の屈折などにより熱・電気伝導性の改善効果が小さくなる場合がある。なお、炭素繊維を特定方向(例えば電気接点の厚さ方向など)に配向させると、より効率的な熱・電気伝導性の改善が可能となる。   The carbon fiber has high electrical conductivity and thermal conductivity, and contributes to improvement of the thermal and electrical conductivity of the entire electrical contact. In particular, it is desirable that the aspect ratio represented by the fiber length / fiber diameter is 50 to 150 and the fiber diameter is 300 nm or less. When the aspect ratio is within this range, the conductivity and thermal conductivity are sufficiently improved, and fiber refraction is hardly caused. When the aspect ratio is too small, the improvement in conductivity and thermal conductivity is small. On the other hand, if the aspect ratio is too large, the effect of improving thermal and electrical conductivity may be reduced due to fiber refraction. If the carbon fibers are oriented in a specific direction (for example, the thickness direction of the electrical contact), more efficient thermal / electrical conductivity can be improved.

高導電層に混合する炭素繊維の量は、炭素繊維を0.1〜1.5重量%が好ましい。この程度の混合により充分に熱伝導性・電気伝導性の改善効果を発現する。炭素繊維が0.1重量%以下では、量が少ないため、熱・電気伝導性の改善効果が小さい。1.5重量%以上添加すると、炭素繊維がCuマトリックスの緻密化を阻害する場合があり、電気接点全体の熱伝導性・電気伝導性が低下する。   The amount of carbon fiber mixed in the highly conductive layer is preferably 0.1 to 1.5% by weight of carbon fiber. By this degree of mixing, the effect of improving the thermal conductivity and electrical conductivity is fully exhibited. When the amount of carbon fiber is 0.1% by weight or less, since the amount thereof is small, the effect of improving heat and electrical conductivity is small. When added in an amount of 1.5% by weight or more, the carbon fibers may inhibit the densification of the Cu matrix, and the thermal conductivity and electrical conductivity of the entire electrical contact are lowered.

上記の電気接点は、以下に示す焼結法により製造することができる。すなわち、接点層をなす成分の粉末を所望の組成に配合した混合粉末と、中間層をなす成分の粉末と炭素繊維を所望の組成に配合した混合粉末と、高導電層をなすCu粉末と炭素繊維を所望の組成に配合した混合粉末とを、層状に一体に加圧成形した後、Cuの融点以下で加熱焼結する。それぞれの層を構成する混合粉末を層状にし、一体に成形することにより、焼結時の層間剥離を防止できる。また、焼結法で製造することにより、接点層の硬さは比較的低く、また、CuマトリクスにCrの固溶がなく高導電性を有するため、相手側接点との接触抵抗を低減し、ジュール熱の発生を抑制することができる。この焼結は、還元雰囲気中あるいは不活性雰囲気中で行うことにより、Cuマトリクスの緻密化を促進し、健全な焼結組織と優れた熱的・電気的特性を有する電気接点が得られる。   Said electrical contact can be manufactured by the sintering method shown below. That is, a mixed powder in which the powder of the component forming the contact layer is blended in a desired composition, a mixed powder in which the powder of the component forming the intermediate layer and the carbon fiber are blended in the desired composition, the Cu powder and carbon forming the highly conductive layer The mixed powder in which the fibers are blended in a desired composition is pressure-molded integrally in a layered form, and then heated and sintered at a melting point of Cu or lower. Delamination during sintering can be prevented by forming the mixed powder constituting each layer into layers and forming them integrally. In addition, by manufacturing by the sintering method, the hardness of the contact layer is relatively low, and since there is no solid solution of Cr in the Cu matrix and high conductivity, the contact resistance with the counterpart contact is reduced, Generation of Joule heat can be suppressed. This sintering is carried out in a reducing atmosphere or in an inert atmosphere, thereby promoting the densification of the Cu matrix and obtaining an electrical contact having a sound sintered structure and excellent thermal and electrical characteristics.

真空遮断器等に使用される電極は、略円盤形状を有する電気接点の高導電層側の面に、通電部材である電極棒が一体に接合されている。このような構成にすることにより、良好な通電性能を有するとともに、接点部で発生したジュール熱を速やかに真空バルブ外へ導くことができる。円盤状の電気接点は、その円中心に中央孔を設け、さらに曲線形状をもつスパイラル型のスリット溝によって羽根型に分離された形状とすることが望ましい。中央孔を設けることにより、電流遮断時に発生するアークが接点面の中央で発生し、停滞するのを防ぐことができる。また、スリット溝を設けることにより、発生したアークを電気接点の外周側へ移動させ、速やかに電流を遮断することができる。   In an electrode used for a vacuum circuit breaker or the like, an electrode rod, which is a current-carrying member, is integrally joined to a surface on the high conductive layer side of an electrical contact having a substantially disk shape. By adopting such a configuration, it is possible to lead the Joule heat generated at the contact portion to the outside of the vacuum valve quickly while having good energization performance. It is desirable that the disk-shaped electrical contact has a central hole at the center of the circle and is separated into a blade shape by a spiral slit groove having a curved shape. By providing the central hole, it is possible to prevent the arc generated when the current is interrupted from occurring at the center of the contact surface and stagnating. Further, by providing the slit groove, the generated arc can be moved to the outer peripheral side of the electrical contact, and the current can be cut off quickly.

また、円盤状の電気接点の高導電層側に、Cuからなるカップ形状をなすコイル電極を一体に接合し、コイル電極の底部に電極棒を一体に接合した構造の電極としてもよい。このような構造によれば、電流遮断時に発生する磁界を利用してアークを消滅させ、優れた遮断性能を得ることができる。   Moreover, it is good also as an electrode of the structure where the coil electrode which makes the cup shape which consists of Cu is integrally joined to the highly conductive layer side of a disk-shaped electrical contact, and the electrode rod is integrally joined to the bottom part of the coil electrode. According to such a structure, an arc can be extinguished using a magnetic field generated at the time of current interruption, and excellent interruption performance can be obtained.

真空バルブは、真空容器内に一対の電極を備える。少なくとも一方の電極を動かして切断/接続を切り替えるものである。一般的には一方の電極のみを可動とし(可動側電極)、他方は固定されている(固定側電極)。   The vacuum valve includes a pair of electrodes in a vacuum container. The disconnection / connection is switched by moving at least one of the electrodes. Generally, only one electrode is movable (movable side electrode), and the other is fixed (fixed side electrode).

