JP2007100129A - Surface coating method and surface coating film - Google Patents

Surface coating method and surface coating film Download PDF

Info

Publication number
JP2007100129A
JP2007100129A JP2005288390A JP2005288390A JP2007100129A JP 2007100129 A JP2007100129 A JP 2007100129A JP 2005288390 A JP2005288390 A JP 2005288390A JP 2005288390 A JP2005288390 A JP 2005288390A JP 2007100129 A JP2007100129 A JP 2007100129A
Authority
JP
Japan
Prior art keywords
base material
powder
surface coating
coated
coating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005288390A
Other languages
Japanese (ja)
Inventor
Naoyuki Nishimura
直之 西村
Takaaki Makino
隆章 槇野
Shozo Ono
昇造 小野
Koichi Izumiya
宏一 泉屋
Yutaka Ono
豊 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2005288390A priority Critical patent/JP2007100129A/en
Publication of JP2007100129A publication Critical patent/JP2007100129A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface coating method by which a dense surface coating film having a sufficient thickness can be formed on the surface of a base material to be coated by using a coating material different from the base material, and the surface coating material. <P>SOLUTION: The surface coating method has a process comprising allowing a powder 2 of the coating material to exist on the surface of a base material 1 to be coated, then rotating a pressure-contact body 4 while pressing the tip contact part 5 of the pressure-contact body 4 onto the powder 2 toward the surface of the base material 1 to be coated with a set load, at the same time, heating at least an area applied with the load of the surface of the base material 1 and the powder 2 of the coating material to a prescribed temperature or higher, and forming an initial coating film 3 on the surface of the base material 1 by moving the pressure-contact body 4 along the surface of the base material 1, and a heating and diffusing process for finishing a surface coating film 30 by diffusing the components of the coating material into the base material 1 from the initial coating film 3 through the coating interface by heating the base material 1 or the like in a non-oxidizing atmosphere. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、被覆対象母材の表面に該母材と別体の被覆材料を用いて表面被覆膜を形成する表面被覆方法および表面被覆膜に関するものである。   The present invention relates to a surface coating method and a surface coating film in which a surface coating film is formed on a surface of a base material to be coated using a coating material separate from the base material.

従来、この種の表面被覆方法として、CVD(Chemical Vapor
Deposition)法や溶射法が挙げられる。前者は数マイクロメートルレベルの薄い膜厚を形成する技術であり、配線材料などの形成に利用されている。CVD法は緻密性の高い膜を形成することができることが長所であるが、上記の如く非常に薄い膜を形成するのみであり、厚い膜の形成には利用することができなかった。
後者の溶射法は数百マイクロメートルレベルの厚い膜厚を形成する技術である。しかし、膜質が多孔質であり、ガスの浸入など外気を完全に遮断することのできる緻密性を要求される膜の形成には利用することができなかった。
Conventionally, CVD (Chemical Vapor) is the surface coating method of this kind.
Deposition method and thermal spraying method. The former is a technique for forming a thin film thickness on the order of several micrometers, and is used for forming wiring materials and the like. The CVD method has the advantage of being able to form a highly dense film, but only forms a very thin film as described above, and cannot be used to form a thick film.
The latter thermal spraying method is a technique for forming a thick film having a thickness of several hundred micrometers. However, the film quality is porous, and it cannot be used to form a film that requires denseness that can completely block outside air such as gas intrusion.

また、摩擦撹拌技術を利用して、金属製被処理物の表面に母材より硬質の回転工具を回転させつつ押し込み且つ移動することにより、その表面に摩擦撹拌処理による母材自体の改質層を形成する表面処理方法がある(特許文献1、特許文献2)。この表面処理技術は金属製被処理物の表面を効率的に改質することができるが、あくまで金属製被処理物自体すなわち母材のみを用いた表面改質にとどまり、母材と別の材料を用いた表面被覆については、従来全く考慮されていなかった。   In addition, by using a friction stir technology, a rotating tool harder than the base material is pushed into and moved on the surface of the metal workpiece, and the modified layer of the base material itself by the friction stir processing is then moved to the surface. There is a surface treatment method for forming (Patent Document 1, Patent Document 2). Although this surface treatment technology can efficiently modify the surface of the metal workpiece, the surface treatment using the metal workpiece itself, that is, only the base material, is different from the base material. Conventionally, the surface coating using has not been considered at all.

特開2001−347360号公報JP 2001-347360 A 特開2003−164978号公報JP 2003-164978 A

本発明は、従来技術の上記背景に鑑みてなされたもので、被覆対象母材の表面に、母材と別体の被覆材料を用いて緻密で且つ十分な膜厚を有する表面被覆膜を形成することのできる表面被覆方法および表面被覆膜を提供することを目的とする。   The present invention has been made in view of the above background of the prior art, and a surface coating film having a dense and sufficient film thickness is formed on the surface of a base material to be coated using a coating material separate from the base material. It is an object to provide a surface coating method and a surface coating film that can be formed.

上記目的を達成するため、本発明の第1の態様に係る表面被覆方法は、被覆対象母材の表面に被覆材の粉末を存在させ、圧接体を該粉末の上からその先端当接部を前記被覆対象母材の表面に向けて設定荷重で押し付けつつ回転させ、その際少なくとも前記荷重の作用する領域部分の前記被覆対象母材の表面および被覆材の粉末を所定温度以上に昇温した状態にして該圧接体を被覆対象母材の表面に沿って移動させることにより該被覆対象母材の表面に初期被覆膜を形成する工程と、非酸化雰囲気で加熱して、前記初期被覆膜から被覆材成分をその被覆界面より母材中に向けて拡散させて表面被覆膜に仕上げる加熱拡散工程とを有するものである。   In order to achieve the above object, the surface coating method according to the first aspect of the present invention is such that the powder of the coating material is present on the surface of the base material to be coated, and the tip contact portion is placed on the pressure contact body from above the powder. Rotating while pressing with a set load toward the surface of the base material to be coated, and at this time, the surface of the base material to be coated and the powder of the covering material at least in a region where the load acts are heated to a predetermined temperature or higher Forming the initial coating film on the surface of the base material to be coated by moving the pressure contact body along the surface of the base material to be coated, and heating the initial coating film in a non-oxidizing atmosphere. And a heating diffusion step of diffusing the coating material component from the coating interface toward the base material to finish the surface coating film.

