JP5211246B2 - Electrical contact for vacuum valve and vacuum circuit breaker and vacuum switchgear using the electrical contact - Google Patents

Electrical contact for vacuum valve and vacuum circuit breaker and vacuum switchgear using the electrical contact Download PDF

Info

Publication number
JP5211246B2
JP5211246B2 JP2011528518A JP2011528518A JP5211246B2 JP 5211246 B2 JP5211246 B2 JP 5211246B2 JP 2011528518 A JP2011528518 A JP 2011528518A JP 2011528518 A JP2011528518 A JP 2011528518A JP 5211246 B2 JP5211246 B2 JP 5211246B2
Authority
JP
Japan
Prior art keywords
contact layer
vacuum
vacuum valve
base material
electrical contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011528518A
Other languages
Japanese (ja)
Other versions
JPWO2011024228A1 (en
Inventor
菊池  茂
将人 小林
悟 梶原
隆 佐藤
和孝 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of JPWO2011024228A1 publication Critical patent/JPWO2011024228A1/en
Application granted granted Critical
Publication of JP5211246B2 publication Critical patent/JP5211246B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/664Contacts; Arc-extinguishing means, e.g. arcing rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/0203Contacts characterised by the material thereof specially adapted for vacuum switches
    • H01H1/0206Contacts characterised by the material thereof specially adapted for vacuum switches containing as major components Cu and Cr
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/664Contacts; Arc-extinguishing means, e.g. arcing rings
    • H01H33/6643Contacts; Arc-extinguishing means, e.g. arcing rings having disc-shaped contacts subdivided in petal-like segments, e.g. by helical grooves

Description

本発明は、真空バルブ用電気接点及びその電気接点を用いた真空遮断器及び真空開閉機器に関する。   The present invention relates to an electrical contact for a vacuum valve and a vacuum circuit breaker and a vacuum switchgear using the electrical contact.

真空遮断器等の真空を媒体とした真空開閉機器は、環境への影響が小さいことからガス遮断器等の代替が進められ、大容量化が求められている。この真空開閉機器に用いられる耐火性金属と導電性金属からなる大電流遮断のための電気接点の部材は、通電容量を大きくして良好な熱伝導を保つために、高密度であることが必要である。   Vacuum switchgear using vacuum as a medium, such as a vacuum circuit breaker, has a small impact on the environment, and therefore, replacement of a gas circuit breaker or the like is being promoted, and a large capacity is required. The electrical contact member for cutting off a large current made of a refractory metal and a conductive metal used in this vacuum switchgear needs to have a high density in order to increase current carrying capacity and maintain good heat conduction. It is.

そのため、たとえば一般の真空開閉機器に用いられるCr−Cu系の電気接点は、高密度化が可能な溶浸法や焼結法により製造されている。   For this reason, for example, Cr—Cu-based electrical contacts used in general vacuum switching devices are manufactured by an infiltration method or a sintering method capable of increasing the density.

例えば、特許2874522号公報に開示された技術では、Cr−Cu低密度成形体にCuを溶融含浸して電流開閉機器の電気接点を製造している。   For example, in the technique disclosed in Japanese Patent No. 2874522, an electrical contact of a current switching device is manufactured by melting and impregnating a Cr-Cu low-density molded body with Cu.

また、特開2005−135778号公報に開示された技術では、Cr−Cu系の高密度成形体を不活性雰囲気中で焼結することにより、電流開閉機器に使用する高密度の電気接点を得ている。   In the technique disclosed in Japanese Patent Application Laid-Open No. 2005-135778, a high-density electrical contact for use in a current switching device is obtained by sintering a Cr-Cu-based high-density molded body in an inert atmosphere. ing.

特許2874522号公報Japanese Patent No. 2874522 特開2005−135778号公報 一方、通電時のジュール熱によって電気接点同士が溶着した場合に、電流遮断時には前記電気接点を支障なく引き離せることが必要であり、そのために電気接点部材の低強度化が求められる。JP, 2005-135778, A On the other hand, when electrical contacts are welded by Joule heat at the time of energization, it is necessary to be able to separate the electrical contacts without any trouble at the time of current interruption. Is required.

そこで、特許2874522号公報に開示された技術では、硬質・高融点金属を均一分散させることで電気接点同士が溶着した電気接点部材を破壊する起点としている。   Therefore, in the technology disclosed in Japanese Patent No. 2874522, the electric contact member in which the electric contacts are welded to each other is destroyed by uniformly dispersing the hard and high melting point metal.

また、特開2005−135778号公報に開示された技術では、微量の低融点金属を添加し、CrとCuの界面結合力を低下させることによって電気接点部材の低強度化を図っている。   In the technique disclosed in Japanese Patent Application Laid-Open No. 2005-135778, a small amount of a low melting point metal is added to reduce the interface bonding force between Cr and Cu, thereby reducing the strength of the electrical contact member.

電流開閉機器に使用する電気接点部材の強度低減を目的とした高融点金属分散は、その分散状態によって効果が不安定になるだけでなく、高融点金属が硬質であるため加工性が低下する。また低融点金属添加は、その添加量が適正でないと通電部材へのろう付け工程において溶融・揮散し、ろう付け不良などの不具合を招くとともに、電流遮断時における揮散によってアークが持続して遮断不能や耐電圧性能低下を誘発する。   The refractory metal dispersion intended to reduce the strength of the electrical contact member used in the current switching device not only becomes unstable depending on the dispersion state, but also the workability is lowered because the refractory metal is hard. In addition, if the addition amount of the low melting point metal is not appropriate, it melts and volatilizes in the brazing process to the current-carrying member, causing problems such as poor brazing, and the arc continues due to volatilization during current interruption and cannot be interrupted. Induces or withstand voltage performance degradation.

本発明の目的は、導電性と熱伝導性を保持すると共に、電気接点部材の強度を電流遮断時に電気接点が支障なく引き離せる程度の所望の値にした真空バルブ用電気接点、及びその電気接点を用いた真空開閉機器を提供することにある。   An object of the present invention is to provide an electrical contact for a vacuum valve that maintains electrical conductivity and thermal conductivity, and has a strength of the electrical contact member set to a desired value such that the electrical contact can be separated without any trouble when the current is interrupted. The object is to provide a vacuum switching device using contacts.

本発明の真空バルブ用電気接点は、導電性金属からなる基材と、前記基材の上面側に耐火性金属および導電性金属を形成して前記基材とこの接点層とを一体に結合して構成し、前記接点層における耐火性金属および導電性金属の結晶粒径が5〜20μmの範囲となるように形成し、前記接点層において、耐火性金属と導電性金属の間の拡散相あるいは反応相の範囲が50nm以下の範囲となるように形成したことを特徴とする。 The electrical contact for a vacuum valve of the present invention comprises a base material made of a conductive metal, and a refractory metal and a conductive metal formed on the upper surface side of the base material, and the base material and the contact layer are integrally bonded. The refractory metal and the conductive metal in the contact layer are formed so that the crystal grain size is in the range of 5 to 20 μm. In the contact layer, the diffusion phase between the refractory metal and the conductive metal or The reaction phase is formed such that the range is 50 nm or less .

本発明の真空バルブは、真空容器内に一対の固定側電極及びこの固定側電極に対向して配設された可動側電極とを備えた真空バルブにおいて、前記固定側電極及び可動側電極の少なくとも一方が、円盤形状の前記接点層及び前記基材を構成する円盤状部材と、前記円盤状部材の裏面側に設置された汚損防止板と、前記円盤状部材の前記基材及び汚損防止板に一体に接合された電極棒に用いられる電気接点であり、前記電極棒に用いられる電気接点は、導電性金属からなる基材と、前記基材の上面側に耐火性金属および導電性金属からなる接点層を形成して前記基材とこの接点層とを一体に結合して構成し、前記接点層における耐火性金属および導電性金属の結晶粒径が5〜20μmの範囲となるように形成され、前記接点層において、耐火性金属と導電性金属の間の拡散相あるいは反応相の範囲が50nm以下の範囲となるように形成されていることを特徴とする。 The vacuum valve of the present invention is a vacuum valve comprising a pair of fixed side electrodes and a movable side electrode disposed facing the fixed side electrode in a vacuum vessel, wherein at least the fixed side electrode and the movable side electrode One of the disk-shaped contact layer and the disk-shaped member constituting the base material, the anti-stain plate installed on the back side of the disk-shaped member, and the base material and anti-stain plate of the disk-shaped member It is an electric contact used for the electrode rod joined together, and the electric contact used for the electrode rod consists of a base material made of a conductive metal and a refractory metal and a conductive metal on the upper surface side of the base material. A contact layer is formed, and the base material and the contact layer are integrally bonded to each other, and the refractory metal and the conductive metal in the contact layer have a crystal grain size in the range of 5 to 20 μm. In the contact layer, fire resistance Range of the diffusion phase, or reaction phase between genera and conductive metal, characterized in that it is formed such that the range of 50nm.

本発明の真空遮断器は、真空容器内に一対の固定側電極及びこの固定側電極に対向して配設された可動側電極を備えた真空バルブと、前記真空バルブ内の前記固定側電極および可動側電極の各々に前記真空バルブ外へ接続された導体端子と、前記可動側電極を駆動する開閉手段とを備えた真空遮断器において、前記真空バルブは前記固定側電極及び可動側電極の少なくとも一方が、円盤形状の前記接点層及び前記基材を構成する円盤状部材と、前記円盤状部材の裏面側に設置された汚損防止板と、前記円盤状部材の前記基材及び汚損防止板に一体に接合された電極棒とを有する真空バルブ用電極を備えており、前記電極棒に用いられる電気接点は、導電性金属からなる基材と、前記基材の上面側に耐火性金属および導電性金属からなる接点層を形成して前記基材とこの接点層とを一体に結合して構成し、前記接点層における耐火性金属および導電性金属の結晶粒径が5〜20μmの範囲となるように形成され、前記接点層において、耐火性金属と導電性金属の間の拡散相あるいは反応相の範囲が50nm以下の範囲となるように形成されていることを特徴とする。 The vacuum circuit breaker of the present invention includes a vacuum valve provided with a pair of fixed-side electrodes and a movable-side electrode disposed opposite to the fixed-side electrodes in the vacuum vessel, the fixed-side electrodes in the vacuum valve, A vacuum circuit breaker having a conductor terminal connected to the outside of the vacuum valve and an opening / closing means for driving the movable side electrode to each of the movable side electrodes, wherein the vacuum valve includes at least the fixed side electrode and the movable side electrode. One of the disk-shaped contact layer and the disk-shaped member constituting the base material, the anti-stain plate installed on the back side of the disk-shaped member, and the base material and anti-stain plate of the disk-shaped member An electrode for a vacuum valve having an electrode rod integrally joined thereto, and an electrical contact used for the electrode rod includes a base material made of a conductive metal, and a refractory metal and a conductive material on the upper surface side of the base material. Contact layer made of conductive metal Formed to constitute bonded integrally with the contact layer and the base material, crystal grain size of the refractory metal and the conductive metal in said contact layer is formed to be in the range of 5 to 20 [mu] m, the contact The layer is formed such that the range of the diffusion phase or reaction phase between the refractory metal and the conductive metal is 50 nm or less .

本発明の真空開閉機器は、真空容器内に一対の固定側電極及びこの固定側電極に対向して配設された可動側電極を備えた真空バルブを導体によって複数接続し、前記可動側電極を駆動する開閉手段を備えた真空開閉機器において、前記真空バルブは前記固定側電極及び可動側電極の少なくとも一方が、円盤形状の前記接点層及び前記基材を構成する円盤状部材と、前記円盤状部材の裏面側に設置された汚損防止板と、前記円盤状部材の前記基材及び汚損防止板に一体に接合された電極棒とを有する真空バルブ用電極を備えており、前記電極棒に用いられる電気接点は、導電性金属からなる基材と、前記基材の上面側に耐火性金属および導電性金属からなる接点層を形成して前記基材とこの接点層とを一体に結合して構成し、前記接点層における耐火性金属および導電性金属の結晶粒径が5〜20μmの範囲となるように形成され、前記接点層において、耐火性金属と導電性金属の間の拡散相あるいは反応相の範囲が50nm以下の範囲となるように形成されていることを特徴とする。
The vacuum switchgear according to the present invention comprises a plurality of vacuum valves each having a pair of fixed-side electrodes and a movable-side electrode disposed opposite to the fixed-side electrodes in a vacuum container, and the movable-side electrodes are connected to each other by a conductor. In the vacuum opening / closing device provided with the opening / closing means to be driven, the vacuum valve is configured such that at least one of the fixed side electrode and the movable side electrode is a disk-shaped member constituting the disk-shaped contact layer and the base material, and the disk-shaped member. A vacuum valve electrode having a fouling prevention plate installed on the back side of the member, and an electrode rod integrally joined to the base material and the fouling prevention plate of the disk-shaped member, and used for the electrode rod The electrical contact is formed by forming a base material made of a conductive metal and a contact layer made of a refractory metal and a conductive metal on the upper surface side of the base material, and integrally bonding the base material and the contact layer. Configured in the contact layer Crystal grain size of the refractory metal and the conductive metal is formed to be in the range of 5 to 20 [mu] m, in the contact layer, the diffusion phase or reaction phase between the refractory metal and the conductive metal range below 50nm It is formed so that it may become a range .