真空遮断器は、真空バルブと、真空バルブ内の電極と接続された導体端子と、可動側電極を駆動する開閉手段を備える。真空開閉機器は、真空バルブを導体によって直列に複数接続し、可動側電極を駆動する開閉手段を備えたものである。これらの機器は、上述の電気接点を使用することにより通電時に接点部で発生するジュール熱を抑え、電気接点同士の溶着が発生しにくく、通電性能および耐溶着性能に優れる。   The vacuum circuit breaker includes a vacuum valve, a conductor terminal connected to an electrode in the vacuum valve, and an opening / closing means for driving the movable side electrode. The vacuum switchgear includes a plurality of vacuum valves connected in series with a conductor and provided with switchgear for driving the movable electrode. These devices suppress the Joule heat generated at the contact portion during energization by using the above-described electrical contacts, are less likely to cause welding between the electrical contacts, and are excellent in energization performance and anti-welding performance.

以下、発明を実施するための最良の形態を実施例によって詳細に説明する。なお、本発明はこれらの実施例に限定されるものではない。   Hereinafter, the best mode for carrying out the invention will be described in detail by way of examples. The present invention is not limited to these examples.

図1は上記電気接点を用いた電極の構造を示す図で、(a)は電気接点が接点層と高導電層の2層からなる場合、(b)は中間層を有する場合である。図1において、1は電気接点、2はアークに駆動力を与えるためのスリット溝、3は電流遮断時に溶融した電気接点1の成分がスリット溝2を通って裏面を汚損するのを防ぐためのステンレス製の汚損防止板、4は電極棒、5はろう材、44は中央孔、45は接点層、46は高導電層、47は中間層である。   FIGS. 1A and 1B are diagrams showing the structure of an electrode using the above-described electrical contact. FIG. 1A shows a case where the electrical contact is composed of two layers of a contact layer and a highly conductive layer, and FIG. 1B shows a case where an intermediate layer is provided. In FIG. 1, 1 is an electrical contact, 2 is a slit groove for applying a driving force to the arc, and 3 is a component for preventing the components of the electrical contact 1 melted at the time of current interruption from fouling the back surface through the slit groove 2. A stainless steel antifouling plate, 4 is an electrode rod, 5 is a brazing material, 44 is a central hole, 45 is a contact layer, 46 is a highly conductive layer, and 47 is an intermediate layer.

表1に示す組成を有する電気接点を作製し、これを用いて電極を作製した。   An electrical contact having the composition shown in Table 1 was produced, and an electrode was produced using the electrical contact.

Figure 2011014240
Figure 2011014240

電気接点1の作製方法は、次の通りである。   The manufacturing method of the electrical contact 1 is as follows.

接点層の原料粉を、粒径75μm以下のCr粉末とCu粉末、および60μm以下のTe粉末とを使用し、表1に示す接点層の組成となるような配合比でV型混合器により混合し、作製した。   The raw material powder for the contact layer is mixed with a V-type mixer at a blending ratio such that the composition of the contact layer shown in Table 1 is obtained using Cr powder and Cu powder having a particle size of 75 μm or less and Te powder having a particle size of 60 μm or less. And produced.

また、高導電層の原料粉を、粒径75μm以下のCu粉末と、径が150nmで長さ約4.5〜45μmのカーボンナノファイバーを用い、これらを表1に示す高導電層の組成となるような配合比で乳鉢混合し、作製した。比較のための炭素粉末を用いた供試材No.8用として粒径300nmの炭素粉末を使用し、同様の方法で混合し、この高導電層用の粉末とした。   In addition, the raw material powder of the highly conductive layer is composed of Cu powder having a particle size of 75 μm or less and carbon nanofibers having a diameter of 150 nm and a length of about 4.5 to 45 μm. A mortar was mixed at a blending ratio as shown in FIG. A carbon powder having a particle size of 300 nm was used as a sample material No. 8 using a carbon powder for comparison, and mixed in the same manner to obtain a powder for this highly conductive layer.

中間層を設けた例として、供試材14(炭素繊維有り),供試材15(炭素繊維なし)とを作製した。中間層の原料粉は、上記の粉末を用いて、表1に示す中間層の組成となるような配合比で乳鉢およびV型混合器により混合して作製した。   As an example in which an intermediate layer was provided, sample material 14 (with carbon fiber) and sample material 15 (without carbon fiber) were produced. The raw material powder for the intermediate layer was prepared by mixing the above powder using a mortar and a V-type mixer at a blending ratio such that the composition of the intermediate layer shown in Table 1 was obtained.

次に、直径60mmの円盤状の金型に接点層,中間層,高導電層の順でそれぞれの原料粉を層状に充填し、油圧プレスにより400MPaの圧力で一体で加圧成形した。この際、各層の厚さが表1に示す値となるように、原料粉の充填量を調整した。比較のため、供試材No.7については、各粉末を別個に金型に充填し、それぞれの層ごとに成形した。以上の方法で得られた成形体の相対密度は、およそ68〜73%であった。これらを真空中で、1060℃×2時間加熱して焼結し、電気接点1の素材となる焼結体を作製した。この際、層ごとに別個に成形した供試材No.7の成形体については、接点層,中間層,高導電層の順で積層載置し、同様に焼結した。この結果、相対密度が85〜97%の焼結体が得られた。   Next, the raw material powder was filled in layers in the order of a contact layer, an intermediate layer, and a highly conductive layer in a disc-shaped mold having a diameter of 60 mm, and was integrally pressure-formed at a pressure of 400 MPa by a hydraulic press. Under the present circumstances, the filling amount of the raw material powder was adjusted so that the thickness of each layer might become the value shown in Table 1. For comparison, for test material No. 7, each powder was separately filled in a mold and molded for each layer. The relative density of the molded body obtained by the above method was approximately 68 to 73%. These were heated and sintered in vacuum at 1060 ° C. for 2 hours to produce a sintered body that was a material for the electrical contact 1. Under the present circumstances, about the molded object of test material No.7 shape | molded separately for every layer, it laminated | stacked in order of the contact layer, the intermediate | middle layer, and the highly conductive layer, and sintered similarly. As a result, a sintered body having a relative density of 85 to 97% was obtained.