先ず、初期被覆膜の形成は、被覆材の粉末と母材表面を、前記所定温度以上に昇温し、更に前記設定荷重を作用しつつ圧接体を移動することで摩擦熱を発生させることにより、被覆材の粉末が前記荷重の作用する領域で一旦半溶融状態となって母材に付着することで成される。従って、前記所定温度及び設定荷重は、少なくとも前記被覆材の粉末が前記半溶融状態になるように相対的に定まることになる。すなわち、前記所定温度を高めれば前記設定荷重はその分だけ小さくすることが可能であり、前記所定温度を低くすればその分だけ設定荷重は大きくなる。初期被覆膜の膜厚は、被覆材の粉末の粒径を含めて前記半溶融状態を実現しやすい前記所定温度及び設定荷重を選ぶことにより増減することが可能である。   First, the initial coating film is formed by increasing the temperature of the powder of the coating material and the surface of the base material to the predetermined temperature or more and generating frictional heat by moving the pressure contact body while applying the set load. Thus, the powder of the coating material is once semi-molten in the region where the load acts, and is adhered to the base material. Therefore, the predetermined temperature and the set load are relatively determined so that at least the powder of the covering material is in the semi-molten state. That is, if the predetermined temperature is raised, the set load can be reduced accordingly, and if the predetermined temperature is lowered, the set load is increased accordingly. The film thickness of the initial coating film can be increased or decreased by selecting the predetermined temperature and set load at which the semi-molten state is easily achieved, including the particle size of the powder of the coating material.

更に前記加熱拡散工程により、非酸化雰囲気で加熱して前記初期被覆膜から被覆材成分をその被覆界面より母材中に向けて拡散させて表面被覆膜に仕上げるので、該表面被覆膜は初期被覆膜形成時の加工歪みが除かれて均質性が確保されると共に、母材との間に前記拡散に基づく傾斜組成が形成され、この傾斜組成により該膜と母材との間の連続性が向上し、以て密着性等の特性を向上することができる。   Further, in the heating diffusion step, the surface coating film is finished by heating in a non-oxidizing atmosphere and diffusing the coating material component from the initial coating film toward the base material from the coating interface. The processing distortion at the time of initial coating film formation is removed, and homogeneity is ensured, and a gradient composition based on the diffusion is formed between the film and the base material. Therefore, the characteristics such as adhesion can be improved.

すなわち本発明の第1の態様によれば、母材と別体の被覆材料の粉末を用い、所定温度以上に昇温し設定荷重を作用させて該粉末を材料とする初期被覆膜を被覆対象母材の表面に付着形成し、続いて非酸化雰囲気で加熱して、前記初期被覆膜から被覆材成分をその被覆界面より母材中に向けて拡散させて表面被覆膜に仕上げるので、被覆対象母材の表面に、母材と別体の被覆材料を用いて緻密で且つ十分な膜厚を有する表面被覆膜を形成することができる。   That is, according to the first aspect of the present invention, the powder of the coating material separate from the base material is used, and the initial coating film using the powder as a material is coated by raising the temperature above a predetermined temperature and applying a set load. Since it adheres to the surface of the target base material and is subsequently heated in a non-oxidizing atmosphere, the coating material components are diffused from the initial coating film toward the base material through its coating interface to finish the surface coating film. A dense surface coating film having a sufficient film thickness can be formed on the surface of the base material to be coated using a coating material separate from the base material.

本発明の第2の態様に係る表面被覆方法は、第1の態様において、前記被覆材の粉末はアルミニウム又はアルミニウム合金の粉末であることを特徴とするものである。本発明は、被覆材としてアルミニウム又はアルミニウム合金を用いることで、その得られる上記作用効果は顕著である。   The surface coating method according to a second aspect of the present invention is characterized in that, in the first aspect, the powder of the covering material is aluminum or aluminum alloy powder. In the present invention, by using aluminum or an aluminum alloy as a covering material, the above-described effects obtained are remarkable.

本発明の第3の態様に係る表面被覆方法は、第1の態様において、前記被覆材の粉末は異なる素材の混合物の粉末であることを特徴とするものである。このように、被覆材の粉末として異なる素材の混合物の粉末を用いることにより、その異なる素材を適宜複合化させて所望の特性を備えた表面被覆膜を形成することができる。たとえば、アルミニウム(Al)粉末とケイ素(Si)粉末の複合系、アルミニウム(Al)粉末と窒化硼素(BN)粉末の複合系等が挙げられる。   The surface coating method according to a third aspect of the present invention is characterized in that, in the first aspect, the powder of the coating material is a powder of a mixture of different materials. Thus, by using a powder of a mixture of different materials as the powder of the coating material, the different materials can be appropriately combined to form a surface coating film having desired characteristics. Examples thereof include a composite system of aluminum (Al) powder and silicon (Si) powder, a composite system of aluminum (Al) powder and boron nitride (BN) powder, and the like.

本発明の第4の態様に係る表面被覆方法は、第1の態様から第3の態様のいずれかにおいて、圧接体の先端当接部は円錐形状に形成され、該圧接体は被覆対象母材の表面に対して所定の傾きをもって押し付けられ、該傾き角度と前記円錐形状の関係は、被覆対象母材の表面に存在する前記被覆材の粉末を、回転する当該圧接体の先端当接部と被覆対象母材の表面との間に巻き込むように構成されていることを特徴とするものである。   In the surface coating method according to the fourth aspect of the present invention, in any one of the first to third aspects, the tip contact portion of the pressure contact body is formed in a conical shape, and the pressure contact body is a base material to be coated. The inclination angle and the conical shape are pressed against the surface of the coating material by rotating the powder of the coating material existing on the surface of the base material to be coated with the tip contact portion of the rotating press contact body. It is comprised so that it may wind between between the surfaces of the base material to be covered.

本発明によれば、被覆対象母材の表面に存在する前記被覆材の粉末を、回転する当該圧接体の先端当接部と被覆対象母材の表面との間に安定的かつ確実に巻き込むことができるので、表面被覆膜を効率的に形成することができる。   According to the present invention, the powder of the coating material existing on the surface of the base material to be coated is stably and reliably wound between the tip contact portion of the rotating press contact body and the surface of the base material to be coated. Therefore, the surface coating film can be formed efficiently.

本発明の第5の態様に係る表面被覆方法は、第4の態様において、前記昇温に係る所定温度は200℃以上であることを特徴とするものである。
前記荷重の作用する領域を200℃以上にまで昇温しておくことにより、前記半溶融状態を実現するために必要となる設定荷重の大きさが小さくても足りるようになり、もって既存の荷重用機器を用いて容易に前記半溶融状態を実現することができ、コストアップを防止することができる。
The surface coating method according to the fifth aspect of the present invention is characterized in that, in the fourth aspect, the predetermined temperature related to the temperature increase is 200 ° C. or higher.
By raising the temperature of the region where the load acts to 200 ° C. or higher, the set load required to realize the semi-molten state can be small, so that the existing load is sufficient. The semi-molten state can be easily realized using an industrial device, and an increase in cost can be prevented.