本発明によれば、導電性と熱伝導性を保持すると共に、電気接点部材の強度を電流遮断時に電気接点が支障なく引き離せる程度の所望の値にした真空バルブ用電気接点、及びその電気接点を用いた真空開閉機器が実現できる。   According to the present invention, an electrical contact for a vacuum valve that maintains electrical conductivity and thermal conductivity, and has the electrical contact member strength set to a desired value such that the electrical contact can be separated without any trouble when the current is interrupted. Vacuum switchgear using contacts can be realized.

本発明の第1実施例である電気接点および電極の構造を示す上面図。The top view which shows the structure of the electrical contact which is 1st Example of this invention, and an electrode. 図1に示した本発明の第1実施例である真空バルブ用の電気接点および電極を示す断面図。Sectional drawing which shows the electrical contact and electrode for vacuum valves which are 1st Example of this invention shown in FIG. 比較例品の電気接点についての接点層におけるCrとCuの界面の元素分布の分析結果。The analysis result of the element distribution of the interface of Cr and Cu in the contact layer about the electrical contact of a comparative example product. 本発明の実施例品の電気接点についての接点層におけるCrとCuの界面の元素分布の分析結果。The analysis result of the element distribution of the interface of Cr and Cu in the contact layer about the electrical contact of the Example article of the present invention. 本発明の第1実施例の真空バルブ用の電気接点および電極を取り付けた本発明の第2実施例である真空バルブの構造を示す断面図。Sectional drawing which shows the structure of the vacuum valve which is the 2nd Example of this invention which attached the electrical contact and electrode for vacuum valves of 1st Example of this invention. 図5に示した本発明の第2実施例の真空バルブを備えた本発明の第3実施例である真空遮断器の構造を表す図。The figure showing the structure of the vacuum circuit breaker which is the 3rd Example of this invention provided with the vacuum valve of 2nd Example of this invention shown in FIG. 図5に示した本発明の第2実施例の真空バルブを備えた本発明の第4実施例である路肩設置変圧器用の負荷開閉器の構造を示す断面図。Sectional drawing which shows the structure of the load switch for the roadside installation transformer which is the 4th Example of this invention provided with the vacuum valve of 2nd Example of this invention shown in FIG.

本発明の一実施例である真空バルブ用の電気接点は、導電性金属からなる基材と、前記基材の上面側に耐火性金属および導電性金属からなる接点層を有し、前記基材と接点層とを一体に結合して構成し、前記接点層における耐火性金属および導電性金属の結晶粒径が5〜20μmの範囲となるように形成したことにより、接点開閉時に剥離・脱落などの不具合が生じず、通電性に優れた電気接点が得られる。   An electrical contact for a vacuum valve according to an embodiment of the present invention has a base material made of a conductive metal, and a contact layer made of a refractory metal and a conductive metal on the upper surface side of the base material. And the contact layer are integrally bonded, and the crystal grain size of the refractory metal and the conductive metal in the contact layer is in the range of 5 to 20 μm. Thus, an electrical contact having excellent electrical conductivity can be obtained.

また、接点層における耐火性金属および導電性金属は、結晶粒径が5〜20μmの範囲であることにより耐火性金属が均一に分散した微細組織となり、以下に示す理由により安定した遮断性能および耐電圧性能が得られる。   Further, the refractory metal and the conductive metal in the contact layer have a fine structure in which the refractory metal is uniformly dispersed when the crystal grain size is in the range of 5 to 20 μm. Voltage performance is obtained.

遮断性能に関しては、例えばCuなどの導電性金属からなる母相が連続的なネットワークを形成することで、熱伝導性および導電性が高くなり、安定化する。このとき、母相の熱流または電流を阻害、散乱する溶質原子、析出物、偏析、結晶粒界などを極力排除することが重要である。   Regarding the interruption | blocking performance, a heat conductive and electroconductivity become high and stabilized because the parent phase which consists of electroconductive metals, such as Cu, forms a continuous network, for example. At this time, it is important to eliminate as much as possible solute atoms, precipitates, segregation, crystal grain boundaries and the like that inhibit or scatter the heat flow or current of the matrix.

溶質原子、析出物、偏析などは、原料や製造時に混入する不純物を低減すればよい。結晶粒界を排除、すなわち単結晶化することは、耐火性金属および導電性金属からなる複合材料であるが故に困難であるが、本用途である真空遮断器用の電気接点では、概ね5μm以上の結晶粒径であれば、その結晶粒界が導電性に及ぼす影響は無視できる。   Solute atoms, precipitates, segregation, and the like may be achieved by reducing the impurities mixed in the raw materials and manufacturing. It is difficult to eliminate the crystal grain boundary, that is, to make a single crystal, because it is a composite material composed of a refractory metal and a conductive metal. If it is a crystal grain diameter, the influence which the crystal grain boundary has on conductivity is negligible.

一方、耐電圧性能に関しては、耐火性金属および導電性金属の結晶粒を、均一かつ微細化することで、安定化する。すなわち電極間で生じたアークは、時々刻々電極表面を移動する。このとき、電極表面は耐火性金属および導電性金属からなる複合材料であるが故に、それら二つの相が均一かつ微細に分散することで、アークの軌道上に耐火性金属が均一に存在し、アークの持続性が低下する。   On the other hand, the withstand voltage performance is stabilized by making the crystal grains of the refractory metal and the conductive metal uniform and fine. That is, the arc generated between the electrodes moves on the electrode surface from moment to moment. At this time, since the electrode surface is a composite material composed of a refractory metal and a conductive metal, the two phases are uniformly and finely dispersed, so that the refractory metal exists uniformly on the arc orbit, The sustainability of the arc is reduced.

真空遮断器用の電気接点では、概ね20μm以下の結晶粒径であれば、アーク径に対する耐火性金属の均一分布が実現できる。但し、真空遮断器用の電気接点では、万が一接点同士が溶着した場合に備えた設計が必要である。   In an electrical contact for a vacuum circuit breaker, a uniform distribution of the refractory metal with respect to the arc diameter can be realized if the crystal grain size is approximately 20 μm or less. However, the electrical contact for the vacuum circuit breaker needs to be designed in case the contacts are welded together.

溶着した接点を引き離し易くするためには、接点の低強度化が有用な手段である。しかし、前記アーク持続性低下のための均一かつ微細化は、むしろ高強度化する。したがって、これら二つの要求特性を満足するためには、耐火性金属と導電性金属の間の結合力を制御する必要がある。   In order to easily separate the welded contacts, it is a useful means to reduce the strength of the contacts. However, the uniform and refinement for decreasing the arc sustainability rather increases the strength. Therefore, in order to satisfy these two required characteristics, it is necessary to control the bonding force between the refractory metal and the conductive metal.

結合力を制御するためには、耐火性金属と導電性金属の間の拡散あるいは反応を防止することが重要である。真空遮断器用の電気接点では、前記接点層における耐火性金属と導電性金属の間の拡散相または反応相の厚さが概ね50nm以下であり、また耐火性金属および導電性金属の結晶粒径が概ね20μm以下であれば、均一分散する耐火性金属一個を導電性金属から引き剥がす力が小さくてすむため、引き離し性能に及ぼす影響は無視できる。   In order to control the bonding force, it is important to prevent diffusion or reaction between the refractory metal and the conductive metal. In the electrical contact for a vacuum circuit breaker, the thickness of the diffusion phase or reaction phase between the refractory metal and the conductive metal in the contact layer is approximately 50 nm or less, and the crystal grain sizes of the refractory metal and the conductive metal are If it is approximately 20 μm or less, the force to peel one uniformly dispersed refractory metal from the conductive metal is small, so the influence on the separation performance can be ignored.

なお、電気接点は一般に、真空バルブに組み込んだ後、電気接点同士を開いてギャップを設けた状態で放電させ、接点表面層の組織を微細化し、性能安定性を高める処理が施されるが、結晶粒径が5〜20μmの範囲で均一に微細化した組織であれば、前記処理が不要となる。   In general, electrical contacts are assembled in a vacuum valve, and then the electrical contacts are opened and discharged in a state of providing a gap, and the contact surface layer structure is refined to improve performance stability. If the structure is uniformly refined within a crystal grain size range of 5 to 20 μm, the treatment is unnecessary.

拡散相または反応相はいずれも温度が高いほど成長が進行するものであるため、製造工程中に高温に曝されないようにする。熱力学的な反応速度論に基づけば、温度が数百℃上昇すると、反応速度は一桁以上速くなる。例えば耐火性金属にCr、導電性金属にCuを用いた場合、従来の方法である焼結法では1000℃以上に数時間曝されるため、拡散相または反応相が成長しやすい。   Since both the diffusion phase and the reaction phase grow as the temperature rises, they are not exposed to high temperatures during the manufacturing process. Based on thermodynamic reaction kinetics, the reaction rate increases by an order of magnitude or more as the temperature increases by several hundred degrees Celsius. For example, when Cr is used as the refractory metal and Cu is used as the conductive metal, the conventional sintering method is exposed to 1000 ° C. or more for several hours, and thus the diffusion phase or the reaction phase tends to grow.

拡散相または反応相の厚さが概ね50nm以下とするには、製造時のプロセス温度を800℃程度に低温化することが必要である。すなわちCuの融点は1080℃程度であり、またCrの融点はそれより遥かに高いため、必然的に材料の溶融を伴わない固相状態での製造プロセスがよい。   In order for the thickness of the diffusion phase or reaction phase to be approximately 50 nm or less, it is necessary to lower the process temperature during production to about 800 ° C. That is, the melting point of Cu is about 1080 ° C., and the melting point of Cr is much higher than that, so that a manufacturing process in a solid phase state without necessarily melting the material is good.

以上のような組織および構造の電気接点は、摩擦攪拌プロセスを用いることで実現可能である。一般にCuの摩擦攪拌プロセスでは、プロセス温度は700〜800℃程度であり、得られるCuの結晶粒径は10〜20μmの範囲となる。   The electrical contacts having the structure and structure as described above can be realized by using a friction stir process. In general, in the Cu friction stirring process, the process temperature is about 700 to 800 ° C., and the crystal grain size of Cu obtained is in the range of 10 to 20 μm.

また摩擦攪拌プロセスは、母相となる材料よりも高い融点の材料粉末を同時に用いることで、母相中に粉末を分散させることが可能である。例えばCr粉末を用いた場合、Crの融点はCuよりも800℃以上高いため、摩擦攪拌プロセス温度は700〜800℃程度では熱力学的に非常に安定である。   In the friction stir process, it is possible to disperse the powder in the mother phase by simultaneously using a material powder having a melting point higher than that of the material to be the mother phase. For example, when Cr powder is used, the melting point of Cr is higher than that of Cu by 800 ° C. or more, and therefore, the friction stirring process temperature is about 700 to 800 ° C. and is very stable thermodynamically.

このためCuとともに攪拌されてもCrのまま安定に存在するため、Cu/Cr界面には拡散相または反応相は生成されない。また摩擦攪拌プロセス特有の高い歪み速度により、硬くて脆いCr粉末は粉砕され、かつCu母相に均一に微細分散される。   For this reason, even if it is stirred with Cu, since it exists stably as Cr, a diffusion phase or a reaction phase is not generated at the Cu / Cr interface. Further, due to the high strain rate peculiar to the friction stir process, the hard and brittle Cr powder is pulverized and uniformly finely dispersed in the Cu matrix.

摩擦攪拌プロセスでは、基材となる導電性金属の円板の接点層を形成する面に、溝やくぼみなどの凹部を機械加工により設け、その中に耐火性金属粉末を充填する。なお凹部の形成方法は鍛造などの一般的な金属加工方法でよい。   In the friction stir process, recesses such as grooves and indentations are formed by machining on the surface of the conductive metal disk that forms the base material, and a refractory metal powder is filled therein. In addition, the formation method of a recessed part may be a general metal processing method such as forging.

次に、その面に対し、ツールと呼ばれる回転工具を接点層の厚さに応じた深さで食い込ませ、摩擦熱による軟化が生じた後、全面に渡ってツールを走査させて耐火性金属と導電性金属とを攪拌する。   Next, a rotary tool called a tool is inserted into the surface at a depth corresponding to the thickness of the contact layer, and after softening due to frictional heat, the tool is scanned over the entire surface to form a refractory metal. Stir the conductive metal.

このとき、耐火性金属粉末を充填した溝やくぼみの表面を、導電性金属の板状部材でふたをするように塞ぎ、その上からツールを走査すると、回転ツールの走査によって耐火性金属粉末が飛散するのを防ぐことができ、所望の接点層組成が得やすくなる。   At this time, the surface of the groove or indentation filled with the refractory metal powder is closed with a conductive metal plate-like member, and when the tool is scanned from above, the refractory metal powder is scanned by the rotating tool. Scattering can be prevented, and a desired contact layer composition can be easily obtained.