さらに、本実施例では比較のために、従来製法の一つである溶浸法によっても電気接点1を作製した(No.1)。原料には上記のCr,Cu,Te粉末およびカーボンナノファイバーを用い、Cr粉末を39.9重量%、Cu粉末を60重量%、Te粉末を0.1重量%の割合でV型混合器により混合し、これを円盤状の金型に充填し、油圧プレスにより145MPaの圧力で加圧成形してスケルトン(低密度成形体)を作製した。このスケルトンを黒鉛るつぼに入れ、その上にカーボンナノファイバーおよびCuインゴットを載置し、真空中において1200℃×2時間加熱し、スケルトンにCuを溶融含浸させることによって、表1のNo.1の接点層組成を有し、高導電層と一体化した溶浸体を作製した。   Furthermore, in this example, for comparison, an electrical contact 1 was also produced by an infiltration method which is one of the conventional manufacturing methods (No. 1). Using the above-mentioned Cr, Cu, Te powder and carbon nanofiber as raw materials, Cr powder is 39.9% by weight, Cu powder is 60% by weight, Te powder is 0.1% by weight with a V-type mixer. This was mixed, filled into a disk-shaped mold, and pressure-molded at a pressure of 145 MPa with a hydraulic press to produce a skeleton (low-density molded body). This skeleton was placed in a graphite crucible, and carbon nanofibers and Cu ingots were placed thereon, heated in a vacuum at 1200 ° C. for 2 hours, and the skeleton was melt-impregnated with Cu. An infiltration body having a contact layer composition and integrated with a highly conductive layer was produced.

Figure 2011014240
Figure 2011014240

表2に、表1の組成,方法により得られた焼結体および溶浸体を観察した結果を示す。   Table 2 shows the result of observing the sintered body and the infiltrated body obtained by the composition and method shown in Table 1.

高導電層に炭素繊維を加えた場合には、焼結体の剥離は生じなかった。一方、炭素繊維を含まない供試材No.2の場合には、円盤状焼結体の外周部において剥離が生じた。このことから、高導電層に含まれる炭素繊維は、層間剥離を抑制する効果を有することが確認された。剥離は、接点層と高導電層の焼結過程における収縮差によるもので、高導電層に炭素を含まない場合には接点層との界面でCr炭化物が生成されず、層間の結合が不足したためと考えられる。   When carbon fiber was added to the highly conductive layer, the sintered body did not peel off. On the other hand, in the case of the test material No. 2 containing no carbon fiber, peeling occurred at the outer peripheral portion of the disc-shaped sintered body. From this, it was confirmed that the carbon fiber contained in the highly conductive layer has an effect of suppressing delamination. Peeling is due to shrinkage difference in the sintering process between the contact layer and the highly conductive layer. When the highly conductive layer does not contain carbon, Cr carbide is not generated at the interface with the contact layer, and the bonding between the layers is insufficient. it is conceivable that.

また、層ごとに成形し、それらを積層して焼結した供試材No.7の場合には、層間で剥離が生じた。従って、炭素繊維や炭素粉末を混合し、かつそれぞれの層を別個に成形する方法ではなく、一体で成型して焼結することにより、層間の剥離を生じさせず、電気接点を製造することが可能である。   Further, in the case of the test material No. 7, which was formed for each layer and laminated and sintered, peeling occurred between the layers. Therefore, it is not a method of mixing carbon fiber or carbon powder and molding each layer separately, but by molding and sintering together, it is possible to produce an electrical contact without causing delamination between layers. Is possible.

それぞれの焼結体および溶浸体の高導電層における導電率を測定した。導電率は、渦電流法により高導電層の表面を測定したもので、「IACS」値は焼きなまし純銅の導電率を100%とした相対値である。溶浸法で得られた供試材No.1の場合には、高導電層が緻密な溶解組織を有するため、比較的高い導電率を示すが、接点層からのCrの固溶が生じるため、十分な導電率は得られなかった。また、溶浸過程で炭素繊維(カーボンナノファイバー)はCuとの比重差により分離し、高導電層にはCの偏在が見られた。炭素繊維を含まない供試材No.2の場合、銅よりなる(Cu100%)高導電層を有するが、導電率は81%と低い値を示した。これは、製法が焼結法であるために、気孔などの欠陥が存在するためと考えられる。また、層ごとに成形したNo.7では、高導電層は十分な導電率を示したが、前述のように層間剥離が生じたため適切ではない。   The electric conductivity in the highly conductive layer of each sintered body and infiltrated body was measured. The conductivity is a value obtained by measuring the surface of the highly conductive layer by the eddy current method, and the “IACS” value is a relative value when the conductivity of annealed pure copper is 100%. In the case of the test material No. 1 obtained by the infiltration method, since the high conductive layer has a dense dissolved structure, it exhibits a relatively high conductivity, but the solid solution of Cr occurs from the contact layer. Sufficient conductivity was not obtained. In addition, carbon fibers (carbon nanofibers) were separated due to the difference in specific gravity with Cu during the infiltration process, and C was unevenly distributed in the highly conductive layer. In the case of the test material No. 2 containing no carbon fiber, it has a highly conductive layer made of copper (Cu 100%), but the conductivity was as low as 81%. This is presumably because defects such as pores exist because the manufacturing method is a sintering method. In No. 7 molded for each layer, the highly conductive layer showed sufficient conductivity, but it was not appropriate because delamination occurred as described above.

炭素繊維を添加した供試材No.3では、炭素繊維を含まない供試材No.2に比べて導電率が向上した。特に、0.1重量%以上の炭素繊維を加えたNo.9〜No.15の高導電層においては、いずれも顕著な導電率の改善効果が確認された。また、3.0重量%の炭素繊維を加えた供試材No.4では、高い導電率を示すものの、炭素繊維が多すぎるために焼結性が低下し、緻密化が不足したために導電率が低下した。従って、炭素繊維の添加量は0.1〜1.5重量%とすることが好ましい。   In the test material No. 3 to which the carbon fiber was added, the conductivity was improved as compared with the test material No. 2 in which the carbon fiber was not included. In particular, in the high conductive layer of No. 9 to No. 15 to which carbon fiber of 0.1% by weight or more was added, any significant improvement in conductivity was confirmed. In addition, the sample No. 4 to which 3.0% by weight of carbon fiber was added showed high conductivity, but because of too much carbon fiber, the sinterability was lowered and the densification was insufficient. Decreased. Therefore, the amount of carbon fiber added is preferably 0.1 to 1.5% by weight.