本発明の第6の態様に係る表面被覆方法は、第1の態様から第5の態様のいずれかにおいて、前記加熱拡散工程に続いて窒化処理により窒化物膜を形成する窒化処理工程を有することを特徴とするものである。本発明によれば、被覆対象母材の表面に、母材と別体の被覆材料を用いて緻密で且つ十分な膜厚を有する窒化物膜を形成することができる。   A surface coating method according to a sixth aspect of the present invention includes, in any one of the first to fifth aspects, a nitriding treatment step of forming a nitride film by nitriding treatment following the heating diffusion step. It is characterized by. According to the present invention, a dense nitride film having a sufficient film thickness can be formed on the surface of a base material to be coated using a coating material separate from the base material.

本発明の第7の態様に係る表面被覆方法は、第1の態様から第5の態様のいずれかにおいて、前記加熱拡散工程に続いて酸化処理により酸化物膜を形成する酸化処理工程を有することを特徴とするものである。本発明によれば、被覆対象母材の表面に、母材と別体の被覆材料を用いて緻密で且つ十分な膜厚を有する酸化物膜を形成することができる。   The surface coating method according to a seventh aspect of the present invention includes, in any one of the first to fifth aspects, an oxidation treatment step of forming an oxide film by oxidation treatment following the heat diffusion step. It is characterized by. According to the present invention, a dense oxide film having a sufficient film thickness can be formed on the surface of a base material to be coated using a coating material separate from the base material.

本発明の第8の態様は、第1の態様から第7の態様のいずれかの方法により形成されて成る表面被覆膜である。本発明によれば、第1の態様から第7の態様のそれぞれの作用効果が同様に得られる。   An eighth aspect of the present invention is a surface coating film formed by the method according to any one of the first to seventh aspects. According to the present invention, the effects of the first to seventh aspects can be similarly obtained.

本発明によれば、被覆対象母材の表面に、母材と別体の被覆材料を用いて緻密で且つ十分な膜厚を有する表面被覆膜を形成することができる。   According to the present invention, a dense surface coating film having a sufficient film thickness can be formed on the surface of a base material to be coated using a coating material separate from the base material.

以下、本発明を図面に基づいて詳細に説明する。図1は本発明に係る表面被覆方法の一実施の形態を説明するための要部斜視図であり、図2は同表面被覆方法の実施に用いる圧接体の側面図であり、図3は同方法により形成した表面被覆膜についてその被覆対象母材との断面の電子顕微鏡写真を写生した図であり、(B)は(A)の拡大図である。   Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a perspective view of an essential part for explaining one embodiment of a surface coating method according to the present invention, FIG. 2 is a side view of a pressure contact body used for carrying out the surface coating method, and FIG. It is the figure which copied the electron micrograph of the cross section with the base material to be coated about the surface coating film formed by the method, and (B) is an enlarged view of (A).

本実施の形態に係る表面被覆方法は、被覆対象母材1の表面に該母材1とは別体の被覆材の粉末2を用いて初期被覆膜3(図1)を形成する工程と、非酸化雰囲気で加熱して、前記初期被覆膜3から被覆材成分をその被覆界面より母材1中に向けて拡散させて表面被覆膜30(図3)に仕上げる加熱拡散工程とを有する。   The surface coating method according to the present embodiment includes a step of forming an initial coating film 3 (FIG. 1) on the surface of the base material 1 to be coated using powder 2 of a coating material separate from the base material 1. A heating diffusion step of heating in a non-oxidizing atmosphere to diffuse the coating material component from the initial coating film 3 toward the base material 1 from the coating interface to finish the surface coating film 30 (FIG. 3). Have.

初期被覆膜3は、被覆対象母材1の表面に被覆材の粉末2を存在させた状態で、圧接体4を該粉末2の上からその先端当接部5を前記被覆対象母材1の表面に向けて設定荷重で押し付けつつ回転させ、その際少なくとも前記荷重の作用する領域部分の前記被覆対象母材1の表面及び被覆材の粉末2を所定温度以上に昇温した状態にして該圧接体4を被覆対象母材1の表面に沿って移動させることで、前記被覆材の粉末2は前記所定温度以上への昇温と前記設定荷重で押し付けつつ回転させることによる摩擦熱によって半溶融状態になり被覆対象母材の表面に付着することにより形成される。   The initial coating film 3 is formed in such a manner that the powder 2 of the coating material is present on the surface of the base material 1 to be coated, and the tip contact portion 5 of the pressure contact body 4 is placed on the powder 2 from above the powder 2. The surface of the base material 1 to be coated and the powder 2 of the coating material at least in a region where the load is applied are heated to a predetermined temperature or more in this state. By moving the pressure contact body 4 along the surface of the base material 1 to be coated, the powder 2 of the covering material is semi-molten by the frictional heat generated by rotating the pressing material 2 while raising the temperature to the predetermined temperature or more and pressing it with the set load. It is formed by becoming a state and adhering to the surface of the base material to be coated.

ここで、被覆対象母材1は、ステンレス材や鉄鋼材等が挙げられる。勿論、これらの材料に限定されない。被覆材との組み合わせで、本発明が適用できるものであればよい。   Here, examples of the base material 1 to be covered include stainless steel and steel. Of course, it is not limited to these materials. What is necessary is just to be able to apply this invention in combination with a coating | covering material.

被覆材(粉末2)は、被覆対象母材1とは別体の材料が使われるのがこの発明であり、被覆対象母材1自体の表面を単に改質する表面処理とは本発明は異なる。この被覆材も、特定の材料に限定されないが、その被覆の目的と前記被覆対象母材1との組み合わせによって被覆材の材料は決まる。例えば、ステンレス材にはアルミニウムやアルミニウム合金の被覆材が、その加工性及び膜特性(緻密性)の点で、良い組み合わせである。アルミニウムに代えて銅やランタン等も被覆材として例示できる。
また、本発明は被覆材の粉末2を用いるので、たとえば、アルミニウム(Al)粉末とケイ素(Si)粉末の複合系、アルミニウム(Al)粉末と窒化硼素(BN)粉末の複合系等の異なる素材の混合物を被覆材として容易に用いることができるとともに、その異なる素材を適宜複合化させて所望の特性を備えた表面被覆膜30を種々形成することが可能である。
In the present invention, the coating material (powder 2) is a separate material from the base material 1 to be coated, and the present invention is different from a surface treatment that simply modifies the surface of the base material 1 itself. . The covering material is not limited to a specific material, but the material of the covering material is determined by the combination of the purpose of the covering and the base material 1 to be coated. For example, a coating material made of aluminum or an aluminum alloy is a good combination in terms of workability and film characteristics (denseness) for a stainless steel material. Instead of aluminum, copper, lanthanum and the like can be exemplified as the covering material.
Further, since the present invention uses the powder 2 of the coating material, different materials such as a composite system of aluminum (Al) powder and silicon (Si) powder, a composite system of aluminum (Al) powder and boron nitride (BN) powder, etc. Thus, it is possible to easily form the various surface coating films 30 having desired characteristics by appropriately combining the different materials.