また、ツールの先端に、ピンと呼ばれるツールよりも小径の突起を設けることにより、数mmオーダーの深さまでツールを食い込ませることが容易になる。さらに、ツールの材質を耐火性金属と導電性金属からなる合金とすることで、ツールが損耗・混入しても所望の組成を有する接点層が得られる。   Further, by providing a protrusion having a smaller diameter than a tool called a pin at the tip of the tool, it becomes easy to bite the tool to a depth of several millimeters. Furthermore, by using an alloy composed of a refractory metal and a conductive metal as the material of the tool, a contact layer having a desired composition can be obtained even if the tool is worn or mixed.

この摩擦攪拌プロセスによれば、溶浸法や焼結法と異なり、800℃以下の比較的低温で接点層成分を複合化できるため、結晶の粗大化を生じることなく、導電性金属自体の結晶粒径は10μm程度に微細化されるとともに、耐火性金属粉末自体も同程度に粉砕・微細化され、かつ均一分散される。また、耐火性金属と導電性金属の間における拡散・反応などが極めて少なく、両者は物理的・機械的に結合しているのみであり、従来の製法に比べて低強度となる。   According to this friction stir process, unlike the infiltration method and the sintering method, the contact layer components can be combined at a relatively low temperature of 800 ° C. or lower, so that the crystal of the conductive metal itself can be produced without causing crystal coarsening. The particle size is refined to about 10 μm, and the refractory metal powder itself is ground and refined to the same extent and uniformly dispersed. Further, there is very little diffusion / reaction between the refractory metal and the conductive metal, and both are only physically and mechanically bonded, and the strength is lower than that of the conventional manufacturing method.

従来の焼結法の場合、耐火性金属と導電性金属の間の拡散あるいは反応の範囲は、成分や焼結条件によって異なるが少なくとも100nmは存在することになる。これに対して、摩擦攪拌プロセスを用いた場合にはその範囲は50nm以下である。   In the case of the conventional sintering method, the range of diffusion or reaction between the refractory metal and the conductive metal varies depending on the components and sintering conditions, but at least 100 nm exists. On the other hand, when the friction stirring process is used, the range is 50 nm or less.

さらにこの摩擦攪拌プロセスによれば、電気接点においてアークにさらされる接点層のみを耐火性金属と導電性金属の複合組織とし、アークに直接接しない基材を導電性金属で構成する複層構造とすることができるため、従来の溶浸法や焼結法による接点層のみからなる電気接点に比べて通電性能に優れ、発生ジュール熱を抑えることができ、電気接点同士の溶着が生じにくい。   Further, according to this friction stir process, only the contact layer exposed to the arc in the electrical contact is a composite structure of a refractory metal and a conductive metal, and the base material that is not in direct contact with the arc is composed of the conductive metal, Therefore, compared with the electrical contact which consists only of the contact layer by the conventional infiltration method or a sintering method, it is excellent in electricity_supply performance, can suppress generated Joule heat, and does not produce welding of electrical contacts easily.

本発明の一実施例である真空バルブ用電気接点において、前記接点層における耐火性金属はCr,W,Mo,Nbのいずれか1種または2種以上の混合物あるいは化合物であり、前記接点層における導電性金属はCuまたはCuを主成分としたCu合金とすることで、真空バルブ用電気接点として必要な遮断性能、耐電圧性能、通電性能などが得られる。   In the electrical contact for a vacuum valve which is an embodiment of the present invention, the refractory metal in the contact layer is one or a mixture or a compound of two or more of Cr, W, Mo and Nb. By making the conductive metal Cu or a Cu alloy containing Cu as a main component, it is possible to obtain a breaking performance, a withstand voltage performance, an energization performance and the like necessary for an electrical contact for a vacuum valve.

前記接点層の組成は、耐火性金属が15〜40重量%、導電性金属が60〜85重量%の範囲にあることが望ましい。   The composition of the contact layer is preferably 15 to 40% by weight for the refractory metal and 60 to 85% by weight for the conductive metal.

耐火性金属が15重量%未満であると耐電圧性能が不十分になり、40重量%を超えると電気抵抗が高くなり通電性能が低下するとともに、十分な遮断性能が得られない。   When the refractory metal is less than 15% by weight, the withstand voltage performance becomes insufficient. When the refractory metal exceeds 40% by weight, the electrical resistance increases and the current-carrying performance decreases, and sufficient interruption performance cannot be obtained.

また、接点層の酸素量は0.4重量%以下がよく、これ以上含まれると電流遮断時に放出される酸素ガスが多くなり、アークを持続させて遮断不能が生じるとともに、耐電圧性能が著しく低下する。   In addition, the oxygen content of the contact layer is preferably 0.4% by weight or less, and if it is contained more than this, oxygen gas released at the time of current interruption increases, and the arc is sustained to make interruption impossible, and the withstand voltage performance is remarkably high. descend.

本発明の一実施例である真空バルブ用電気接点の形状は、一体に結合して構成された前記接点層及び基材は円盤形状にそれぞれ形成されており、円盤形状の前記接点層及び前記基材の円中心に中心孔を形成すると共に、該中心孔に対して非接触で円中心から外周部に向かって複数本の貫通したスリット溝を形成し、前記スリット溝によって前記接点層に相互に分離された羽根型の平面形状部を形成することが望ましい。   The shape of the electrical contact for a vacuum valve according to an embodiment of the present invention is such that the contact layer and the base material, which are integrally joined, are each formed in a disc shape, and the contact layer and the base in the disc shape are formed. A center hole is formed at the center of the circle of the material, and a plurality of slit grooves penetrating from the center of the circle toward the outer periphery are formed without contact with the center hole. It is desirable to form a separated blade-shaped planar shape portion.

この中心孔は、電流遮断時に発生するアークが電気接点の中心に点弧するのを防ぎ、アークの停滞による遮断不能を回避するためのものである。またスリット溝は、電磁力によってアークを外周側へ駆動し、電流遮断を促進する効果をもつ。   The center hole is for preventing an arc generated when the current is interrupted from starting at the center of the electrical contact, and avoiding the inability to interrupt due to the stagnation of the arc. The slit groove has an effect of driving the arc to the outer peripheral side by electromagnetic force and promoting current interruption.

本発明の一実施例である電気接点を用いた電極は、円盤形状を有する電気接点の接点層の面に、通電部材である電極棒が一体に接合されることにより、良好な通電性能を有するとともに、接点部で発生したジュール熱を速やかに真空バルブ外へ導くことができる。   An electrode using an electrical contact according to an embodiment of the present invention has good current-carrying performance by integrally joining an electrode rod as a current-carrying member to the surface of a contact layer of a disk-shaped electrical contact. At the same time, the Joule heat generated at the contact portion can be quickly led out of the vacuum valve.

なお、円盤状の電気接点は、その円中心に中央孔を設け、さらに曲線形状をもつスパイラル型のスリット溝によって羽根型に分離された形状を有することが望ましい。中央孔を設けることにより、電流遮断時に発生するアークが接点面の中央で発生し、停滞するのを防ぐことができる。   It is desirable that the disk-shaped electrical contact has a shape in which a central hole is provided at the center of the circle and is separated into a blade shape by a spiral slit groove having a curved shape. By providing the central hole, it is possible to prevent the arc generated when the current is interrupted from occurring at the center of the contact surface and stagnating.

また、スリット溝を設けることにより、発生したアークを電気接点の外周側へ移動させ、速やかに電流を遮断することができる。   Further, by providing the slit groove, the generated arc can be moved to the outer peripheral side of the electrical contact, and the current can be cut off quickly.

なお、本発明の一実施例である電気接点を用いた電極は、円盤状の電気接点の接点層側に、Cuからなるカップ形状をなすコイル電極を一体に接合し、そのコイル電極の底部に電極棒を一体に接合した構造でもよい。これにより、電流遮断時に発生する磁界を利用してアークを消滅させ、優れた遮断性能を得ることができる。   An electrode using an electrical contact according to an embodiment of the present invention is formed by integrally joining a cup-shaped coil electrode made of Cu to the contact layer side of a disk-shaped electrical contact, and at the bottom of the coil electrode. A structure in which the electrode rods are integrally joined may be used. Thereby, the arc is extinguished using the magnetic field generated at the time of current interruption, and an excellent interruption performance can be obtained.

本発明の一実施例である真空バルブは、真空容器内に一対の固定側電極及びこの固定側電極に対向して配設された可動側電極とを備えた真空バルブにおいて、前記固定側電極及び可動側電極の少なくとも一方が本発明の真空バルブ用電気接点を用いた電極からなるものである。   A vacuum valve according to an embodiment of the present invention is a vacuum valve comprising a pair of fixed side electrodes and a movable side electrode disposed opposite to the fixed side electrodes in a vacuum vessel. At least one of the movable side electrodes is an electrode using the electrical contact for a vacuum valve of the present invention.

また、本発明の一実施例である真空遮断器は、少なくとも一方に本発明の電気接点を用いた一対の固定側電極及びこの固定側電極に対向して配設された可動側電極を真空容器内に備えた真空バルブと、この真空バルブ内の固定側電極および可動側電極の各々に真空バルブ外へ接続された導体端子と、前記可動側電極を駆動する開閉手段とを備えたものである。   In addition, a vacuum circuit breaker according to an embodiment of the present invention includes a pair of fixed-side electrodes using the electric contacts of the present invention at least one of them and a movable-side electrode disposed to face the fixed-side electrodes in a vacuum container. A vacuum valve provided inside, a conductor terminal connected to each of the fixed side electrode and the movable side electrode in the vacuum valve, and an opening / closing means for driving the movable side electrode. .

さらに、本発明の一実施例である真空開閉機器は、少なくとも一方に本発明の電気接点を用いた一対の固定側電極及びこの固定側電極に対向して配設された可動側電極を真空容器内に備えた真空バルブを導体によって複数接続し、前記可動側電極を駆動する開閉手段を備えたものである。   Furthermore, a vacuum switching device according to an embodiment of the present invention includes a vacuum container in which at least one of the pair of fixed side electrodes using the electrical contact of the present invention and a movable side electrode disposed to face the fixed side electrode A plurality of vacuum valves provided inside are connected by a conductor and provided with opening / closing means for driving the movable side electrode.

これらの本発明の実施例によれば、通電時に接点部で発生するジュール熱を抑え、電気接点同士の溶着が発生しにくく、通電性能および耐溶着性能に優れた真空遮断器、さらには各種真空開閉機器が得られる。   According to these embodiments of the present invention, the Joule heat generated at the contact portion during energization is suppressed, the welding between the electrical contacts is difficult to occur, and the vacuum circuit breaker excellent in energization performance and anti-welding performance, and various vacuums A switchgear is obtained.

本発明の各実施例について図面を引用して以下に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   Each embodiment of the present invention will be described in detail below with reference to the drawings, but the present invention is not limited to these embodiments.

本発明の電気接点の一実施例として、接点層45が表1に示す組成の金属からなり、基材46が導電性金属であるCuからなる電気接点を作製し、これらの接点層45と基材46を用いて図1に示した真空バルブ用電極1を作製した。   As an example of the electrical contact of the present invention, the contact layer 45 is made of a metal having the composition shown in Table 1, and the base 46 is made of Cu which is a conductive metal. Using the material 46, the vacuum valve electrode 1 shown in FIG.

前記基材46を形成する導電性金属として、CuまたはCuを主成分としたCu合金を用いた。   As the conductive metal forming the base material 46, Cu or a Cu alloy containing Cu as a main component was used.

図1は、表1に記載した各実施例のNo.9乃至No.14にそれぞれ示された耐火性金属および導電性金属からなる接点層組成によって製作された接点層45からなる電気接点1を、導電性金属からなる基材46の表面側に設置した電極の構造を示す上面図であり、図2はこの図1の電極の縦断面である。   FIG. 1 shows the No. of each example described in Table 1. 9 to No. 14 shows an electrode structure in which an electrical contact 1 made of a contact layer 45 made by a contact layer composition made of a refractory metal and a conductive metal shown in FIG. 14 is placed on the surface side of a base material 46 made of a conductive metal. FIG. 2 is a vertical cross-sectional view of the electrode of FIG.

前記接点層45を形成する耐火性金属は、Cr,W,Mo,Nbのいずれか1種または2種以上の混合物あるいは化合物であり、接点層45を形成する導電性金属は、CuまたはCuを主成分としたCu合金である。   The refractory metal forming the contact layer 45 is one or a mixture or compound of any of Cr, W, Mo, and Nb, and the conductive metal forming the contact layer 45 is Cu or Cu. Cu alloy as the main component.

Figure 0005211246
Figure 0005211246

図1及び図2において、円盤状に形成された接点層45と基材46とからなる真空バルブ用電極を構成する電気接点1には、アークに駆動力を与えるためのスリット溝2がこの接点層45と、接点層45を載置した基材46とを共に貫通して形成されている。   1 and 2, a slit groove 2 for applying a driving force to an arc is provided on an electrical contact 1 constituting a vacuum valve electrode composed of a contact layer 45 and a base 46 formed in a disk shape. The layer 45 and the base material 46 on which the contact layer 45 is placed are penetrated together.