次に、炭素繊維のアスペクト比を変更したものを比較したところ、アスペクト比(繊維長さ)が30の供試材No.5,アスペクト比が300の供試材No.6は、少量しか炭素繊維を加えていない供試材No.3よりも高い導電率を示すが、アスペクト比が小さいNo.5は相互の導通が少なく導電率の改善効果が生じにくいと推察される。また、No.6はアスペクト比が大きく炭素繊維が屈折または凝集し、あるいはそれに伴い焼結性が低下するため、導電率の改善効果が小さいと思われる。従って、炭素繊維のアスペクト比は50〜150程度とすることが好ましい。なお、比較のために炭素粉末を添加したNo.8では、No.2に比べて導電率が向上していた。これは焼結された高導電層に残存する酸素等のガス成分を、C粉末が反応等により吸収したゲッター作用によるものと推測される。しかしながら、粒子状の炭素の添加では、アスペクト比が小さいNo.5よりも導電率が低く、導電率の向上効果は小さいものであり、大きな高導電率化効果が望めないと思われる。   Next, when carbon fibers having different aspect ratios were compared, the specimen No. 5 having an aspect ratio (fiber length) of 30 and No. 6 having an aspect ratio of 300 contained only a small amount of carbon. It is presumed that No.5, which has a higher conductivity than the test material No.3 to which no fiber is added, has a small aspect ratio, has little mutual conduction, and is less likely to have an effect of improving the conductivity. No. 6 has a large aspect ratio, and the carbon fibers are refracted or aggregated, or the sinterability is lowered accordingly. Therefore, the aspect ratio of the carbon fiber is preferably about 50 to 150. For comparison, in No. 8 to which carbon powder was added, the conductivity was improved as compared to No. 2. This is presumed to be due to the getter action in which the C powder absorbs gas components such as oxygen remaining in the sintered highly conductive layer by reaction or the like. However, the addition of particulate carbon has a lower conductivity than No. 5, which has a small aspect ratio, and the effect of improving the conductivity is small, and it seems that a large effect of increasing the conductivity cannot be expected.

上記の焼結体および溶浸体を機械加工し、図1の形状をなす電気接点1を作製した。直径が55mmで、各層の厚さは表1に示す寸法を有する。なお、焼結後に層間剥離が生じたNo.2およびNo.7については、電気接点1の作製並びにその後の電気的性能評価には供さなかった。   The above sintered body and infiltrated body were machined to produce an electrical contact 1 having the shape shown in FIG. The diameter is 55 mm, and the thickness of each layer has the dimensions shown in Table 1. Note that No. 2 and No. 7 in which delamination occurred after sintering were not used for the production of the electrical contact 1 and the subsequent electrical performance evaluation.

なお、上記のように焼結体の形状を加工する方法の他、スリット溝2を有する最終形状を形作ることのできる金型に原料粉末を充填し、焼結する方法によっても電気接点1を得ることができる。この方法では機械加工などの後加工が不要であるため、容易に製作が可能である。   In addition to the method of processing the shape of the sintered body as described above, the electrical contact 1 is obtained also by a method of filling a raw material powder into a mold capable of forming the final shape having the slit groove 2 and sintering it. be able to. Since this method does not require post-processing such as machining, it can be easily manufactured.

次に、電気接点1を用いて、次の通り電極を作製した。電極棒4を無酸素銅で、また、汚損防止板3をSUS304であらかじめ機械加工により作製しておき、電気接点1,汚損防止板3,電極棒4それぞれの間にろう材5を載置し、これを8.2×10-4Pa以下の真空中で970℃×10分間加熱し、図1に示す電極を作製した。この電極は定格電圧24kV,定格電流1250A,定格遮断電流25kA用の真空バルブに用いられる電極である。なお、汚損防止板3は、開閉動作による電気接点1の過度な変形を防ぐための補強板の役目もするが、電気接点1の強度が十分であれば汚損防止板3は省いてもよい。 Next, the electrode was produced using the electrical contact 1 as follows. The electrode rod 4 is made of oxygen-free copper, and the antifouling plate 3 is made in advance by machining with SUS304, and the brazing material 5 is placed between the electric contact 1, the antifouling plate 3, and the electrode rod 4, respectively. This was heated in a vacuum of 8.2 × 10 −4 Pa or less at 970 ° C. for 10 minutes to produce the electrode shown in FIG. This electrode is used for a vacuum valve for a rated voltage of 24 kV, a rated current of 1250 A, and a rated breaking current of 25 kA. The anti-stain plate 3 also serves as a reinforcing plate for preventing excessive deformation of the electrical contact 1 due to the opening / closing operation. However, the anti-stain plate 3 may be omitted if the strength of the electrical contact 1 is sufficient.