被覆材の粉末2の粒径は、その材料の種類や被覆対象母材1との組み合わせ、更に初期被覆膜3を形成するときの後述する「所定温度」および「設定荷重」の違いによっても変わるが、3〜40マイクロメートル、好ましくは5〜20マイクロメートルの粒径にすると、通常扱いやすい。   The particle size of the powder 2 of the coating material depends on the kind of the material, the combination with the base material 1 to be coated, and the difference in “predetermined temperature” and “set load” described later when the initial coating film 3 is formed. Although it varies, it is usually easy to handle when the particle size is 3 to 40 micrometers, preferably 5 to 20 micrometers.

圧接体4の構造は、本実施の形態では、図2に示したように円柱体から成り、その先端当接部5が円錐形状に形成されている。円柱体は直径aが20mmで、その円錐形状の高さbは0.5mmに形成されている。前記円錐形状(直径a:20mm、高さb:0.5mm)によって、被覆対象母材1の表面に存在する前記被覆材の粉末2を、回転する当該圧接体4の先端当接部5と被覆対象母材1の表面との間に巻き込むようになっている。このような圧接体4を用いる場合、図1に示したように粉末2の飛散を防止する円筒状の覆い6を用いることが望ましい。尚、前記円錐形状(直径20mm、高さ0.5mm)は一例であり、これらに限定されないのは勿論である。   In the present embodiment, the structure of the pressure contact body 4 is a cylindrical body as shown in FIG. 2, and the tip contact portion 5 is formed in a conical shape. The cylindrical body has a diameter a of 20 mm and a conical height b of 0.5 mm. With the conical shape (diameter a: 20 mm, height b: 0.5 mm), the coating material powder 2 existing on the surface of the coating target base material 1 is rotated with the tip contact portion 5 of the rotating press contact body 4. It winds between the surface of the base material 1 to be covered. When such a pressure contact body 4 is used, it is desirable to use a cylindrical cover 6 that prevents the powder 2 from scattering as shown in FIG. The conical shape (diameter 20 mm, height 0.5 mm) is an example, and it is needless to say that the invention is not limited to these.

圧接体4の設定荷重は、被覆対象母材1の表面に当該圧接体4が押し付けられる力の大きさであり、該圧接体4を押し付けつつ回転させることで摩擦熱を発生させ、これにより荷重の作用する領域に在る前記粉末2を半溶融状態にすることができる大きさに設定される。更に、その際少なくとも前記荷重が作用して摩擦熱が発生する領域部分の被覆対象母材1の表面および被覆材の粉末2を加熱手段によって所定温度以上に昇温した状態にしておくことにより、必要となる設定荷重の大きさが変わる。すなわち、前記「所定温度」を高くすれば設定荷重は小さくても足り、逆の場合は大きくする必要がある。
ここで、前記荷重の作用する領域を200℃以上にまで昇温しておくと、前記半溶融状態を実現するために必要となる設定荷重の大きさが小さくても足りるようになり、もって既存の荷重用機器を用いて容易に前記半溶融状態を実現することができ、コストアップを防止することができる。
The set load of the press contact body 4 is the magnitude of the force with which the press contact body 4 is pressed against the surface of the base material 1 to be coated, and friction heat is generated by rotating the press contact body 4 while pressing the press contact body 4. It is set to a size that allows the powder 2 in the region where the material acts to be in a semi-molten state. Furthermore, at that time, at least the surface of the base material 1 to be coated and the powder 2 of the covering material in the region where the frictional heat is generated due to the action of the load are heated to a predetermined temperature or higher by the heating means, The required setting load changes. That is, if the “predetermined temperature” is increased, the set load may be small, and in the opposite case, it needs to be increased.
Here, if the region where the load is applied is heated to 200 ° C. or more, the set load required to realize the semi-molten state can be small, and the existing load is sufficient. Thus, the semi-molten state can be easily realized by using the load device, and an increase in cost can be prevented.

そして、圧接体4を上記の如く前記設定荷重で押し付けつつ回転させ、被覆対象母材1の表面にそって移動させることにより該被覆対象母材1の表面に初期被覆膜3が形成される。この初期被覆膜3は、被覆材の粉末2が半溶融状態を経て前記設定荷重下で母材表面に付着するため、図3(A)及び(B)に示した如く、該母材表面の不規則な凹凸形状にも追従して或いは吸収して空隙無く付着することができる。更に膜厚も、使用する粉末2の粒径にも因るが、数十マイクロメートル〜数百マイクロメートルにまで厚く形成することが可能である。   Then, the press contact body 4 is rotated while being pressed with the set load as described above, and is moved along the surface of the base material 1 to be covered, whereby the initial coating film 3 is formed on the surface of the base material 1 to be covered. . The initial coating film 3 is formed on the surface of the base material as shown in FIGS. 3A and 3B because the powder 2 of the coating material adheres to the base material surface under the set load through a semi-molten state. These irregular irregular shapes can be followed or absorbed to adhere without voids. Furthermore, although the film thickness also depends on the particle diameter of the powder 2 to be used, it can be formed as thick as several tens of micrometers to several hundreds of micrometers.

加熱拡散工程は、前記初期被覆膜3から被覆材成分をその被覆界面より母材1中に向けて拡散させて表面被覆膜30に仕上げるもので、その不活性ガス雰囲気や減圧雰囲気等の非酸化雰囲気を含めて公知の方法を適用することができる。この加熱拡散によって、表面被覆膜30は、初期被覆膜3の形成時における加工歪み等が除かれて均質性ある緻密性が確保されると共に、母材1との間に前記拡散に基づく傾斜組成が形成され、この傾斜組成により該膜30と母材1との間の連続性が向上し、以て密着性等の被覆特性を向上することができる。   The heat diffusion step is to diffuse the coating material component from the initial coating film 3 toward the base material 1 from the coating interface to finish the surface coating film 30, such as an inert gas atmosphere or a reduced pressure atmosphere. Known methods including a non-oxidizing atmosphere can be applied. By this heat diffusion, the surface coating film 30 is free of processing distortions and the like during the formation of the initial coating film 3 to ensure a uniform and denseness, and is based on the diffusion between the surface coating film 30 and the base material 1. A gradient composition is formed, and this gradient composition improves the continuity between the film 30 and the base material 1, thereby improving the coating properties such as adhesion.