そして、電流遮断時に溶融した電気接点1の成分がスリット溝2を通って裏面を汚損するのを防ぐために、基材46の裏面側にはステンレス製の汚損防止板3が設置されている。   And in order to prevent the component of the electrical contact 1 melted at the time of current interruption from fouling the back surface through the slit groove 2, a stainless antifouling plate 3 is installed on the back surface side of the base material 46.

電極棒4には、基材46及び汚損防止板3が、ろう材5によってそれぞれ接合されている。また、円盤状の接点層45の円中心には前記接点層45及び基材46を貫通する中央孔44が形成されており、前記電極棒4の軸先端がこの中央孔44に下方側から嵌合している。   A base material 46 and an antifouling plate 3 are joined to the electrode rod 4 by a brazing material 5, respectively. In addition, a center hole 44 is formed through the contact layer 45 and the base material 46 at the center of the disk-shaped contact layer 45, and the shaft tip of the electrode rod 4 is fitted into the center hole 44 from below. Match.

図1及び図2に示した電気接点1の作製方法は、次の通りである。まず、基材46を構成することになる無酸素銅の円板(直径60mm、厚さ約11mm)の片側の平面に深さ4mm、幅3mmの溝を任意の間隔で複数本設け、この溝に粒径75μm以下の耐火性金属粉末を充填する。   A method for producing the electrical contact 1 shown in FIGS. 1 and 2 is as follows. First, a plurality of grooves each having a depth of 4 mm and a width of 3 mm are provided at an arbitrary interval on a flat surface on one side of an oxygen-free copper disk (diameter 60 mm, thickness about 11 mm) constituting the base 46. Is filled with a refractory metal powder having a particle size of 75 μm or less.

このとき、溝は直線に限らず任意の形状でよく、耐火性金属と基材46のCuとが所望の接点層の組成になるように溝の間隔や耐火性金属粉末の充填量などを調整する。   At this time, the groove is not limited to a straight line, but may have any shape, and the groove interval and the amount of the refractory metal powder are adjusted so that the refractory metal and the Cu of the base material 46 have the desired composition of the contact layer. To do.

この無酸素銅の円板の表面に対し、厚さ0.5mmの無酸素銅で作製したふた状の板をかぶせ、その上からツール(回転工具)を回転させながら深さ約4mmまで食い込ませ、摩擦熱で温度が上昇した後、溝を設けた前記円盤の全面に渡りツールを移動させ、基材46の成分と耐火性金属粉末を混合する摩擦攪拌プロセスを施した。   Cover the surface of this oxygen-free copper disk with a lid-like plate made of oxygen-free copper with a thickness of 0.5 mm, and bite it to a depth of about 4 mm while rotating the tool (rotary tool) from above. After the temperature was raised by frictional heat, the tool was moved across the entire surface of the disk provided with grooves, and a friction stirring process was performed in which the components of the base material 46 and the refractory metal powder were mixed.

この摩擦攪拌プロセスを施すことにより、無酸素銅で作製したふた状の板に相当する部分は接点層45と一体となる。   By applying this friction stirring process, a portion corresponding to a lid-like plate made of oxygen-free copper is integrated with the contact layer 45.

この際、混合する層が酸化しないよう、不活性ガスであるアルゴンガスをツール周辺に吹き付けながら処理した。ツールの回転数は1200rpm、移動速度は400mm/minである。   At this time, an argon gas as an inert gas was blown around the tool so as not to oxidize the layer to be mixed. The rotation speed of the tool is 1200 rpm, and the moving speed is 400 mm / min.

本実施例では、ツールを円板の処理面の中心から外周にかけてらせん状に全面に渡り移動させたが、例えば直線状に全面に渡って走査させる方法でも良い。以上の方法により、直径60mm、全体厚さが約10mmで、片面の表面に約4mmの接点層45が形成された電気接点1の部材を作製した。   In this embodiment, the tool is moved over the entire surface spirally from the center of the processing surface of the disk to the outer periphery. However, for example, a method of scanning the entire surface linearly may be used. By the above method, a member of the electrical contact 1 having a diameter of 60 mm, an overall thickness of about 10 mm, and a contact layer 45 of about 4 mm formed on one surface was produced.

このように作製した電気接点1の部材の外周面および接点層45の面を所定の寸法となるように切削し、さらにスリット溝2、中央孔44を機械加工により形成して直径55mm、全体厚さが9mmで、接点層45の厚さが3mmの図1に示す電気接点1を得た。   The outer peripheral surface of the member of the electrical contact 1 and the surface of the contact layer 45 manufactured in this way are cut so as to have predetermined dimensions, and the slit groove 2 and the central hole 44 are formed by machining to have a diameter of 55 mm and an overall thickness. The electrical contact 1 shown in FIG. 1 having a thickness of 9 mm and a contact layer 45 thickness of 3 mm was obtained.

なお、耐火性金属粉末を充填するための溝は、深さ方向に狭くなる断面形状とすることにより、接点層45から基材46に渡って組成を傾斜させることが可能となり、電気接点1への通電時におけるジュール熱による層間熱膨張差を緩和して熱変形を抑制することができる。   Note that the groove for filling the refractory metal powder has a cross-sectional shape that becomes narrower in the depth direction, so that the composition can be inclined from the contact layer 45 to the base material 46, and the electrical contact 1. The thermal deformation can be suppressed by relieving the interlayer thermal expansion difference due to Joule heat during energization.

本実施例の電気接点1と比較するために、従来製法である焼結法および溶浸法による電気接点1も併せて作製した。従来製法の焼結法による作製方法は、次の通りである。粒径75μm以下の耐火性金属粉末と60μm以下のCu粉末とを、表1の比較例品としてNo.1、2、4、5に示す接点層組成となるような配合比でV型混合器により混合し、接点層の原料とした。   In order to compare with the electrical contact 1 of this example, an electrical contact 1 by a sintering method and an infiltration method, which are conventional manufacturing methods, was also produced. The manufacturing method by the sintering method of the conventional manufacturing method is as follows. A refractory metal powder having a particle size of 75 μm or less and a Cu powder having a particle size of 60 μm or less are No. The contact layer composition shown in 1, 2, 4, and 5 was mixed by a V-type mixer to obtain a contact layer material.

この混合粉を円盤状の金型に充填後、さらに上記Cu粉末を充填し、油圧プレスにより400MPaの圧力で一体で加圧成形した。この際、各層の所望の厚さを確保できるように、原料粉の充填量を調整した。これにより得られた成形体の相対密度は、およそ68〜73%であった。   The mixed powder was filled into a disk-shaped mold, and further filled with the Cu powder, and was integrally pressure-formed at a pressure of 400 MPa by a hydraulic press. At this time, the filling amount of the raw material powder was adjusted so as to ensure a desired thickness of each layer. The relative density of the molded body thus obtained was approximately 68 to 73%.

これらを真空中で、1060℃×2時間加熱して焼結し、電気接点1の素材となる焼結体を作製した。この焼結体の相対密度は、およそ93〜97%である。なお、表1の比較例品におけるNo.2およびNo.5の焼結体は、接点層45と基材46の層界面における熱膨張差により外周端部で剥離が生じた。   These were heated and sintered in vacuum at 1060 ° C. for 2 hours to produce a sintered body that was a material for the electrical contact 1. The relative density of this sintered body is approximately 93 to 97%. In addition, in the comparative example product of Table 1, No. 2 and no. In the sintered body of No. 5, peeling occurred at the outer peripheral end due to a difference in thermal expansion at the layer interface between the contact layer 45 and the base material 46.

一方、従来製法の溶浸法による作製方法は、次の通りである。原料には上記の耐火性金属粉末およびCu粉末を用い、Cr粉末を55重量%、Cu粉末を38重量%、Nb粉末を7重量%の割合でV型混合器により混合し、これを円盤状の金型に充填し、油圧プレスにより145MPaの圧力で加圧成形してスケルトン(低密度成形体)を作製した。   On the other hand, the manufacturing method by the infiltration method of the conventional manufacturing method is as follows. The above-mentioned refractory metal powder and Cu powder are used as raw materials, Cr powder is mixed by 55% by weight, Cu powder by 38% by weight, and Nb powder by 7% by weight. A skeleton (low-density molded body) was produced by filling the metal mold and press-molding with a hydraulic press at a pressure of 145 MPa.

このスケルトンを黒鉛るつぼに入れ、その上にCuインゴットを載置し、真空中において1200℃×2時間加熱し、スケルトンにCuを溶融含浸させることによって、表1のNo.3の接点層組成を有し、Cuからなる基材と一体化した溶浸体を作製した。以上で得られた焼結体および溶浸体を機械加工し、図1に示した電気接点1と同じ形状をなす直径55mm、全体厚さが9mmで、接点層45の厚さが3mmの比較例の電気接点1を作製した。   This skeleton was placed in a graphite crucible, and a Cu ingot was placed thereon, heated in a vacuum at 1200 ° C. for 2 hours, and the skeleton was melted and impregnated with Cu. An infiltration body having a contact layer composition of 3 and integrated with a base material made of Cu was produced. The sintered body and the infiltrated body obtained above are machined, and the comparison is made with a diameter of 55 mm, an overall thickness of 9 mm, and a contact layer 45 thickness of 3 mm, which have the same shape as the electrical contact 1 shown in FIG. An example electrical contact 1 was made.

次に、前記した電気接点1を備える真空バルブ用電極を作製した。電極の作製方法は次の通りである。電極棒4を無酸素銅で、また、汚損防止板3をSUS304であらかじめ機械加工により作製しておき、前記で得られた電気接点1、汚損防止板3、電極棒4のそれぞれの間にろう材5を載置し、これを8.2×10−4Pa以下の真空中で970℃×10分間加熱し、図1に示す構成の電極を作製した。Next, the electrode for vacuum valves provided with the above-mentioned electrical contact 1 was produced. The method for producing the electrode is as follows. The electrode rod 4 is made of oxygen-free copper, and the antifouling plate 3 is made by machining in advance with SUS304, and the electric contact 1, the antifouling plate 3 and the electrode rod 4 obtained above are brazed. The material 5 was placed and heated in a vacuum of 8.2 × 10 −4 Pa or less at 970 ° C. × 10 minutes to produce an electrode having the configuration shown in FIG.

前記した本発明の実施例品である表1に示したNo.9〜No.14の電気接点は、表1の接点層の酸素量(ppm)の欄、及び接点層における高導電性金属の最大結晶粒径(μm)の欄にそれぞれ記載したように、いずれも接点層の酸素量が4000ppm(0.4重量%)以下、結晶粒径は5〜20μmの範囲内となっており、遮断性能および耐溶着性能を満足している。   No. 1 shown in Table 1, which is an example product of the present invention described above. 9-No. As shown in the column of the oxygen amount (ppm) of the contact layer in Table 1 and the column of the maximum crystal grain size (μm) of the highly conductive metal in the contact layer, respectively, The oxygen amount is 4000 ppm (0.4% by weight) or less, the crystal grain size is in the range of 5 to 20 μm, and the barrier performance and the welding resistance are satisfied.

この電極は後述する定格電圧24kV、定格電流1250A、定格遮断電流25kA用の真空バルブ100に用いられる電極である。なお、電極の汚損防止板3は、開閉動作による電気接点1の過度な変形を防ぐための補強板の役目もするが、電気接点1の強度が十分であれば汚損防止板3は省いてもよい。   This electrode is used for a vacuum valve 100 for a rated voltage of 24 kV, a rated current of 1250 A, and a rated breaking current of 25 kA, which will be described later. The electrode antifouling plate 3 also serves as a reinforcing plate for preventing excessive deformation of the electric contact 1 due to the opening / closing operation. However, if the electric contact 1 has sufficient strength, the antifouling plate 3 may be omitted. Good.

本実施例の接点における接点層における耐火性金属および導電性金属の結晶粒径が5〜20μmの範囲に設定され、前記接点層における耐火性金属と導電性金属の間の拡散の範囲が50nm以下の範囲に設定されたことによる作用効果は、表1を引用した後述する第2実施例の真空バルブ100の説明を参照されたい。   The crystal grain size of the refractory metal and the conductive metal in the contact layer in the contact of this example is set in the range of 5 to 20 μm, and the diffusion range between the refractory metal and the conductive metal in the contact layer is 50 nm or less. Refer to the description of the vacuum valve 100 of the second embodiment, which will be described later, with reference to Table 1, for the operational effects of being set in the range.

本実施例によれば、導電性と熱伝導性を保持すると共に、電気接点部材の強度を電流遮断時に電気接点が支障なく引き離せる程度の所望の値にした真空バルブ用電気接点、及びその電気接点を用いた真空開閉機器が実現できる。   According to the present embodiment, the electrical contact for vacuum valve that maintains electrical conductivity and thermal conductivity, and has the electrical contact member strength set to a desired value such that the electrical contact can be separated without any trouble when the current is interrupted, and Vacuum switchgear using electrical contacts can be realized.

次に本発明の一実施例である真空バルブ100について説明する。   Next, the vacuum valve 100 which is one Example of this invention is demonstrated.