続いて、真空バルブ(定格電圧24kV,定格電流1250A,定格遮断電流25kA)を作製した。図2は、真空バルブの構造を示す図である。図2において、1a,1bはそれぞれ固定側電気接点,可動側電気接点、3a,3bは汚損防止板、4a,4bはそれぞれ固定側電極棒,可動側電極棒で、これらをもってそれぞれ固定側電極6a,可動側電極6bを構成する。なお、本実施例では、固定側と可動側の電気接点の溝が接触面において一致するように設置した。可動側電極6bは、遮断時の金属蒸気等の飛散を防ぐ可動側シールド8を介して可動側ホルダー12にろう付け接合される。これらは、固定側端板9a,可動側端板9b、及び絶縁筒13によって高真空にろう付け封止され、固定側電極6a及び可動側ホルダー12のネジ部をもって外部導体と接続される。絶縁筒13の内面には、遮断時の金属蒸気等の飛散を防ぐシールド7が設けられ、また、可動側端板9bと可動側ホルダー12の間には摺動部分を支えるためのガイド11が設けられる。可動側シールド8と可動側端板9bの間にはベローズ10が設けられ、真空バルブ内を真空に保ったまま可動側ホルダー12を上下させ、固定側電極6aと可動側電極6bを開閉させることができる。   Subsequently, a vacuum valve (rated voltage 24 kV, rated current 1250 A, rated breaking current 25 kA) was produced. FIG. 2 is a diagram showing the structure of the vacuum valve. In FIG. 2, 1a and 1b are fixed-side electrical contacts and movable-side electrical contacts, 3a and 3b are antifouling plates, 4a and 4b are fixed-side electrode rods and movable-side electrode rods, respectively, and these are respectively fixed-side electrodes 6a. The movable side electrode 6b is configured. In the present embodiment, the grooves of the electric contacts on the fixed side and the movable side are installed so as to coincide with each other on the contact surface. The movable side electrode 6b is brazed and joined to the movable side holder 12 via a movable side shield 8 that prevents scattering of metal vapor or the like at the time of interruption. These are brazed and sealed to a high vacuum by the fixed side end plate 9a, the movable side end plate 9b, and the insulating cylinder 13, and are connected to the external conductor through the screw portions of the fixed side electrode 6a and the movable side holder 12. A shield 7 is provided on the inner surface of the insulating cylinder 13 to prevent scattering of metal vapor or the like at the time of interruption, and a guide 11 for supporting a sliding portion is provided between the movable side end plate 9b and the movable side holder 12. Provided. A bellows 10 is provided between the movable-side shield 8 and the movable-side end plate 9b, and the movable-side holder 12 is moved up and down while the vacuum valve is kept in vacuum to open and close the fixed-side electrode 6a and the movable-side electrode 6b. Can do.

さらに、上記の真空バルブを搭載した真空遮断器を作製した。図3は、本実施例の真空バルブ14とその操作機構を示す真空遮断器の構成図である。真空遮断器は、操作機構部を前面に配置し、背面に真空バルブ14を支持する三相一括型の3組のエポキシ筒15を配置した構造である。真空バルブ14は、絶縁操作ロッド16を介して、操作機構によって開閉される。   Further, a vacuum circuit breaker equipped with the above vacuum valve was produced. FIG. 3 is a block diagram of a vacuum circuit breaker showing the vacuum valve 14 and its operating mechanism of the present embodiment. The vacuum circuit breaker has a structure in which three sets of three-phase epoxy cylinders 15 are disposed on the front surface with the operation mechanism portion disposed on the front surface and supporting the vacuum valve 14 on the rear surface. The vacuum valve 14 is opened and closed by an operating mechanism via an insulating operating rod 16.

遮断器が閉路状態の場合、電流は上部端子17,電気接点1,集電子18,下部端子19を流れる。電極間の接触力は、絶縁操作ロッド16に装着された接触バネ20によって保たれている。電極間の接触力および短絡電流による電磁力は、支えレバー21およびプロップ22で保持されている。投入コイル30を励磁すると開路状態からプランジャ23がノッキングロッド24を介してローラ25を押し上げ、主レバー26を回して電極間を閉じたあと、支えレバー21で保持している。   When the circuit breaker is closed, current flows through the upper terminal 17, the electrical contact 1, the current collector 18, and the lower terminal 19. The contact force between the electrodes is maintained by a contact spring 20 attached to the insulating operation rod 16. The contact force between the electrodes and the electromagnetic force due to the short-circuit current are held by the support lever 21 and the prop 22. When the closing coil 30 is excited, the plunger 23 pushes up the roller 25 through the knocking rod 24 from the open circuit state, rotates the main lever 26 to close the space between the electrodes, and then holds it by the support lever 21.

遮断器が引き外し自由状態では、引き外しコイル27が励磁され、引き外しレバー28がプロップ22の係合を外し、主レバー26が回って電極間が開かれる。遮断器が開路状態では、電極間が開かれたあと、リセットバネ29によってリンクが復帰し、同時にプロップ22が係合する。この状態で投入コイル30を励磁すると閉路状態になる。なお、31は排気筒である。   When the circuit breaker is free to be tripped, the tripping coil 27 is excited, the tripping lever 28 is disengaged from the prop 22, and the main lever 26 is rotated to open the electrodes. When the circuit breaker is in the open state, the link is restored by the reset spring 29 after the electrodes are opened, and the prop 22 is engaged at the same time. When the closing coil 30 is excited in this state, a closed state is obtained. In addition, 31 is an exhaust pipe.

以上のように、本実施例の電気接点1を用いて真空バルブ14を作製し、それを搭載した定格電圧24kV,定格電流1250A,定格遮断電流25kA仕様の真空遮断器を作製した。   As described above, the vacuum valve 14 was manufactured by using the electrical contact 1 of this example, and a vacuum circuit breaker with a rated voltage of 24 kV, a rated current of 1250 A, and a rated breaking current of 25 kA was prepared.

表1に示す電気接点に関し、実施例1で作製した真空遮断器を用いて電気的性能試験を実施した。まず、通電試験により通電時における温度上昇を評価した。通電中の電気接点温度を直接測定することは困難なので、本実施例では2000Aの電流を10時間通電した後の真空バルブ端部の温度を測定した。真空バルブ端部の温度の測定は24℃の室温で行った。表2にその結果を示す。   For the electrical contacts shown in Table 1, an electrical performance test was performed using the vacuum circuit breaker fabricated in Example 1. First, an increase in temperature during energization was evaluated by an energization test. Since it is difficult to directly measure the electrical contact temperature during energization, in this example, the temperature at the end of the vacuum valve after energizing 2000 A current for 10 hours was measured. The temperature at the end of the vacuum valve was measured at a room temperature of 24 ° C. Table 2 shows the results.