[実施例1]
〈表面被覆膜の形成〉
被覆材の粉末2として、ガスアトマイズ法で作製した粒子径5〜20マイクロメートルのアルミニウム粉末を用いた。尚、この粉末の作製方法はこれに限定されない。被覆対象母材1は板状のステンレス材(SUS430)を用い、圧接体4も被覆対象母材1と同じステンレス材(SUS430)を用いた。該圧接体4は図2に示したように直径20mmの円柱体と、先端当接部5とを備え、該先端当接部5は円錐形状(直径20mm、高さ0.5mm)に形成されている。
[Example 1]
<Formation of surface coating film>
As the powder 2 of the coating material, an aluminum powder having a particle diameter of 5 to 20 micrometers produced by a gas atomization method was used. Note that the method for producing the powder is not limited to this. As the base material 1 to be coated, a plate-shaped stainless steel material (SUS430) was used, and the same stainless steel material (SUS430) as the base material 1 to be coated was also used as the pressure contact body 4. As shown in FIG. 2, the pressure contact body 4 includes a cylindrical body having a diameter of 20 mm and a tip contact portion 5, and the tip contact portion 5 is formed in a conical shape (diameter 20 mm, height 0.5 mm). ing.

先ず、ガスバーナーによりステンレス製の被覆対象母材1(以下「ステンレス母材1」ということがある)、アルミニウム被覆材の粉末2およびステンレス製の圧接体4の先端当接部5を加熱してそれらの温度を200℃にまで昇温した。この昇温を充分に行って、圧接体4を被覆対象母材1の表面に向けて垂直に10kg/cmの設定荷重で押し付けつつ、先端当接部5外周の線速度にして6m/秒回転速度で回転させる。この状態で圧接体4を1mm/秒の速度でステンレス母材1に対して押し付けつつ母材表面に沿って移動させる。これにより、ステンレス母材1の表面にアルミニウム被覆材から成る初期被覆膜3が形成される。 First, the base material 1 made of stainless steel (hereinafter sometimes referred to as “stainless steel base material 1”), the powder 2 of the aluminum coating material, and the tip contact portion 5 of the stainless steel pressure contact body 4 are heated by a gas burner. Their temperature was raised to 200 ° C. The temperature is sufficiently increased, and the pressure contact body 4 is vertically pressed toward the surface of the base material 1 to be coated with a set load of 10 kg / cm 2 , and the linear velocity of the outer periphery of the tip contact portion 5 is 6 m / second. Rotate at rotation speed. In this state, the pressure contact body 4 is moved along the surface of the base material while being pressed against the stainless base material 1 at a speed of 1 mm / second. Thereby, the initial coating film 3 made of an aluminum coating material is formed on the surface of the stainless steel base material 1.

尚、圧接体4の先端当接部5の内、中央部分は回転速度の線速度が前記6m/秒より小さくなり、前記粉末2が半溶融状体になりにくく、膜が形成されにくい傾向が少しある。そのため、圧接体4の先端当接部5の内、その周縁寄りの高線速度の部分が被覆対象母材1の全表面を通過するようにする移動させることが好ましく、これにより全面にムラ無く初期被覆膜3を形成することができる。   In the center portion of the tip contact portion 5 of the press contact body 4, the linear speed of the rotational speed is smaller than 6 m / second, and the powder 2 is less likely to be a semi-molten body and a film is not easily formed. There is a little. Therefore, it is preferable to move so that the portion of the tip contact portion 5 of the press contact body 4 that has a high linear velocity near the periphery passes through the entire surface of the base material 1 to be coated, and thus the entire surface is uniform. An initial coating film 3 can be formed.

また、ガスバーナーにより加熱した前記所定温度が200℃である場合は、その他を上記の通りに設定して線速度を変化させた場合、0.5m/秒ではほとんど製膜せず、1m/秒では1〜5マイクロメートル程度の膜厚であり、3m/秒では5〜20マイクロメートル程度の膜厚であり、6m/秒以上にして40マイクロメートル以上の膜厚が得られた。また、同じくガスバーナーにより加熱した前記所定温度が200℃である場合に、その他を上記の通りに設定して設定荷重を変化させた場合、0.1kg/cmでは製膜せず、1kg/cmでもほとんど製膜せず、5kg/cm以上にして40マイクロメートル以上の膜厚が得られた。すなわち、製膜条件をその目的に応じて適宜設定することにより効率的に製膜することが可能であると言える。
前記所定温度を室温のままとし、すなわちガスバーナーなどにより加熱せず、圧接体4の設置加重を大きくするだけで初期被覆膜3を形成することも可能である。
When the predetermined temperature heated by the gas burner is 200 ° C., when the linear velocity is changed with the others set as described above, almost no film is formed at 0.5 m / second, and 1 m / second. The film thickness was about 1 to 5 micrometers, the film thickness was about 5 to 20 micrometers at 3 m / second, and a film thickness of 40 micrometers or more was obtained at 6 m / second or more. Similarly, when the predetermined temperature heated by the gas burner is 200 ° C. and the other is set as described above and the set load is changed, no film is formed at 0.1 kg / cm 2 , and 1 kg / little film even cm 2, thickness of 40 micrometers or greater in the 5 kg / cm 2 or more was obtained. That is, it can be said that it is possible to efficiently form a film by appropriately setting the film forming conditions according to the purpose.
It is also possible to form the initial coating film 3 by keeping the predetermined temperature at room temperature, that is, without heating with a gas burner or the like, and only increasing the installation load of the pressure contact body 4.

初期被覆膜3を形成した後、真空雰囲気にして700℃で2時間保持する加熱拡散処理を行い、初期被覆膜3からアルミニウム成分をステンレス母材1側に拡散させて表面被覆膜30に仕上げた。   After the initial coating film 3 is formed, a heat diffusion treatment is performed in a vacuum atmosphere at 700 ° C. for 2 hours to diffuse the aluminum component from the initial coating film 3 to the stainless steel base material 1 side, thereby the surface coating film 30. Finished.