仕様が定格電圧24kV、定格電流1250A、定格遮断電流25kAの真空バルブ100を作製した。   A vacuum valve 100 having a rated voltage of 24 kV, a rated current of 1250 A, and a rated breaking current of 25 kA was produced.

図5は、図1及び図2に示した実施例の電気接点1を有する電極を備えた真空バルブ100の実施例を示す断面図である。   FIG. 5 is a cross-sectional view showing an embodiment of a vacuum valve 100 including an electrode having the electrical contact 1 of the embodiment shown in FIGS. 1 and 2.

図5に示した真空バルブ100は電極となる固定側電極6aと可動側電極6bとを備えている。固定側電極6aは固定側電気接点1aと、この固定側電気接点1aを備えた固定側電極棒4aと、固定側電気接点1aと固定側電極棒4aとの間に設置された汚損防止板3aとから構成されている。   The vacuum valve 100 shown in FIG. 5 includes a fixed side electrode 6a and a movable side electrode 6b that serve as electrodes. The fixed-side electrode 6a includes a fixed-side electrical contact 1a, a fixed-side electrode rod 4a provided with the fixed-side electrical contact 1a, and an antifouling plate 3a installed between the fixed-side electrical contact 1a and the fixed-side electrode rod 4a. It consists of and.

可動側電極6bは固定側電極6aの固定側電気接点1aに対して離接する可動側電気接点1bと、この可動側電気接点1bを備えた可動側電極棒4bと、可動側電気接点1bと可動側電極棒4bとの間に設置された汚損防止板3bとから構成されている。   The movable side electrode 6b includes a movable side electrical contact 1b that is separated from and in contact with the fixed side electrical contact 1a of the fixed side electrode 6a, a movable side electrode bar 4b that includes the movable side electrical contact 1b, and a movable side electrical contact 1b that is movable. The anti-stain plate 3b is disposed between the side electrode rod 4b.

なお、本実施例の真空バルブ100では、固定側電気接点1aと可動側電気接点1bは図1及び図2に示した実施例の電気接点1と同じ構造を備えているものである。そして、固定側電気接点1aと可動側電気接点1bにそれぞれ形成したスリット溝2は、両者の接触面において一致するように設置されている。   In the vacuum valve 100 of the present embodiment, the fixed-side electrical contact 1a and the movable-side electrical contact 1b have the same structure as the electrical contact 1 of the embodiment shown in FIGS. And the slit groove | channel 2 each formed in the fixed side electrical contact 1a and the movable side electrical contact 1b is installed so that it may correspond in both contact surface.

真空バルブ100は、その側面の周囲が絶縁筒13によって囲まれており、この絶縁筒13の内部に固定側電極6aと、この固定側電極6aに対向して可動側電極6bとが配設されている。そして絶縁筒13の上部と下部には、この絶縁筒13と固定側電極6a及び可動側電極6bを接続する固定側端板9a及び可動側端板9bがそれぞれ設けられている。   The vacuum valve 100 is surrounded by an insulating cylinder 13 around its side surface, and a fixed-side electrode 6a and a movable-side electrode 6b facing the fixed-side electrode 6a are disposed inside the insulating cylinder 13. ing. A fixed-side end plate 9a and a movable-side end plate 9b that connect the insulating tube 13, the fixed-side electrode 6a, and the movable-side electrode 6b are provided on the upper and lower portions of the insulating tube 13, respectively.

絶縁筒13の内部にそれぞれ配設された固定側電極6aの先端に設けた固定側電気接点1a及び可動側電極6bの先端に設けた可動側電気接点1bの外周側には、電気接点の遮断時における金属蒸気等の飛散を防ぐ可動側シールド7が配設されている。   On the outer peripheral side of the fixed-side electrical contact 1a provided at the distal end of the fixed-side electrode 6a and the movable-side electrical contact 1b provided at the distal end of the movable-side electrode 6b respectively disposed inside the insulating cylinder 13, the electrical contact is cut off A movable shield 7 is provided to prevent scattering of metal vapor or the like at the time.

可動側電極6bは、遮断時の金属蒸気等の飛散を防ぐ可動側シールド8を介して可動側ホルダー12にろう付け接合されている。   The movable side electrode 6b is brazed and joined to the movable side holder 12 via a movable side shield 8 that prevents scattering of metal vapor or the like at the time of interruption.

固定側端板9a、可動側端板9b、及び絶縁筒13は相互にろう付けによって高真空に封止されており、固定側電極6a及び可動側ホルダー12に設けたネジ部をもって外部導体(図示せず)と接続される。可動側端板9bと可動側ホルダー12との間には可動側ホルダー12の摺動部分を支えるためのガイド11が可動側端板9bに設けられている。   The fixed side end plate 9a, the movable side end plate 9b, and the insulating cylinder 13 are sealed to each other in a high vacuum by brazing, and have an external conductor (see FIG. 5) having screw portions provided on the fixed side electrode 6a and the movable side holder 12. (Not shown). Between the movable side end plate 9b and the movable side holder 12, a guide 11 for supporting the sliding portion of the movable side holder 12 is provided on the movable side end plate 9b.

また、絶縁筒13内部の可動側シールド8と可動側端板9bとの間にはべローズ10が設けられており、真空バルブ100内を真空に保ったまま可動側ホルダー12を絶縁筒13内で上下させて、固定側電極6aと可動側電極6bとを開閉させることができるように構成されている。   A bellows 10 is provided between the movable shield 8 inside the insulating cylinder 13 and the movable end plate 9b, and the movable holder 12 is placed in the insulating cylinder 13 while the vacuum valve 100 is kept in vacuum. The fixed side electrode 6a and the movable side electrode 6b can be opened and closed by moving up and down.

表1に示す実施例品の電気接点に関し、実施例1で作製した電気接点を有する真空バルブ100を備えた真空遮断器200を用いて遮断試験を行い、電流25kAの遮断、並びに25kA通電後の電極引き離し(開離)の可否を評価した。この際、電気接点の接点層における含有酸素量や結晶粒径の影響を検証するため、放電による表面層微細化処理は行わずに遮断試験に供した。   Regarding the electrical contacts of the example products shown in Table 1, a breaking test was performed using the vacuum circuit breaker 200 provided with the vacuum valve 100 having the electrical contacts produced in Example 1, and after the interruption of the current 25 kA and the energization of 25 kA The possibility of electrode separation (opening) was evaluated. At this time, in order to verify the influence of the amount of oxygen contained in the contact layer of the electrical contact and the crystal grain size, the surface layer was not subjected to the surface layer refinement treatment by discharge, and was subjected to a blocking test.

表1の右側欄は、電気接点における接点層の酸素量、結晶粒径、および遮断試験の結果を示すものであり、No.1〜No.8が比較例品、No.9〜No.14が本発明の実施例品である。   The right column of Table 1 shows the oxygen amount of the contact layer in the electrical contact, the crystal grain size, and the result of the interruption test. 1-No. No. 8 is a comparative product, no. 9-No. 14 is an example product of the present invention.

焼結法および溶浸法で作製したNo.1〜5の比較例品の電気接点は、摩擦攪拌プロセスで作製した本発明の実施例品の電気接点に比べて接点層の酸素含有量が少なく、いずれも25kAの電流遮断が可能である。   No. produced by the sintering method and the infiltration method. The electrical contacts of Comparative Examples 1 to 5 have a lower oxygen content in the contact layer than the electrical contacts of Examples of the present invention produced by the friction stir process, and all of them can cut off a current of 25 kA.

しかしながら、前記比較例品の電気接点は、接点層の結晶粒径が、前記表1にて、接点層における導電性金属の最大結晶粒径(μm)の欄に示したように、数10〜数100μmと大きいため、大電流通電後に接点層の導電性金属成分が融出して溶着が生じやすく、前記表1にて、25kA通電後の開離可否の欄に、開離不可×として示したように、いずれも電極引き離し(開離)が不可能であった。   However, the electrical contact of the comparative product has a crystal grain size of the contact layer of several 10 to 10 as shown in the column of the maximum crystal grain size (μm) of the conductive metal in the contact layer in Table 1. Since it is as large as several hundred μm, the conductive metal component of the contact layer is likely to melt after a large current is applied, and welding is likely to occur. As described above, it was impossible to separate (separate) the electrodes.

前記比較例品の摩擦攪拌プロセスで作製したNo.6の電気接点は、接点層の耐火性金属が15重量%未満のもので、接点層の電気抵抗が比較的小さく、大電流通電後も溶着せずに開離できたが、耐火性金属が不足しているため、遮断性能が不十分であった。   No. produced by the friction stirring process of the comparative example product. The electrical contact of No. 6 has a refractory metal of less than 15% by weight in the contact layer, and the contact layer has a relatively small electric resistance and can be separated without welding even after passing a large current. Due to the shortage, the blocking performance was insufficient.

また、前記比較例品のNo.7は耐火性金属が40重量%を超えるものであるが、これは遮断性能は満足するものの、接点層の電気抵抗が大きく、溶着が生じて開離不可能であった。   In addition, the comparative example product No. In No. 7, the refractory metal exceeds 40% by weight, which is satisfactory in the breaking performance but has a large electric resistance of the contact layer, resulting in welding and cannot be separated.

さらに、前記比較例品のNo.8は摩擦攪拌プロセスで作製する際、アルゴンガスを吹付けずに処理したもので、接点層には4000ppm(0.4重量%)以上の酸素を含み、電流遮断時において酸素の放出によりアークが持続し、遮断不能が生じた。   Furthermore, No. of the comparative example product. No. 8 was prepared by the friction stir process, and it was processed without blowing argon gas. The contact layer contained 4000 ppm (0.4 wt%) or more of oxygen, and the arc was generated by releasing oxygen when the current was interrupted. Persistence and inability to shut off occurred.

以上のように、焼結法および溶浸法で得られた前記比較例品の電気接点は、接点層の結晶が大きく耐溶着性に劣り、また摩擦攪拌プロセスによる電気接点では、接点層の耐火性金属量および酸素含有量が本発明の所望の範囲外にあると、遮断性能や耐溶着性能が不十分であることが確認された。   As described above, the electrical contact of the comparative product obtained by the sintering method and the infiltration method has a large crystal of the contact layer and is inferior in welding resistance, and the electrical contact by the friction stir process has a fire resistance of the contact layer. When the amount of the conductive metal and the oxygen content were outside the desired ranges of the present invention, it was confirmed that the barrier performance and the welding resistance were insufficient.

これに対して、本発明の実施例品であるNo.9〜No.14の電気接点は、表1の接点層の酸素量(ppm)の欄、及び接点層における高導電性金属の最大結晶粒径(μm)の欄にそれぞれ示したように、いずれも接点層の酸素量が4000ppm(0.4重量%)以下、結晶粒径は5〜20μmの範囲内となって、遮断性能および耐溶着性能を満足した。   On the other hand, No. which is an example product of the present invention. 9-No. As shown in the column of the oxygen amount (ppm) of the contact layer in Table 1 and the column of the maximum crystal grain size (μm) of the highly conductive metal in the contact layer, each of the 14 electrical contacts is the contact layer. The oxygen content was 4000 ppm (0.4% by weight) or less, and the crystal grain size was in the range of 5 to 20 μm, thereby satisfying the shielding performance and the welding resistance.

また、接点層における耐火性金属成分は、表1の接点層組織の欄に示したように、Crのみであっても、Crと他のW、Mo、Nbとの混合であっても、耐火性金属(重量%)が15〜40重量%の範囲内にあれば性能を満足できることが確認された。   Further, as shown in the column of the contact layer structure in Table 1, the refractory metal component in the contact layer is refractory regardless of whether it is Cr alone or a mixture of Cr and other W, Mo, Nb. It was confirmed that the performance could be satisfied if the functional metal (wt%) was in the range of 15 to 40 wt%.

ここで、焼結法で作製した比較例品のNo.1と本発明の実施例品であるNo.9の電気接点に関して、エネルギー分散型X線分析装置を用い、接点層におけるCr/Cu界面の元素分布を分析した結果を図3及び図4に示す。   Here, No. of the comparative product manufactured by the sintering method. 1 and No. 1 which is an example product of the present invention. 3 and 4 show the results of analyzing the element distribution of the Cr / Cu interface in the contact layer using an energy dispersive X-ray analyzer with respect to 9 electrical contacts.

図3及び図4に示した接点層におけるCr/Cu界面の元素分布の分析結果において、図3は比較例品のNo.1の電気接点についての接点層におけるCr/Cu界面の元素分布の分析結果、図4は本発明の実施例品であるNo.9の電気接点について接点層におけるCr/Cu界面の元素分布の分析結果である。   In the analysis results of the element distribution at the Cr / Cu interface in the contact layer shown in FIGS. 3 and 4, FIG. FIG. 4 shows the result of analysis of the element distribution at the Cr / Cu interface in the contact layer for the electrical contact No. 1 and No. 1 which is an example product of the present invention. It is an analysis result of element distribution of the Cr / Cu interface in the contact layer for 9 electrical contacts.