供試材No.1〜No.8ではいずれも65℃以上の端部温度を示した。一方、No.9〜No.15の供試材では63℃以下に抑えられた。これは、高導電層の導電率あるいは熱伝導性に依存するものと考えられる。高い導電率を有するNo.9〜No.15の電気接点は、通電ジュール熱の抑制に有効である。なお、中間層に炭素繊維(カーボンナノファイバー)を含むNo.14は、中間層に炭素繊維を含まないNo.15に比べて高い端部温度を示した。中間層でCrとCが共存することにより、Cr炭化物を生成し、カーボンナノファイバーによる導電率向上効果が低下したためと考えられる。従って、中間層には炭素繊維を含まないことがより好ましい。   All of the test materials No. 1 to No. 8 showed an end temperature of 65 ° C. or higher. On the other hand, the sample materials No. 9 to No. 15 were suppressed to 63 ° C. or lower. This is considered to depend on the electrical conductivity or thermal conductivity of the highly conductive layer. The electrical contacts No. 9 to No. 15 having high conductivity are effective in suppressing energization Joule heat. In addition, No. 14 containing carbon fibers (carbon nanofibers) in the intermediate layer showed a higher end temperature than No. 15 containing no carbon fibers in the intermediate layer. It is considered that Cr and C coexist in the intermediate layer, thereby producing Cr carbide and reducing the conductivity improving effect by the carbon nanofiber. Therefore, it is more preferable that the intermediate layer does not contain carbon fiber.

その後、25kAの電流遮断試験,25kA通電後の電極引離し(開離)の可否を評価した。表2に、その結果を併せて示す。溶浸法で得られたNo.1の場合には、25kA通電後の溶着が著しく、開離できなかった。これは、溶浸過程で低融点のTeが接点層から流出し、Teによる溶着抑制効果が低下したためと考えられる。従って、製法には焼結法が好適である。No.1以外の電気接点は、遮断性能および耐溶着性能(電極開離)ともに満足した。ただし、ジュール熱に伴う温度上昇が小さいNo.9〜No.15がより大電流通電に好適である。   Thereafter, the possibility of electrode separation (opening) after 25 kA current interruption test and 25 kA energization was evaluated. Table 2 also shows the results. In the case of No. 1 obtained by the infiltration method, welding after energization of 25 kA was remarkable and could not be separated. This is presumably because Te having a low melting point flows out of the contact layer during the infiltration process, and the effect of suppressing welding by Te is lowered. Therefore, the sintering method is suitable for the production method. The electrical contacts other than No. 1 were satisfactory in both breaking performance and welding resistance (electrode separation). However, No. 9 to No. 15 in which the temperature rise accompanying Joule heat is small is suitable for energization with a larger current.

以上のように、ジュール熱による温度上昇を抑え、優れた通電性能,遮断性能および耐溶着性能を有する真空バルブおよび真空遮断器を製造できた。   As described above, it was possible to manufacture a vacuum valve and a vacuum circuit breaker having excellent current-carrying performance, breaking performance and welding resistance while suppressing temperature rise due to Joule heat.

実施例1で作製した真空バルブを、真空遮断器以外の真空開閉装置に搭載した。図4は、実施例1で作製した真空バルブ14を搭載した、路肩設置変圧器用の負荷開閉器を示す図である。   The vacuum valve produced in Example 1 was mounted on a vacuum switchgear other than the vacuum circuit breaker. FIG. 4 is a view showing a load switch for a roadside installation transformer equipped with the vacuum valve 14 produced in the first embodiment.

この負荷開閉器は、主回路開閉部に相当する真空バルブ14が、真空封止された外側真空容器32内に複数対収納されたものである。外側真空容器32は、上部板材33と下部板材34及び側部板材35を備え、各板材の周囲(縁)が互いに溶接によって接合されているとともに、設備本体とともに設置されている。   In this load switch, a plurality of pairs of vacuum valves 14 corresponding to main circuit switching units are housed in a vacuum-sealed outer vacuum container 32. The outer vacuum container 32 includes an upper plate member 33, a lower plate member 34, and a side plate member 35, and the periphery (edge) of each plate member is joined to each other by welding and is installed together with the equipment main body.

上部板材33には、上部貫通孔36が形成されており、各上部貫通孔36の縁には環状の絶縁性上部ベース37が各上部貫通孔36を覆うように固定されている。そして、各上部ベース37の中央に形成された円形空間部には、円柱状の可動側電極棒4bが往復動(上下動)自在に挿入されている。すなわち、各上部貫通孔36は上部ベース37と可動側電極棒4bによって閉塞されている。   An upper through hole 36 is formed in the upper plate member 33, and an annular insulating upper base 37 is fixed to an edge of each upper through hole 36 so as to cover each upper through hole 36. A cylindrical movable electrode rod 4b is inserted into a circular space formed at the center of each upper base 37 so as to freely reciprocate (up and down). That is, each upper through hole 36 is closed by the upper base 37 and the movable electrode rod 4b.

可動側電極棒4bの軸方向端部(上部側)は、外側真空容器32の外部に設置される操作器(電磁操作器)に連結されるようになっている。また、上部板材33の下部側には、各上部貫通孔36の縁に沿って外側ベローズ38が往復動(上下動)自在に配置されており、各外側ベローズ38は、軸方向の一端側が上部板材33の下部側に固定され、軸方向の他端側が各可動側電極棒4bの外周面に装着されている。すなわち、外側真空容器32を密閉構造とするために、各上部貫通孔36の縁には各可動側電極棒4bの軸方向に沿って外側ベローズ38が配置されている。また、上部板材33には排気管(図示省略)が連結され、この排気管を介して外側真空容器32内が真空排気されるようになっている。   The axial end (upper side) of the movable electrode rod 4b is connected to an operating device (electromagnetic operating device) installed outside the outer vacuum vessel 32. Further, on the lower side of the upper plate member 33, an outer bellows 38 is disposed so as to freely reciprocate (up and down) along the edge of each upper through hole 36, and each outer bellows 38 has an axial end on the upper side. The other end side in the axial direction is fixed to the lower side of the plate member 33, and is attached to the outer peripheral surface of each movable electrode rod 4b. That is, in order to make the outer vacuum container 32 have a hermetically sealed structure, outer bellows 38 are arranged at the edge of each upper through hole 36 along the axial direction of each movable electrode rod 4b. In addition, an exhaust pipe (not shown) is connected to the upper plate member 33, and the inside of the outer vacuum vessel 32 is evacuated through the exhaust pipe.