〈表面被覆膜の分析〉
上記表面被覆膜30を形成した試料を電子線プローブマイクロアナライザー8800/8900(日本電子株式会社製)を用いて、試料断面の分析を行った。その結果、電子顕微鏡観察から、図3(A)(B)に示したように、アルミニウムの緻密な表面被覆膜30がステンレス母材1の表面に形成されていることが確認された。図3(B)は図3(A)の符合7で示した領域部分を拡大した図であるが、ステンレス母材1の表面凹凸に追従してアルミニウムの表面被覆膜30が緻密な状態でステンレス母材1に付着していることが確認できる。尚、図3(A)において、符合9は樹脂層を示し、該樹脂層9は上記分析を行うために試料表面に付着させたものである。
<Analysis of surface coating film>
The sample on which the surface coating film 30 was formed was subjected to analysis of the sample cross section using an electron beam probe microanalyzer 8800/8900 (manufactured by JEOL Ltd.). As a result, it was confirmed from electron microscope observation that a dense surface coating film 30 of aluminum was formed on the surface of the stainless steel base material 1 as shown in FIGS. FIG. 3B is an enlarged view of the region indicated by reference numeral 7 in FIG. 3A, and the surface coating film 30 of aluminum is in a dense state following the surface irregularities of the stainless steel base material 1. It can be confirmed that the material adheres to the stainless steel base material 1. In FIG. 3A, reference numeral 9 indicates a resin layer, and the resin layer 9 is attached to the sample surface for the above analysis.

マッピングによる組成分析の結果を図4及びその拡大図である図5に示す。ドットを点在して示した領域が分析対象成分が含まれている領域を示し、そのドットの多少(濃淡)が成分存在量の多少に対応する。(A)は表面被覆膜30がアルミニウムであり、アルミニウムは他の領域には存在しないことを示しており、(B)はステンレス母材1にクロム(Cr)が存在し、他の領域には存在しないこと(当然であるが)を示しており、(C)はステンレス母材1に鉄(Fe)が存在し、他の領域には存在しないこと(当然であるが)を示している。この実施例では、図4(A)に示されているように、表面被覆膜3の膜厚は約70〜80マイクロメートルであることが確認された。   The result of composition analysis by mapping is shown in FIG. 4 and FIG. 5 which is an enlarged view thereof. A region dotted with dots indicates a region where the analysis target component is included, and the degree of the dots (light and shade) corresponds to the amount of component existence. (A) shows that the surface coating film 30 is aluminum, and aluminum does not exist in other regions. (B) shows that chromium (Cr) is present in the stainless steel base material 1 and in other regions. Indicates that it does not exist (which is natural), and (C) indicates that iron (Fe) is present in the stainless steel base material 1 and is not present in other regions (which is natural). . In this example, as shown in FIG. 4A, it was confirmed that the film thickness of the surface coating film 3 was about 70 to 80 micrometers.

また、図5に拡大して示したように、加熱拡散処理により初期被覆膜3からアルミニウム成分がステンレス母材1側に拡散していることが確認できた。すなわち、この加熱拡散によって、表面被覆膜30は、初期被覆膜3の形成時における加工歪み等が除かれて均質性ある緻密性が確保されると共に、ステンレス母材1との界面に前記拡散に基づく傾斜組成が形成され、この傾斜組成により該膜30と母材1との間の連続性が向上し、以て密着性等の被覆特性を向上するものと思われる。   Further, as shown in an enlarged view in FIG. 5, it was confirmed that the aluminum component was diffused from the initial coating film 3 to the stainless steel base material 1 side by the heat diffusion treatment. That is, by this heat diffusion, the surface coating film 30 is free of processing distortion and the like during the formation of the initial coating film 3 to ensure uniform and denseness, and at the interface with the stainless steel base material 1. A graded composition based on diffusion is formed, and this graded composition improves the continuity between the film 30 and the base material 1, and thus seems to improve the coating properties such as adhesion.

[実施例2及び実施例3]
〈複合表面被覆膜の形成〉
被覆材の粉末としてアルミニウムとケイ素の混合物(実施例2)及びアルミニウムと窒化ホウ素の混合物(実施例3)を用いて表面被覆膜30を製膜した。両者の混合比は、それぞれ重量比でAl:Si=2:8およびAl:BN=8:2にした。
[Example 2 and Example 3]
<Formation of composite surface coating film>
Surface coating film 30 was formed using a mixture of aluminum and silicon (Example 2) and a mixture of aluminum and boron nitride (Example 3) as powders of the coating material. The mixing ratio of the two was Al: Si = 2: 8 and Al: BN = 8: 2 by weight.

用いた圧接体4の構造は、本実施例2と3では、図6及び図7に示したように直径が20mm、その円錐形状の高さが0.5mmの円柱体から成ると共に、該圧接体4は被覆対象母材1の表面に向けて該表面の垂線10に対して1.5度の傾きθをもって押し付けられるようになっている。この傾き角度(1.5度)と前記円錐形状(直径20mm、高さ0.5mm)によって、被覆対象母材1の表面に存在する前記被覆材の粉末2を、回転する当該圧接体4の先端当接部5と被覆対象母材1の表面との間に巻き込むようになっている。   The structure of the pressure contact body 4 used in Examples 2 and 3 is a cylindrical body having a diameter of 20 mm and a conical height of 0.5 mm as shown in FIGS. 6 and 7. The body 4 is pressed toward the surface of the base material 1 to be coated with an inclination θ of 1.5 degrees with respect to the normal 10 of the surface. Due to this inclination angle (1.5 degrees) and the conical shape (diameter 20 mm, height 0.5 mm), the powder 2 of the coating material existing on the surface of the base material 1 to be coated It is wound between the tip contact portion 5 and the surface of the base material 1 to be covered.

尚、前記傾き角度(1.5度)と前記円錐形状(直径20mm、高さ0.5mm)は一例であり、これらに限定されないのは勿論である。設定荷重は当該圧接体4の全圧にして550kg〜1500kgとした。尚、ガスバーナー等による加熱はせず、室温のまま行った。その他の条件は実施例1と同様である。   The tilt angle (1.5 degrees) and the conical shape (diameter 20 mm, height 0.5 mm) are examples, and of course are not limited to these. The set load was 550 kg to 1500 kg as the total pressure of the press contact body 4. In addition, it heated at room temperature, without heating by a gas burner etc. Other conditions are the same as in the first embodiment.

〈表面被覆膜の分析〉
実施例2及び実施例3のいずれも、表面被覆膜30を形成した試料を電子線プローブマイクロアナライザー8800/8900を用いて、試料断面の分析を行った。その結果、電子顕微鏡観察から、実施例1と同様に、膜厚が約60〜70マイクロメートルの緻密な表面被覆膜30がステンレス母材1の表面に形成されていることが確認された。尚、ホウ素(B)と窒素(N)の存在は表面被覆膜30部分の定量分析により確認した。その他の成分の確認は実施例1と同様に行った。表1と表2はその定量分析の結果を示す。
<Analysis of surface coating film>
In both Example 2 and Example 3, the sample on which the surface coating film 30 was formed was analyzed for the sample cross section using an electron beam probe microanalyzer 8800/8900. As a result, it was confirmed by electron microscope observation that a dense surface coating film 30 having a film thickness of about 60 to 70 micrometers was formed on the surface of the stainless steel base material 1 as in Example 1. The presence of boron (B) and nitrogen (N) was confirmed by quantitative analysis of the surface coating film 30 portion. Other components were confirmed in the same manner as in Example 1. Tables 1 and 2 show the results of the quantitative analysis.