比較例品のNo.1の電気接点では、実線で示すCrと破線で示すCuの拡散範囲がおよそ180nmである。これは、高温で焼結することにより、CrがCuに拡散するためと考えられ、これによりCrとCuの界面強度が大きく、接点同士が溶着した際に容易に界面で破壊が生じず、大電流通電後の開離が不可能となったものである。   The comparative product No. In the electric contact 1, the diffusion range of Cr indicated by a solid line and Cu indicated by a broken line is approximately 180 nm. This is thought to be because Cr is diffused into Cu by sintering at high temperature, and thereby the interface strength between Cr and Cu is large, and when the contacts are welded together, the interface does not easily break, The separation after the current application is impossible.

これに対して、本発明の実施例品であるNo.9では、実線で示すCrと破線で示すCuの拡散範囲がおよそ30nmと極めて小さい。これは、比較的低温での摩擦攪拌プロセスにより、CrとCuの界面で拡散が生じず、両者は機械的あるいは物理的に結合しているためと考えられる。これにより、界面強度が小さいため、溶着後の開離が容易になるものである。   On the other hand, No. which is an example product of the present invention. In No. 9, the diffusion range of Cr indicated by a solid line and Cu indicated by a broken line is as extremely small as about 30 nm. This is presumably because no diffusion occurs at the interface between Cr and Cu due to the friction stir process at a relatively low temperature, and the two are mechanically or physically bonded. Thereby, since the interface strength is small, the separation after welding is facilitated.

したがって、本発明の実施例品の電気接点は、接点層における耐火性金属と導電性金属の間の拡散相あるいは反応相の厚さが50nm以下であることにより、低融点金属を添加することなく、優れた耐溶着性を有することが確認された。   Therefore, the electrical contact of the embodiment product of the present invention has a thickness of the diffusion phase or reaction phase between the refractory metal and the conductive metal in the contact layer of 50 nm or less, so that no low melting point metal is added. It was confirmed to have excellent welding resistance.

尚、接点層における耐火性金属と導電性金属の間の拡散相あるいは反応相の厚さは50nm以下となるように形成すべきであり、望ましくはこの拡散相あるいは反応相の厚みは限りなくゼロに近い値、或いはゼロであることが望ましい。   The thickness of the diffusion phase or reaction phase between the refractory metal and the conductive metal in the contact layer should be 50 nm or less. Preferably, the thickness of this diffusion phase or reaction phase is infinitely zero. It is desirable that the value be close to or zero.

本実施例によれば、導電性と熱伝導性を保持すると共に、電気接点部材の強度を電流遮断時に電気接点が支障なく引き離せる程度の所望の値にした真空バルブ用電気接点、及びその電気接点を用いた真空開閉機器が実現できる。   According to the present embodiment, the electrical contact for vacuum valve that maintains electrical conductivity and thermal conductivity, and has the electrical contact member strength set to a desired value such that the electrical contact can be separated without any trouble when the current is interrupted, and Vacuum switchgear using electrical contacts can be realized.

次に本発明の一実施例である真空遮断器200について図6を用いて説明する。   Next, the vacuum circuit breaker 200 which is one Example of this invention is demonstrated using FIG.

図5に示した構成の真空バルブ100を搭載した本発明の実施例の真空遮断器200を作製した。   A vacuum circuit breaker 200 according to an embodiment of the present invention equipped with the vacuum valve 100 having the configuration shown in FIG. 5 was produced.

図6は、図5に記載した実施例の真空バルブ100とその操作機構を備えた本発明の一実施例である真空遮断器200の構成を示す構成図である。   FIG. 6 is a configuration diagram showing a configuration of a vacuum circuit breaker 200 which is an embodiment of the present invention provided with the vacuum valve 100 of the embodiment shown in FIG. 5 and its operation mechanism.

図6において、真空遮断器200は、操作機構部を前面(図6の右側)に配置し、背面(図6の左側)に真空バルブ100を支持する3相一括型の3組のエポキシ筒15を配置した構造である。真空バルブ100は、絶縁操作ロッド16を介して、操作機構によって固定側電極棒4aの固定側電気接点1aと可動側電極棒4bの可動側電気接点1bとの開閉が操作される。   In FIG. 6, the vacuum circuit breaker 200 has an operation mechanism portion disposed on the front surface (right side in FIG. 6) and three sets of three-phase epoxy cylinders 15 supporting the vacuum valve 100 on the rear surface (left side in FIG. 6). It is the structure which arranged. The vacuum valve 100 is operated to open and close the fixed-side electric contact 1a of the fixed-side electrode rod 4a and the movable-side electric contact 1b of the movable-side electrode rod 4b through the insulating operation rod 16 by an operation mechanism.

真空遮断器200の真空バルブ100が閉路状態の場合、電流は上部端子17、電気接点を構成する固定接点1a、可動接点1b、集電子18を順次経由して下部端子19に流れる。   When the vacuum valve 100 of the vacuum circuit breaker 200 is in a closed state, current flows to the lower terminal 19 via the upper terminal 17, the fixed contact 1 a constituting the electric contact, the movable contact 1 b, and the current collector 18 in this order.

固定接点1aと可動接点1bをそれぞれ備えた固定側電極棒4aと可動側電極棒4bとの間の接触力は、可動側電極棒4bと前記可動側電極棒4bを操作する絶縁操作ロッド16との間に設置され、絶縁操作ロッド16に装着された接触バネ20のバネ力によって保たれている。   The contact force between the fixed side electrode bar 4a and the movable side electrode bar 4b each having the fixed contact point 1a and the movable contact point 1b is such that the movable side electrode bar 4b and the insulating operation rod 16 for operating the movable side electrode bar 4b And is maintained by the spring force of the contact spring 20 attached to the insulating operation rod 16.

固定側電極棒4aと可動側電極棒4bの電極間の接触力、および短絡電流による電磁力は、前記絶縁操作ロッド16と主レバー26を介して連結された支えレバー21およびプロップ22によって保持されている。   The contact force between the electrodes of the fixed electrode rod 4a and the movable electrode rod 4b and the electromagnetic force due to the short-circuit current are held by the support lever 21 and the prop 22 which are connected to the insulating operation rod 16 via the main lever 26. ing.

真空バルブ100を操作する操作機構部には、投入コイル30と、この投入コイル30の励磁によって駆動され、ノッキングロッド24を備えたプランジャ23と、ノッキングロッド24を介して押し上げられるローラ25が設置されている。   An operation mechanism unit that operates the vacuum valve 100 is provided with a closing coil 30, a plunger 23 that is driven by excitation of the closing coil 30, and a roller 25 that is pushed up via the knocking rod 24. ing.

また、真空バルブ100を操作する操作機構部には、引き外しコイル27と、この引き外しコイル27の励磁によって駆動され、主レバー26を固定側電極棒4aの固定側電気接点1aと可動側電極棒4bの可動側電気接点1bとの電極間が閉じる方向に回動させてプロップ22との係合を外す引き外しレバー28が設置されている。   The operating mechanism for operating the vacuum valve 100 is driven by a tripping coil 27 and excitation of the tripping coil 27, and the main lever 26 is driven by the fixed-side electric contact 1a of the fixed-side electrode rod 4a and the movable-side electrode. A tripping lever 28 is installed that rotates in the direction in which the electrode between the rod 4b and the movable electrical contact 1b is closed to disengage from the prop 22.

操作機構部の投入コイル30を励磁すると真空遮断器200の真空バルブ100が開路状態からプランジャ23の駆動によってノッキングロッド24を介してローラ25を押し上げ、固定側電極棒4aの固定側電気接点1aと可動側電極棒4bの可動側電気接点1bとの電極間が閉じる方向に主レバー26を回動させた後に、前記主レバー26の動きを支えレバー21によって保持する。   When the closing coil 30 of the operation mechanism is excited, the vacuum valve 100 of the vacuum circuit breaker 200 pushes up the roller 25 through the knocking rod 24 by driving the plunger 23 from the open circuit state, and the fixed side electric contact 1a of the fixed side electrode rod 4a After the main lever 26 is rotated in a direction in which the gap between the movable side electrode bar 4b and the movable side electrical contact 1b is closed, the movement of the main lever 26 is supported by the support lever 21.

また、真空遮断器200の真空バルブ100が引き外し自由状態においては、引き外しコイル27が励磁され、引き外しレバー28がプロップ22の係合を外して固定側電極棒4aの固定側電気接点1aと可動側電極棒4bの可動側電気接点1bとの電極間が開く方向に主レバー26を回動させることによって前記電極間が開操作される。   Further, when the vacuum valve 100 of the vacuum circuit breaker 200 is in a free-release state, the trip coil 27 is excited, the trip lever 28 disengages the prop 22 and the fixed-side electrical contact 1a of the fixed-side electrode rod 4a. By rotating the main lever 26 in the direction in which the electrode between the movable electrode bar 4b and the movable electric contact 1b of the movable electrode 4b opens, the electrode is opened.

真空遮断器200の真空バルブ100が開路状態では、前記電極間が開かれたあと、ローラ25に設けたリセットバネ29によってリンクが復帰し、同時にプロップ22が係合する。この状態で投入コイル30を励磁すると閉路状態になる。なお、排気筒31は真空バルブ100に配設されている。   In the open circuit state of the vacuum valve 100 of the vacuum circuit breaker 200, after the electrodes are opened, the link is restored by the reset spring 29 provided on the roller 25, and the prop 22 is engaged at the same time. When the closing coil 30 is excited in this state, a closed state is obtained. The exhaust cylinder 31 is disposed in the vacuum valve 100.

以上のように、図1に示した実施例の電気接点1を用いて図5に示した実施例の真空バルブ100を作製し、この真空バルブ100とその操作機構を備えた真空遮断器200を構成した。この真空遮断器200は、定格電圧24kV、定格電流1250A、定格遮断電流25kA仕様の真空遮断器である。   As described above, the vacuum valve 100 of the embodiment shown in FIG. 5 is manufactured by using the electrical contact 1 of the embodiment shown in FIG. 1, and the vacuum circuit breaker 200 including the vacuum valve 100 and its operation mechanism is prepared. Configured. The vacuum circuit breaker 200 is a vacuum circuit breaker having a rated voltage of 24 kV, a rated current of 1250 A, and a rated breaking current of 25 kA.

本実施例の真空遮断器200に備えた真空バルブ100の接点における接点層の耐火性金属および導電性金属の結晶粒径が5〜20μmの範囲に設定し、前記接点層の耐火性金属と導電性金属の間の拡散の範囲が50nm以下の範囲に設定したことによる作用効果は、表1を引用した前述した第2実施例の真空バルブ100の説明を参照されたい。   The crystal grain size of the refractory metal and conductive metal of the contact layer at the contact of the vacuum valve 100 provided in the vacuum circuit breaker 200 of the present embodiment is set in the range of 5 to 20 μm, and the refractory metal and the conductive layer of the contact layer are electrically conductive. Refer to the description of the vacuum valve 100 of the second embodiment described above with reference to Table 1 for the effect of setting the diffusion range between the conductive metals to a range of 50 nm or less.

以上説明したように、本発明の実施例である電気接点によって、優れた遮断性能と耐溶着性能を有する真空バルブおよび真空遮断器を得ることができる。   As described above, a vacuum valve and a vacuum circuit breaker having excellent breaking performance and welding resistance can be obtained by the electrical contact which is an embodiment of the present invention.

本実施例によれば、導電性と熱伝導性を保持すると共に、電気接点部材の強度を電流遮断時に電気接点が支障なく引き離せる程度の所望の値にした真空バルブ用電気接点、及びその電気接点を用いた真空開閉機器が実現できる。   According to the present embodiment, the electrical contact for vacuum valve that maintains electrical conductivity and thermal conductivity, and has the electrical contact member strength set to a desired value such that the electrical contact can be separated without any trouble when the current is interrupted, and Vacuum switchgear using electrical contacts can be realized.

次に本発明の一実施例である負荷開閉器300について説明する。   Next, the load switch 300 which is one Example of this invention is demonstrated.

図5に示した実施例1の真空バルブ100を、真空遮断器以外の真空開閉装置に搭載した本発明の一実施例である負荷開閉器300について説明する。   A load switch 300 according to an embodiment of the present invention in which the vacuum valve 100 of the first embodiment shown in FIG. 5 is mounted on a vacuum switch device other than a vacuum circuit breaker will be described.

図7は、図5に記載した実施例の真空バルブ100を搭載した本発明の一実施例である路肩設置変圧器用の負荷開閉器300である。   FIG. 7 shows a load switch 300 for a roadside installation transformer, which is an embodiment of the present invention equipped with the vacuum valve 100 of the embodiment shown in FIG.

図7において、負荷開閉器300は、主回路開閉部に相当する真空バルブ100が、真空封止された外側真空容器32の内部に複数個収納(本実施例では3台)されたものである。外側真空容器32は、上部板材33と下部板材34及び上部板材33と下部板材34との間に側部板材35を備えて構成されており、各板材の周囲(縁)が互いに溶接によって接合されているとともに、負荷開閉器300の本体に設置されている。   In FIG. 7, a load switch 300 has a plurality of (three in this embodiment) vacuum valves 100 corresponding to main circuit switching units housed in a vacuum-sealed outer vacuum container 32. . The outer vacuum container 32 includes an upper plate member 33, a lower plate member 34, and a side plate member 35 between the upper plate member 33 and the lower plate member 34, and the peripheries (edges) of the plate members are joined together by welding. And installed in the main body of the load switch 300.