一方、下部板材34には下部貫通孔39が形成されており、各下部貫通孔39の縁には絶縁性ブッシング40が各下部貫通孔39を覆うように固定されている。各絶縁性ブッシング40の底部には、環状の絶縁性下部ベース41が固定されている。そして、各下部ベース41の中央の円形空間部には、円柱状の固定側電極棒4aが挿入されている。すなわち、下部板材34に形成された下部貫通孔39は、それぞれ絶縁性ブッシング40,下部ベース41、及び固定側電極棒4aによって閉塞されている。そして、固定側電極棒4aの軸方向の一端側(下部側)は、外側真空容器32の外部に配置されたケーブル(配電線)に連結されるようになっている。   On the other hand, a lower through hole 39 is formed in the lower plate member 34, and an insulating bushing 40 is fixed to an edge of each lower through hole 39 so as to cover each lower through hole 39. An annular insulating lower base 41 is fixed to the bottom of each insulating bushing 40. A cylindrical fixed electrode rod 4a is inserted into the circular space at the center of each lower base 41. That is, the lower through holes 39 formed in the lower plate member 34 are closed by the insulating bushing 40, the lower base 41, and the fixed electrode rod 4a, respectively. One end side (lower side) in the axial direction of the fixed electrode rod 4a is connected to a cable (distribution line) arranged outside the outer vacuum vessel 32.

外側真空容器32の内部には、負荷開閉器の主回路開閉部に相当する真空バルブ14が収納されており、各可動側電極棒4bは、2つの湾曲部を有するフレキシブル導体(可撓性導体)42を介して互いに連結されている。このフレキシブル導体42は、軸方向において2つの湾曲部を有する導電性板材としての銅板とステンレス板を交互に複数枚積層して構成されている。フレキシブル導体42には貫通孔43が形成されており、各貫通孔43に各可動側電極棒4bを挿入して互いに連結される。   Inside the outer vacuum vessel 32, a vacuum valve 14 corresponding to a main circuit opening / closing portion of a load switch is accommodated, and each movable side electrode bar 4b is a flexible conductor (flexible conductor) having two curved portions. ) 42 to each other. The flexible conductor 42 is configured by alternately laminating a plurality of copper plates and stainless steel plates as conductive plate members having two curved portions in the axial direction. A through hole 43 is formed in the flexible conductor 42, and each movable electrode rod 4 b is inserted into each through hole 43 and connected to each other.

以上のように、実施例1で作製した真空バルブは、路肩設置変圧器用の負荷開閉器にも適用可能であり、これ以外の真空スイッチギヤなどの各種真空開閉装置にも適用できる。   As described above, the vacuum valve manufactured in Example 1 can be applied to a load switch for a roadside installation transformer, and can also be applied to various vacuum switchgears such as a vacuum switchgear.

1 電気接点
1a 固定側電気接点
1b 可動側電気接点
2 スリット溝
3,3a,3b 汚損防止板
4,4a,4b 電極棒
5 ろう材
6a 固定側電極
6b 可動側電極
7 シールド
8 可動側シールド
9a 固定側端板
9b 可動側端板
10 ベローズ
11 ガイド
12 可動側ホルダー
13 絶縁筒
14 真空バルブ
15 エポキシ筒
16 絶縁操作ロッド
17 上部端子
18 集電子
19 下部端子
20 接触バネ
21 支えレバー
22 プロップ
23 プランジャ
24 ノッキングロッド
25 ローラ
26 主レバー
27 引き外しコイル
28 引き外しレバー
29 リセットバネ
30 投入コイル
31 排気筒
32 外側真空容器
33 上部板材
34 下部板材
35 側部板材
36 上部貫通孔
37 上部ベース
38 外側ベローズ
39 下部貫通孔
40 絶縁性ブッシング
41 下部ベース
42 フレキシブル導体
43 フレキシブル導体貫通孔
44 中央孔
45 接点層
46 高導電層
47 中間層
DESCRIPTION OF SYMBOLS 1 Electrical contact 1a Fixed side electrical contact 1b Movable side electrical contact 2 Slit groove 3, 3a, 3b Antifouling plates 4, 4a, 4b Electrode rod 5 Brazing material 6a Fixed side electrode 6b Movable side electrode 7 Shield 8 Movable side shield 9a Fixed Side end plate 9b Movable side end plate 10 Bellows 11 Guide 12 Movable side holder 13 Insulating cylinder 14 Vacuum valve 15 Epoxy cylinder 16 Insulating operation rod 17 Upper terminal 18 Current collector 19 Lower terminal 20 Contact spring 21 Support lever 22 Prop 23 Plunger 24 Knocking Rod 25 roller 26 main lever 27 trip coil 28 trip lever 29 reset spring 30 closing coil 31 exhaust cylinder 32 outer vacuum vessel 33 upper plate material 34 lower plate material 35 side plate material 36 upper through hole 37 upper base 38 outer bellows 39 lower through hole Hole 40 Insulating bushing 41 Lower base 2 flexible conductor 43 flexible conductor through hole 44 central hole 45 contact layer 46 high conductive layer 47 intermediate layer

Claims (7)