Figure 2007100129
Figure 2007100129

Figure 2007100129
Figure 2007100129

[実施例4]
〈窒化膜の形成〉
上記実施例1で作製したアルミニウム表面被覆膜30を有する試料をプラズマ窒化装置(日本電子株式会社製)を用いて570℃、2時間の窒化処理を行い、アルミニウム表面被覆膜を窒化アルミニウム膜に変えた。それをマイクロビッカス硬度計(株式会社明石製作所製)にて硬度を測定したところ、1100〜1300程度の高度を示すことが確認された。
[Example 4]
<Nitride film formation>
The sample having the aluminum surface coating film 30 produced in Example 1 was subjected to nitriding treatment at 570 ° C. for 2 hours using a plasma nitriding apparatus (manufactured by JEOL Ltd.), and the aluminum surface coating film was converted into an aluminum nitride film. Changed to. When the hardness was measured with a micro Bickus hardness tester (manufactured by Akashi Seisakusho Co., Ltd.), it was confirmed that an altitude of about 1100-1300 was exhibited.

[実施例5]
〈酸化膜の形成〉
上記実施例1で作製したアルミニウム表面被覆膜30を有する試料を公知の酸素雰囲気路を用いて700℃、5時間の酸化処理を行い、アルミニウム表面被覆膜を酸化アルミニウム膜に変えた。それをマイクロビッカス硬度計(株式会社明石製作所製)にて硬度を測定したところ、600〜800程度の高度を示すことが確認された。
[Example 5]
<Oxide film formation>
The sample having the aluminum surface coating film 30 produced in Example 1 was subjected to an oxidation treatment at 700 ° C. for 5 hours using a known oxygen atmosphere path, and the aluminum surface coating film was changed to an aluminum oxide film. When the hardness was measured with a micro Biccus hardness meter (manufactured by Akashi Seisakusho Co., Ltd.), it was confirmed that an altitude of about 600 to 800 was exhibited.

本発明は、被覆対象母材の表面に該母材と別体の被覆材料を用いて表面被覆膜を形成する表面被覆方法および表面被覆膜に利用可能である。   INDUSTRIAL APPLICABILITY The present invention is applicable to a surface coating method and a surface coating film that form a surface coating film on the surface of a base material to be coated using a coating material that is separate from the base material.

本発明に係る表面被覆方法の一実施の形態を説明するための要部斜視図である。It is a principal part perspective view for demonstrating one Embodiment of the surface coating method which concerns on this invention. 同表面被覆方法の実施に用いる圧接体の側面図である。It is a side view of the press-contacting body used for implementation of the surface coating method. 同方法により形成した表面被覆膜についてその被覆対象母材との断面の電子顕微鏡写真を写生した図であり、(B)は(A)の拡大図である。It is the figure which copied the electron micrograph of the cross section with the base material to be coated about the surface coating film formed by the same method, and (B) is an enlarged view of (A). (A)(B)(C)はマッピングによる組成分析の結果を示す図である。(A) (B) (C) is a figure which shows the result of the composition analysis by mapping. (A)(B)(C)はマッピングによる組成分析の結果を示す図で、図4の一部拡大図ある。(A) (B) (C) is a figure which shows the result of the composition analysis by mapping, and is a partially expanded view of FIG. 本発明に係る表面被覆方法の他の実施の形態を説明するための要部側面図である。It is a principal part side view for demonstrating other embodiment of the surface coating method which concerns on this invention. 同表面被覆方法の実施に用いる圧接体の側面図である。It is a side view of the press-contacting body used for implementation of the surface coating method.

符号の説明Explanation of symbols

1 被覆対象母材(ステンレス母材)
2 被覆材の粉末
3 初期被覆膜
4 圧接体
5 先端当接部
30 表面被覆膜
1 Base material to be covered (stainless steel base material)
2 Coating material powder 3 Initial coating film 4 Pressure contact body 5 Tip contact portion 30 Surface coating film

Claims (8)

被覆対象母材の表面に被覆材の粉末を存在させ、圧接体を該粉末の上からその先端当接部を前記被覆対象母材の表面に向けて設定荷重で押し付けつつ回転させ、その際少なくとも前記荷重の作用する領域部分の前記被覆対象母材の表面および被覆材の粉末を所定温度以上に昇温した状態にして該圧接体を被覆対象母材の表面に沿って移動させることにより該被覆対象母材の表面に初期被覆膜を形成する工程と、
非酸化雰囲気で加熱して、前記初期被覆膜から被覆材成分をその被覆界面より母材中に向けて拡散させて表面被覆膜に仕上げる加熱拡散工程と、を有する表面被覆方法。
The coating material powder is present on the surface of the base material to be coated, and the pressure contact body is rotated from above the powder while pressing the tip contact portion against the surface of the base material to be coated with a set load, and at least The surface of the base material to be coated in the region where the load acts and the powder of the covering material are heated to a predetermined temperature or more, and the pressure contact body is moved along the surface of the base material to be coated. Forming an initial coating film on the surface of the target base material;
A surface coating method comprising: a heating diffusion step of heating in a non-oxidizing atmosphere and diffusing a coating material component from the initial coating film into a base material from the coating interface to finish the surface coating film.
請求項1において、前記被覆材の粉末はアルミニウム又はアルミニウム合金の粉末であることを特徴とする表面被覆方法。   2. The surface coating method according to claim 1, wherein the coating material powder is aluminum or aluminum alloy powder. 請求項1において、前記被覆材の粉末は異なる素材の混合物の粉末であることを特徴とする表面被覆方法。   2. The surface coating method according to claim 1, wherein the powder of the covering material is a powder of a mixture of different materials. 請求項1から3のいずれか1項において、圧接体の先端当接部は円錐形状に形成され、該圧接体は被覆対象母材の表面に対して所定の傾きをもって押し付けられ、該傾き角度と前記円錐形状の関係は、被覆対象母材の表面に存在する前記被覆材の粉末を、回転する当該圧接体の先端当接部と被覆対象母材の表面との間に巻き込むように構成されていることを特徴とする表面被覆方法。   In any one of Claim 1 to 3, the front-end | tip contact part of a press-contact body is formed in cone shape, this press-contact body is pressed with the predetermined | prescribed inclination with respect to the surface of a base material to be coated, The conical relationship is configured such that the powder of the covering material existing on the surface of the base material to be covered is wound between the tip contact portion of the rotating press contact body and the surface of the base material to be covered. A surface coating method characterized by comprising: 請求項4において、前記昇温に係る所定温度は200℃以上であることを特徴とする表面被覆方法。   The surface coating method according to claim 4, wherein the predetermined temperature for the temperature rise is 200 ° C. or higher. 請求項1から5のいずれか1項において、前記加熱拡散工程に続いて窒化処理により窒化物膜を形成する窒化処理工程を有することを特徴とする表面被覆方法。   6. The surface coating method according to claim 1, further comprising a nitriding treatment step of forming a nitride film by nitriding treatment following the heating diffusion step. 請求項1から5のいずれか1項において、前記加熱拡散工程に続いて酸化処理により酸化物膜を形成する酸化処理工程を有することを特徴とする表面被覆方法。   6. The surface coating method according to claim 1, further comprising an oxidation treatment step of forming an oxide film by an oxidation treatment subsequent to the heat diffusion step. 請求項1から7のいずれかの方法により形成されて成る表面被覆膜。   A surface coating film formed by the method according to claim 1.
JP2005288390A 2005-09-30 2005-09-30 Surface coating method and surface coating film Withdrawn JP2007100129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005288390A JP2007100129A (en) 2005-09-30 2005-09-30 Surface coating method and surface coating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005288390A JP2007100129A (en) 2005-09-30 2005-09-30 Surface coating method and surface coating film