外側真空容器32を構成する上部板材33には、上部貫通孔36が複数個形成されており、各上部貫通孔36の縁には環状の絶縁性上部ベース37が各上部貫通孔36を覆うように固定されている。   A plurality of upper through holes 36 are formed in the upper plate member 33 constituting the outer vacuum vessel 32, and an annular insulating upper base 37 covers each upper through hole 36 at the edge of each upper through hole 36. It is fixed to.

そして、各上部ベース37の中央に形成された円形空間部には、各真空バルブ100の電極の一方を構成する円柱状の可動側電極棒4bが往復動(上下動)自在に挿入されている。すなわち、各上部貫通孔36は上部ベース37と可動側電極棒4bによって閉塞されている。   In the circular space formed in the center of each upper base 37, a cylindrical movable electrode bar 4b constituting one of the electrodes of each vacuum valve 100 is inserted so as to freely reciprocate (up and down). . That is, each upper through hole 36 is closed by the upper base 37 and the movable electrode rod 4b.

この真空バルブ100を構成している可動側電極棒4bの軸方向端部(上部側)は、外側真空容器32の外部に設置される図示していない操作器(電磁操作器)に連結されるようになっている。   The axial end (upper side) of the movable electrode rod 4b constituting the vacuum valve 100 is connected to an operating device (electromagnetic operating device) (not shown) installed outside the outer vacuum vessel 32. It is like that.

また、外側真空容器32の内部となる上部板材33の下部側には、各上部貫通孔36の縁に沿って外側ベローズ38が可動側電極棒4bの軸方向に沿って往復動(上下動)自在に配置されており、各外側ベローズ38は、その軸方向の一端側が上部板材33の下部側に固定され、軸方向の他端側が各可動側電極棒4bの外周面に装着されている。   Further, on the lower side of the upper plate member 33 that is inside the outer vacuum vessel 32, the outer bellows 38 reciprocates (vertically moves) along the axial direction of the movable electrode rod 4b along the edge of each upper through hole 36. The outer bellows 38 are arranged freely, and one end side in the axial direction is fixed to the lower side of the upper plate member 33, and the other end side in the axial direction is attached to the outer peripheral surface of each movable electrode rod 4b.

すなわち、外側真空容器32を密閉構造とするために、各上部貫通孔36の縁には各可動側電極棒4bの軸方向に沿って外側ベローズ38が配置されている。また、上部板材33には排気管(図示省略)が連結され、この排気管を介して外側真空容器32内が真空排気されて真空状態に保持されるようになっている。   That is, in order to make the outer vacuum container 32 have a hermetically sealed structure, outer bellows 38 are arranged at the edge of each upper through hole 36 along the axial direction of each movable electrode rod 4b. In addition, an exhaust pipe (not shown) is connected to the upper plate member 33, and the inside of the outer vacuum container 32 is evacuated and held in a vacuum state via the exhaust pipe.

一方、外側真空容器32を構成する下部板材34には下部貫通孔39が複数個形成されており、各下部貫通孔39の縁には絶縁性ブッシング40が各下部貫通孔39を覆うように固定されている。各絶縁性ブッシング40の底部には、環状の絶縁性下部ベース41がそれぞれ固定されている。   On the other hand, a plurality of lower through holes 39 are formed in the lower plate member 34 constituting the outer vacuum vessel 32, and an insulating bushing 40 is fixed to the edge of each lower through hole 39 so as to cover each lower through hole 39. Has been. An annular insulating lower base 41 is fixed to the bottom of each insulating bushing 40.

そして、各下部ベース41の中央の円形空間部には、各真空バルブ100の電極の他方を構成する円柱状の固定側電極棒4aが挿入されている。   A cylindrical fixed-side electrode rod 4 a that constitutes the other of the electrodes of each vacuum valve 100 is inserted into the circular space at the center of each lower base 41.

すなわち、下部板材34に形成された下部貫通孔39は、それぞれ絶縁性ブッシング40、下部ベース41、及び固定側電極棒4aによって閉塞されている。そして、固定側電極棒4aの軸方向の一端側(下部側)は、外側真空容器32の外部に配置された図示していないケーブル(配電線)に連結されるようになっている。   That is, the lower through holes 39 formed in the lower plate member 34 are closed by the insulating bushing 40, the lower base 41, and the fixed electrode rod 4a, respectively. One end side (lower side) of the fixed-side electrode rod 4a in the axial direction is connected to a cable (distribution line) (not shown) arranged outside the outer vacuum vessel 32.

外側真空容器32の内部には、負荷開閉器300の主回路開閉部に相当する真空バルブ100が複数台収納されており、これらの真空バルブ100を構成する各可動側電極棒4bは、2つの湾曲部を有するフレキシブル導体(可撓性導体)42を介して互いに連結されている。   A plurality of vacuum valves 100 corresponding to the main circuit opening / closing portion of the load switch 300 are housed inside the outer vacuum vessel 32, and each movable side electrode bar 4b constituting these vacuum valves 100 includes two movable electrode bars 4b. The flexible conductors (flexible conductors) 42 having curved portions are connected to each other.

このフレキシブル導体42は、2つの湾曲部を有する導電性板材としての銅板とステンレス板を交互に複数枚積層して構成されている。   The flexible conductor 42 is configured by alternately laminating a plurality of copper plates and stainless steel plates as conductive plate members having two curved portions.

フレキシブル導体42には貫通孔43が形成されており、各貫通孔43に各可動側電極棒4bを挿入して前記フレキシブル導体42と可動側電極棒4bとを互いに連結させている。   A through hole 43 is formed in the flexible conductor 42, and each movable side electrode bar 4b is inserted into each through hole 43 to connect the flexible conductor 42 and the movable side electrode bar 4b to each other.

以上の説明では、図5に示した実施例の真空バルブ100を作製し、この真空バルブ100を真空遮断器以外の真空開閉装置である路肩設置変圧器用の負荷開閉器300に適用した実施例について説明した。   In the above description, the vacuum valve 100 of the embodiment shown in FIG. 5 is manufactured, and the vacuum valve 100 is applied to a load switch 300 for a roadside installation transformer that is a vacuum switching device other than a vacuum circuit breaker. explained.

尚、本発明は、上記した負荷開閉器以外の真空絶縁スイッチギアなどの各種真空開閉装置にも適用できる。   In addition, this invention is applicable also to various vacuum switchgears, such as a vacuum insulation switchgear other than the above-mentioned load switch.

本実施例によれば、導電性と熱伝導性を保持すると共に、電気接点部材の強度を電流遮断時に電気接点が支障なく引き離せる程度の所望の値にした真空バルブ用電気接点、及びその電気接点を用いた真空開閉機器が実現できる。   According to the present embodiment, the electrical contact for vacuum valve that maintains electrical conductivity and thermal conductivity, and has the electrical contact member strength set to a desired value such that the electrical contact can be separated without any trouble when the current is interrupted, and Vacuum switchgear using electrical contacts can be realized.

本発明は真空バルブ用電気接点、及びその電気接点を用いた真空開閉機器に適用可能である。   The present invention is applicable to a vacuum valve electrical contact and a vacuum switchgear using the electrical contact.

1:電気接点、1a:固定側電気接点、1b:可動側電気接点、2:スリット溝、3、3a、3b:汚損防止板、4、4a、4b:電極棒、5:ろう材、6a:固定側電極、6b:可動側電極、7:シールド、8:可動側シールド、9a:固定側端板、9b:可動側端板、10:ベローズ、11:ガイド、12:可動側ホルダー、13:絶縁筒、14:真空バルブ、15:エポキシ筒、16:絶縁操作ロッド、17:上部端子、18:集電子、19:下部端子、20:接触バネ、21:支えレバー、22:プロップ、23:プランジャ、24:ノッキングロッド、25:ローラ、26:主レバー、27:引き外しコイル、28:引き外しレバー、29:リセットバネ、30:投入コイル、31:排気筒、32:外側真空容器、33:上部板材、34:下部板材、35:側部板材、36:上部貫通孔、37:上部ベース、38:外側ベローズ、39:下部貫通孔、40:絶縁性ブッシング、41:下部ベース、42:フレキシブル導体、43:フレキシブル導体貫通孔、44:中央孔、45:接点層、46:基材、100:真空バルブ、200:真空遮断器、300:負荷開閉器。   1: Electrical contact, 1a: Fixed side electrical contact, 1b: Movable side electrical contact, 2: Slit groove, 3, 3a, 3b: Antifouling plate, 4, 4a, 4b: Electrode rod, 5: Brazing material, 6a: Fixed side electrode, 6b: movable side electrode, 7: shield, 8: movable side shield, 9a: fixed side end plate, 9b: movable side end plate, 10: bellows, 11: guide, 12: movable side holder, 13: Insulating cylinder, 14: Vacuum valve, 15: Epoxy cylinder, 16: Insulating operation rod, 17: Upper terminal, 18: Current collector, 19: Lower terminal, 20: Contact spring, 21: Support lever, 22: Prop, 23: Plunger, 24: knocking rod, 25: roller, 26: main lever, 27: tripping coil, 28: tripping lever, 29: reset spring, 30: closing coil, 31: exhaust pipe, 32: outer vacuum vessel, 33 : Upper plate 34: Lower plate material, 35: Side plate material, 36: Upper through hole, 37: Upper base, 38: Outer bellows, 39: Lower through hole, 40: Insulating bushing, 41: Lower base, 42: Flexible conductor, 43 : Flexible conductor through hole, 44: center hole, 45: contact layer, 46: base material, 100: vacuum valve, 200: vacuum circuit breaker, 300: load switch.

Claims (10)