接点層と、前記接点層に対し導体に接続する側に設けられた高導電層の少なくとも2つの層を有する電気接点であって、前記接点層はCrとCuとTeを含む焼結体よりなり、前記高導電層はCuと炭素繊維を含む焼結体からなり、前記接点層と前記高導電層の間にCr炭化物が存在することを特徴とする電気接点。   An electrical contact having at least two layers of a contact layer and a highly conductive layer provided on a side connected to the conductor with respect to the contact layer, wherein the contact layer is made of a sintered body containing Cr, Cu, and Te. The electrical contact is characterized in that the highly conductive layer is made of a sintered body containing Cu and carbon fibers, and Cr carbide exists between the contact layer and the highly conductive layer. 請求項1に記載された電気接点であって、
前記接点層および高導電層の間に中間層を有し、
前記中間層と前記接点層との間に前記Cr炭化物が存在することを特徴とする電気接点。
The electrical contact according to claim 1,
Having an intermediate layer between the contact layer and the highly conductive layer;
The electrical contact characterized in that the Cr carbide exists between the intermediate layer and the contact layer.
請求項1に記載の電気接点であって、前記炭素繊維のアスペクト比(繊維長さ/繊維径)が50〜150で、かつ、繊維径は300nm以下であることを特徴とする電気接点。   2. The electrical contact according to claim 1, wherein the carbon fiber has an aspect ratio (fiber length / fiber diameter) of 50 to 150 and a fiber diameter of 300 nm or less. 請求項1に記載の電気接点であって、
前記高導電層は、前記炭素繊維を0.1〜1.5重量%含むことを特徴とする電気接点。
The electrical contact according to claim 1,
The electrical contact according to claim 1, wherein the highly conductive layer includes 0.1 to 1.5% by weight of the carbon fiber.
接点層と、前記接点層に対し導体に接続する側に設けられた高導電層の少なくとも2つの層を有する電気接点の製造方法であって、
成型容器中にCr,CuおよびTeの混合粉末,Cu粉末および炭素繊維の混合粉末をそれぞれ層状に充填し、加圧して一体成型し、Cuの融点以下で加熱焼結することを特徴とする電気接点の製造方法。
A method for producing an electrical contact having a contact layer and at least two layers of a highly conductive layer provided on a side connected to a conductor with respect to the contact layer,
A mixed container of Cr, Cu and Te, mixed powder of Cu powder and carbon fiber is filled in a molding container in layers, pressurized and integrally molded, and heat-sintered below the melting point of Cu. Contact manufacturing method.
請求項5に記載の電気接点の製造方法であって、
前記焼結は、還元雰囲気中あるいは不活性雰囲気中で行うことを特徴とする電気接点の製造方法。
It is a manufacturing method of the electrical contact according to claim 5,
The method of manufacturing an electrical contact, wherein the sintering is performed in a reducing atmosphere or an inert atmosphere.
真空容器内に一対の固定側電極および可動側電極を備えた真空バルブと、該真空バルブ内の前記固定側電極および可動側電極の各々に接続され、前記真空バルブ外へ引き出された導体端子と、
前記可動側電極を駆動する開閉手段とを備えた真空遮断器であって、
前記固定側電極および可動側電極は円盤状部材と、該円盤状部材の前記高導電層の面に一体に接合された電極棒とよりなり、
前記固定側電極および可動側電極の円盤状部材の少なくともいずれかが、接点層と、前記接点層に対し導体に接続する側に設けられた高導電層の少なくとも2つの層を有する焼結体よりなり、前記接点層はCrとCuとTeを含み、前記高導電層はCuと炭素繊維を含み、前記接点層と前記高導電層の間にCr炭化物が存在することを特徴とする真空遮断器。
A vacuum valve having a pair of fixed-side electrode and movable-side electrode in a vacuum vessel; and a conductor terminal connected to each of the fixed-side electrode and movable-side electrode in the vacuum valve and drawn out of the vacuum valve; ,
A vacuum circuit breaker comprising an opening / closing means for driving the movable electrode,
The fixed side electrode and the movable side electrode are composed of a disk-shaped member and an electrode bar integrally joined to the surface of the highly conductive layer of the disk-shaped member,
A sintered body in which at least one of the disk-like members of the fixed side electrode and the movable side electrode has a contact layer and at least two layers of a highly conductive layer provided on the side connected to the conductor with respect to the contact layer. And the contact layer includes Cr, Cu, and Te, the highly conductive layer includes Cu and carbon fiber, and Cr carbide exists between the contact layer and the highly conductive layer. .
JP2009154512A 2009-06-30 2009-06-30 Electric contact for vacuum valve, and vacuum switching device using it Pending JP2011014240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009154512A JP2011014240A (en) 2009-06-30 2009-06-30 Electric contact for vacuum valve, and vacuum switching device using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009154512A JP2011014240A (en) 2009-06-30 2009-06-30 Electric contact for vacuum valve, and vacuum switching device using it

Publications (1)

Publication Number Publication Date
JP2011014240A true JP2011014240A (en) 2011-01-20

Family

ID=43592945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009154512A Pending JP2011014240A (en) 2009-06-30 2009-06-30 Electric contact for vacuum valve, and vacuum switching device using it

Country Status (1)

Country Link
JP (1) JP2011014240A (en)

Similar Documents

Publication Publication Date Title
JP4979604B2 (en) Electrical contacts for vacuum valves
JP2874522B2 (en) Vacuum circuit breaker, vacuum valve used therefor, electrode for vacuum valve, and method of manufacturing the same
JP4759987B2 (en) Electrode and electrical contact and its manufacturing method
JP2007018835A (en) Electric contact for vacuum circuit breaker and its manufacturing method
JP6051142B2 (en) Electrical contact for vacuum valve and manufacturing method thereof
JP2005135778A (en) Electric contact and its manufacturing method, electrode for vacuum bulb, vacuum bulb using it, and vacuum interrupter
JP6050994B2 (en) Electrical contacts, electrical contact manufacturing methods, electrodes, vacuum valves, vacuum switchgear
JP6304454B2 (en) Contact member manufacturing method, contact member and vacuum valve
JP2011108380A (en) Electric contact for vacuum valve, and vacuum interrupter using the same
EP0118844A2 (en) Vacuum switch and method of manufacturing the same
JP2008021590A (en) Electrical contact for vacuum valve, its manufacturing method, electrode for vacuum valve, vacuum valve, and vacuum breaker
JP2010061935A (en) Electrical contacts, methods of manufacturing the same, and switchgear for electric power
JP2001135206A (en) Electrode, vacuum valve electrode, vacuum valve and vacuum switch
JP2006147263A (en) Electrode for vacuum circuit breaker, vacuum valve, and manufacture thereof
JP2011014240A (en) Electric contact for vacuum valve, and vacuum switching device using it
JP4988489B2 (en) Electrical contact
JP5409739B2 (en) Junction structure, electrical contact, and manufacturing method thereof
JP2006120373A (en) Vacuum circuit breaker, vacuum bulb and electrode and its manufacturing method
JP5159947B2 (en) Electrical contact for vacuum valve and vacuum circuit breaker using the same
JP5211246B2 (en) Electrical contact for vacuum valve and vacuum circuit breaker and vacuum switchgear using the electrical contact
JP5668123B2 (en) Junction structure, electrical contact
JP2004342441A (en) Electric contact and its manifacturing method, vacuum valve using it and each use
JP2007059107A (en) Electrical contact
JP3381605B2 (en) Vacuum circuit breaker and vacuum valve and electrical contacts used for it
JP3627712B2 (en) Vacuum circuit breaker and vacuum valve and electrical contact used therefor