Publications (1)

Publication Number Publication Date
JP2007100129A true JP2007100129A (en) 2007-04-19

Family

ID=38027358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005288390A Withdrawn JP2007100129A (en) 2005-09-30 2005-09-30 Surface coating method and surface coating film

Country Status (1)

Country Link
JP (1) JP2007100129A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009129856A (en) * 2007-11-27 2009-06-11 Toshiba Corp Contact point material for vacuum valve, and manufacturing method thereof
US8006890B2 (en) 2007-12-13 2011-08-30 Hitachi, Ltd. Friction stir processing apparatus with a vibrator
WO2015016122A1 (en) * 2013-08-01 2015-02-05 日立オートモティブシステムズ株式会社 Method for manufacturing piston for internal combustion engine, and piston for internal combustion engine
JP2019030887A (en) * 2017-08-08 2019-02-28 Jfeスチール株式会社 Surface processing method of metallic material and manufacturing method of metallic material
JP2020011299A (en) * 2018-07-20 2020-01-23 ティーイー コネクティビティ ジャーマニー ゲゼルシャフト ミット ベシュレンクテル ハフツンクTE Connectivity Germany GmbH Method of coating workpiece, workpiece, coating machine, and use of friction-welding apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009129856A (en) * 2007-11-27 2009-06-11 Toshiba Corp Contact point material for vacuum valve, and manufacturing method thereof
US8006890B2 (en) 2007-12-13 2011-08-30 Hitachi, Ltd. Friction stir processing apparatus with a vibrator
WO2015016122A1 (en) * 2013-08-01 2015-02-05 日立オートモティブシステムズ株式会社 Method for manufacturing piston for internal combustion engine, and piston for internal combustion engine
JP5976941B2 (en) * 2013-08-01 2016-08-24 日立オートモティブシステムズ株式会社 Manufacturing method of piston for internal combustion engine
US10151268B2 (en) 2013-08-01 2018-12-11 Hitachi Automotive Systems, Ltd. Method for manufacturing piston for internal combustion engine, and piston for internal combustion engine
JP2019030887A (en) * 2017-08-08 2019-02-28 Jfeスチール株式会社 Surface processing method of metallic material and manufacturing method of metallic material
JP2020011299A (en) * 2018-07-20 2020-01-23 ティーイー コネクティビティ ジャーマニー ゲゼルシャフト ミット ベシュレンクテル ハフツンクTE Connectivity Germany GmbH Method of coating workpiece, workpiece, coating machine, and use of friction-welding apparatus
JP7482611B2 (en) 2018-07-20 2024-05-14 ティーイー コネクティビティ ジャーマニー ゲゼルシャフト ミット ベシュレンクテル ハフツンク Method for coating a workpiece, use of the workpiece, coating machine, and friction welding device - Patents.com

Similar Documents

Publication Publication Date Title
JP2007100129A (en) Surface coating method and surface coating film
Saber-Samandari et al. Calcium phosphate coatings: Morphology, micro-structure and mechanical properties
Martini et al. Sliding and abrasive wear behaviour of boride coatings
Dreano et al. The formation of a cobalt-based glaze layer at high temperature: a layered structure
İpek et al. Investigation of boronizing kinetics of AISI 51100 steel
Sen Kinetics of titanium nitride coatings deposited by thermo-reactive deposition technique
JP2006283191A (en) Nickel coating
CN102821831A (en) Method and device for forming a supported gas separation membrane
Golestani et al. Microstructure and ablative properties of Si-SiC coating prepared by spark plasma sintering
Kovács et al. Effect of different active screen hole sizes on the surface characteristic of plasma nitrided steel
Hernández-Sánchez et al. Tribological behavior of borided AISI 316L steel with reduced friction coefficient and enhanced wear resistance
Rusinov et al. Surface modification of parts material shape memory TiNiCo with a view to providing a functional and mechanical property as a factor in resource
JP2007100112A (en) Surface coating method and surface coating film
Tamura et al. Rapid oxynitriding of Ti–6Al–4V alloy by induction heating in air
US11204311B2 (en) Engraving device and method for creating and measuring stress corrosion cracking on a flat coated test specimen
Morizono et al. Surface Hardening of Titanium by Using a Simplified Carbon and Nitrogen Diffusion Technique with Steel and Carbon Powders
Roucoules et al. Hydrophobic mechanochemical treatment of metallic surfaces: Wettability measurements as a means of assessing homogeneity
JP3354377B2 (en) Fabrication method of high corrosion resistance modified layer by laser spraying method
US8597737B2 (en) Method of carbo-nitriding alumina surfaces
Utu et al. Improvement of the wear resistance of titanium alloyed with boron nitride by electron beam irradiation
JP2017226865A (en) Base material with spray coating film
Reza et al. Interface bonding of NiCrAlY coating on laser modified H13 tool steel surface
JP3923900B2 (en) Tungsten thin film coating method using tungsten oxide powder
Ikeda et al. Titanium coating of lotus-type porous stainless steel by vapour deposition technique
Chen et al. Friction of diamond-like carbon: Run-in behavior and environment effects on superlubricity

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081202