導電性金属からなる基材と、前記基材の上面側に耐火性金属および導電性金属からなる接点層を形成して前記基材とこの接点層とを一体に結合して構成し、前記接点層における耐火性金属および導電性金属の結晶粒径が5〜20μmの範囲となるように形成し
前記接点層において、耐火性金属と導電性金属の間の拡散相あるいは反応相の範囲が50nm以下の範囲となるように形成したことを特徴とする真空バルブ用電気接点。
A base material made of a conductive metal, and a contact layer made of a refractory metal and a conductive metal is formed on the upper surface side of the base material, and the base material and the contact layer are integrally bonded, and the contact Forming the crystal grain size of the refractory metal and conductive metal in the layer to be in the range of 5 to 20 μm ;
An electrical contact for a vacuum valve , wherein the contact layer is formed such that a range of a diffusion phase or a reaction phase between a refractory metal and a conductive metal is 50 nm or less .
請求項1に記載の真空バルブ用電気接点において、
前記接点層における耐火性金属はCr,W,Mo,Nbのいずれか1種または2種以上の混合物あるいは化合物であり、前記接点層における導電性金属はCuまたはCuを主成分としたCu合金であることを特徴とする真空バルブ用電気接点
The electrical contact for a vacuum valve according to claim 1,
The refractory metal in the contact layer is one or a mixture or compound of Cr, W, Mo, or Nb, and the conductive metal in the contact layer is Cu or a Cu alloy containing Cu as a main component. An electrical contact for a vacuum valve, characterized by being .
請求項1又は請求項2に記載の真空バルブ用電気接点において、
前記基材における導電性金属はCuまたはCuを主成分としたCu合金であることを特徴とする真空バルブ用電気接点
In the electrical contact for a vacuum valve according to claim 1 or claim 2,
An electrical contact for a vacuum valve, wherein the conductive metal in the substrate is Cu or a Cu alloy containing Cu as a main component .
請求項1に記載の真空バルブ用電気接点において、
前記接点層は、15〜40重量%の耐火性金属と、60〜85重量%の導電性金属からなることを特徴とする真空バルブ用電気接点
The electrical contact for a vacuum valve according to claim 1,
The electrical contact for a vacuum valve, wherein the contact layer is composed of 15 to 40% by weight of a refractory metal and 60 to 85% by weight of a conductive metal .
請求項1乃至請求項4のいずれか1項に記載の真空バルブ用電気接点において、
前記接点層の酸素量が0.4重量%以下に形成されていることを特徴とする真空バルブ用電気接点
The electrical contact for a vacuum valve according to any one of claims 1 to 4,
An electrical contact for a vacuum valve, wherein the contact layer has an oxygen content of 0.4 wt% or less .
請求項1乃至請求項5のいずれか1項に記載の真空バルブ用電気接点において、
一体に結合して構成された前記接点層及び基材は円盤形状にそれぞれ形成されており、
円盤形状の前記接点層及び前記基材の円中心に中心孔を形成すると共に、該中心孔に対して非接触で円中心から外周部に向かって複数本の貫通したスリット溝を形成し、前記スリット溝によって前記接点層に相互に分離された複数の平面形状部を形成するようにしたことを特徴とする真空バルブ用電気接点
The electrical contact for a vacuum valve according to any one of claims 1 to 5,
The contact layer and the base material constituted by being integrally joined are each formed in a disk shape,
A center hole is formed at the center of the circle of the disk-shaped contact layer and the base material, and a plurality of slit grooves penetrating from the center of the circle toward the outer periphery are formed in a non-contact manner with respect to the center hole, An electrical contact for a vacuum valve, wherein a plurality of planar shapes separated from each other are formed in the contact layer by slit grooves .
請求項1乃至請求項6のいずれか1項に記載の真空バルブ用電気接点において、
真空バルブ用電気接点に備えられた前記接点層及び前記基材は一体に結合された円盤状部材を構成しており、前記円盤状部材の裏面側に汚損防止板が設置され、前記円盤状部材の基材と汚損防止板との双方に一体に接合された電極棒が備えられていることを特徴とする真空バルブ用電極
The electrical contact for a vacuum valve according to any one of claims 1 to 6,
The contact layer and the base material provided in the electric contact for the vacuum valve constitute a disc-like member integrally joined, and a fouling prevention plate is installed on the back side of the disc-like member, and the disc-like member An electrode for a vacuum valve, comprising an electrode rod integrally joined to both the base material and the antifouling plate .
真空容器内に一対の固定側電極及びこの固定側電極に対向して配設された可動側電極とを備えた真空バルブにおいて、
前記固定側電極及び可動側電極の少なくとも一方が、円盤形状の前記接点層及び前記基材を構成する円盤状部材と、前記円盤状部材の裏面側に設置された汚損防止板と、前記円盤状部材の前記基材及び汚損防止板に一体に接合された電極棒に用いられる電気接点であり、
前記電極棒に用いられる電気接点は、導電性金属からなる基材と、前記基材の上面側に耐火性金属および導電性金属からなる接点層を形成して前記基材とこの接点層とを一体に結合して構成し、前記接点層における耐火性金属および導電性金属の結晶粒径が5〜20μmの範囲となるように形成され、
前記接点層において、耐火性金属と導電性金属の間の拡散相あるいは反応相の範囲が50nm以下の範囲となるように形成されていることを特徴とする真空バルブ。
In a vacuum valve provided with a pair of fixed-side electrodes and a movable-side electrode disposed opposite to the fixed-side electrodes in the vacuum vessel,
At least one of the fixed side electrode and the movable side electrode is a disk-shaped contact layer and a disk-shaped member constituting the base material, a fouling prevention plate installed on the back side of the disk-shaped member, and the disk-shaped It is an electrical contact used for the electrode rod integrally joined to the base material and antifouling plate of the member,
The electrical contact used for the electrode rod is formed by forming a base material made of a conductive metal, a contact layer made of a refractory metal and a conductive metal on the upper surface side of the base material, and the base material and the contact layer. It is configured to be integrally bonded, and is formed such that the crystal grain size of the refractory metal and the conductive metal in the contact layer is in the range of 5 to 20 μm,
The vacuum valve, wherein the contact layer is formed such that a diffusion phase or a reaction phase between the refractory metal and the conductive metal has a range of 50 nm or less.
真空容器内に一対の固定側電極及びこの固定側電極に対向して配設された可動側電極を備えた真空バルブと、前記真空バルブ内の前記固定側電極および可動側電極の各々に前記真空バルブ外へ接続された導体端子と、前記可動側電極を駆動する開閉手段とを備えた真空遮断器において、
前記真空バルブは前記固定側電極及び可動側電極の少なくとも一方が、円盤形状の前記接点層及び前記基材を構成する円盤状部材と、前記円盤状部材の裏面側に設置された汚損防止板と、前記円盤状部材の前記基材及び汚損防止板に一体に接合された電極棒とを有する真空バルブ用電極を備えており、
前記電極棒に用いられる電気接点は、導電性金属からなる基材と、前記基材の上面側に耐火性金属および導電性金属からなる接点層を形成して前記基材とこの接点層とを一体に結合して構成し、前記接点層における耐火性金属および導電性金属の結晶粒径が5〜20μmの範囲となるように形成され、
前記接点層において、耐火性金属と導電性金属の間の拡散相あるいは反応相の範囲が50nm以下の範囲となるように形成されていることを特徴とする真空遮断器
A vacuum valve provided with a pair of fixed side electrodes in the vacuum container and a movable side electrode disposed opposite to the fixed side electrode, and the vacuum on each of the fixed side electrode and the movable side electrode in the vacuum valve In a vacuum circuit breaker comprising a conductor terminal connected to the outside of the valve and an opening / closing means for driving the movable electrode,
In the vacuum valve, at least one of the fixed side electrode and the movable side electrode is a disk-shaped contact layer and a disk-shaped member constituting the base material, and an antifouling plate installed on the back surface side of the disk-shaped member, And an electrode for a vacuum valve having an electrode rod integrally joined to the base material and the antifouling plate of the disk-shaped member,
The electrical contact used for the electrode rod is formed by forming a base material made of a conductive metal, a contact layer made of a refractory metal and a conductive metal on the upper surface side of the base material, and the base material and the contact layer. It is configured to be integrally bonded, and is formed such that the crystal grain size of the refractory metal and the conductive metal in the contact layer is in the range of 5 to 20 μm,
A vacuum circuit breaker characterized in that the contact layer is formed such that a range of a diffusion phase or a reaction phase between the refractory metal and the conductive metal is 50 nm or less .
真空容器内に一対の固定側電極及びこの固定側電極に対向して配設された可動側電極を備えた真空バルブを導体によって複数接続し、前記可動側電極を駆動する開閉手段を備えた真空開閉機器において、
前記真空バルブは前記固定側電極及び可動側電極の少なくとも一方が、円盤形状の前記接点層及び前記基材を構成する円盤状部材と、前記円盤状部材の裏面側に設置された汚損防止板と、前記円盤状部材の前記基材及び汚損防止板に一体に接合された電極棒とを有する真空バルブ用電極を備えており、
前記電極棒に用いられる電気接点は、導電性金属からなる基材と、前記基材の上面側に耐火性金属および導電性金属からなる接点層を形成して前記基材とこの接点層とを一体に結合して構成し、前記接点層における耐火性金属および導電性金属の結晶粒径が5〜20μmの範囲となるように形成され、
前記接点層において、耐火性金属と導電性金属の間の拡散相あるいは反応相の範囲が50nm以下の範囲となるように形成されていることを特徴とする真空開閉機器
A vacuum comprising a pair of fixed-side electrodes in a vacuum vessel and a plurality of vacuum valves each having a movable-side electrode disposed opposite to the fixed-side electrodes by a conductor, and an opening / closing means for driving the movable-side electrode. In switchgear,
In the vacuum valve, at least one of the fixed side electrode and the movable side electrode is a disk-shaped contact layer and a disk-shaped member constituting the base material, and an antifouling plate installed on the back surface side of the disk-shaped member, And an electrode for a vacuum valve having an electrode rod integrally joined to the base material and the antifouling plate of the disk-shaped member,
The electrical contact used for the electrode rod is formed by forming a base material made of a conductive metal, a contact layer made of a refractory metal and a conductive metal on the upper surface side of the base material, and the base material and the contact layer. It is configured to be integrally bonded, and is formed such that the crystal grain size of the refractory metal and the conductive metal in the contact layer is in the range of 5 to 20 μm,
A vacuum switchgear characterized in that the contact layer is formed so that the range of the diffusion phase or reaction phase between the refractory metal and the conductive metal is 50 nm or less .
JP2011528518A 2009-08-28 2009-08-28 Electrical contact for vacuum valve and vacuum circuit breaker and vacuum switchgear using the electrical contact Expired - Fee Related JP5211246B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/004188 WO2011024228A1 (en) 2009-08-28 2009-08-28 Electric contact point for vacuum valve, and vacuum interrupter and vacuum switchgear using the electric contact point

Publications (2)

Publication Number Publication Date
JPWO2011024228A1 JPWO2011024228A1 (en) 2013-01-24
JP5211246B2 true JP5211246B2 (en) 2013-06-12

Family

ID=43627358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011528518A Expired - Fee Related JP5211246B2 (en) 2009-08-28 2009-08-28 Electrical contact for vacuum valve and vacuum circuit breaker and vacuum switchgear using the electrical contact

Country Status (2)

Country Link
JP (1) JP5211246B2 (en)
WO (1) WO2011024228A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014203027A1 (en) * 2014-02-19 2015-08-20 Siemens Aktiengesellschaft Switching contact for a vacuum switch and method for its production
US20230116363A1 (en) * 2021-10-07 2023-04-13 S&C Electric Company Insulated drive vacuum interrupter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1012103A (en) * 1996-06-21 1998-01-16 Hitachi Ltd Vacuum circuit-breaker, and vacuum valve and electric contact using the breaker
JPH10255603A (en) * 1997-03-07 1998-09-25 Shibafu Eng Kk Contact material for vacuum valve

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2695902B2 (en) * 1989-02-28 1998-01-14 株式会社東芝 Contact for vacuum valve
JPH09231881A (en) * 1996-02-23 1997-09-05 Hitachi Ltd Vacuum breaker, vacuum valve and electric contact for use in the breaker, and manufacture of them
JPH09245589A (en) * 1996-03-01 1997-09-19 Toshiba Corp Vacuum valve
JPH09306268A (en) * 1996-05-13 1997-11-28 Shibafu Eng Kk Contact material for vacuum valve
JP4129304B2 (en) * 1997-07-30 2008-08-06 株式会社東芝 Contact material for vacuum circuit breaker, manufacturing method thereof, and vacuum circuit breaker
JP2003077375A (en) * 2001-09-03 2003-03-14 Shibafu Engineering Corp Contact material for vacuum valve and vacuum valve
JP2005135778A (en) * 2003-10-31 2005-05-26 Hitachi Ltd Electric contact and its manufacturing method, electrode for vacuum bulb, vacuum bulb using it, and vacuum interrupter
JP4455066B2 (en) * 2004-01-08 2010-04-21 株式会社日立製作所 Electrical contact member, method of manufacturing the same, vacuum valve and vacuum circuit breaker using the same
JP5142559B2 (en) * 2007-03-07 2013-02-13 株式会社東芝 Contact material for vacuum valve and manufacturing method thereof
JP2009129856A (en) * 2007-11-27 2009-06-11 Toshiba Corp Contact point material for vacuum valve, and manufacturing method thereof
JP2009158216A (en) * 2007-12-26 2009-07-16 Japan Ae Power Systems Corp Electrode contact member of vacuum circuit breaker and method for producing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1012103A (en) * 1996-06-21 1998-01-16 Hitachi Ltd Vacuum circuit-breaker, and vacuum valve and electric contact using the breaker
JPH10255603A (en) * 1997-03-07 1998-09-25 Shibafu Eng Kk Contact material for vacuum valve

Also Published As

Publication number Publication date
WO2011024228A1 (en) 2011-03-03
JPWO2011024228A1 (en) 2013-01-24

Similar Documents

Publication Publication Date Title
JP4979604B2 (en) Electrical contacts for vacuum valves
CN1776855B (en) Electrode, electrical contact and method of manufacturing the same
JP2007018835A (en) Electric contact for vacuum circuit breaker and its manufacturing method
TWI327330B (en)
JP2020509163A (en) Improved electrical contact alloy for vacuum contactors
JP2005197098A (en) Electric contact member and its manufacturing method as well as vacuum valve and vacuum interrupter using the same
JP6050994B2 (en) Electrical contacts, electrical contact manufacturing methods, electrodes, vacuum valves, vacuum switchgear
WO2018142709A1 (en) Method for manufacturing electrode material, and electrode material
JP5211246B2 (en) Electrical contact for vacuum valve and vacuum circuit breaker and vacuum switchgear using the electrical contact
JP6051142B2 (en) Electrical contact for vacuum valve and manufacturing method thereof
JPH0677420B2 (en) Vacuum contactor
JPH11232971A (en) Vacuum circuit breaker, vacuum pump and electrical contact used in the same, and manufacture thereof
JP2011108380A (en) Electric contact for vacuum valve, and vacuum interrupter using the same
JP2009289652A (en) Agwc-ag composite contact, and manufacturing method thereof
JP2003147407A (en) Electric contact, its manufacturing method, and vacuum valve and vacuum circuit breaker using the same
JP6497491B1 (en) Electrical contact and vacuum valve using the same
JP4988489B2 (en) Electrical contact
JP2006120373A (en) Vacuum circuit breaker, vacuum bulb and electrode and its manufacturing method
JP5159947B2 (en) Electrical contact for vacuum valve and vacuum circuit breaker using the same
EP0178796B1 (en) Manufacture of vacuum interrupter contacts
JPWO2021038706A1 (en) Vacuum valve with electrical contacts, electrical contacts
CN111670261A (en) Electric contact and vacuum valve using same
JP4515695B2 (en) Contact materials for vacuum circuit breakers
JP3688473B2 (en) Manufacturing method of contact material for vacuum valve
JP2004332046A (en) Contact material for circuit breaker, and vacuum circuit breaker

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees