JP2017111907A - Contact point for vacuum valve, method for manufacturing the same, and vacuum valve having contact point - Google Patents

Contact point for vacuum valve, method for manufacturing the same, and vacuum valve having contact point Download PDF

Info

Publication number
JP2017111907A
JP2017111907A JP2015243994A JP2015243994A JP2017111907A JP 2017111907 A JP2017111907 A JP 2017111907A JP 2015243994 A JP2015243994 A JP 2015243994A JP 2015243994 A JP2015243994 A JP 2015243994A JP 2017111907 A JP2017111907 A JP 2017111907A
Authority
JP
Japan
Prior art keywords
contact
vacuum valve
work function
alloy
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015243994A
Other languages
Japanese (ja)
Other versions
JP6751293B2 (en
Inventor
遥 佐々木
Haruka Sasaki
遥 佐々木
山本 敦史
Atsushi Yamamoto
敦史 山本
直紀 浅利
Naoki Asari
直紀 浅利
草野 貴史
Takashi Kusano
貴史 草野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2015243994A priority Critical patent/JP6751293B2/en
Publication of JP2017111907A publication Critical patent/JP2017111907A/en
Application granted granted Critical
Publication of JP6751293B2 publication Critical patent/JP6751293B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a contact point for a vacuum valve, which is superior in voltage endurance characteristic, a method for manufacturing the contact point, and a vacuum valve provided with the contact point.SOLUTION: A contact point B, C for a vacuum valve comprises a contact part of which the surface is covered with a Cu-Cr alloy including Cu and Cr by 5-100 wt%. The Cu-Cr alloy has a work function larger than a mean value of a Cu specific work function and a Cr specific work function.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、真空バルブ用接点およびこれを用いた真空バルブに関わり、より具体的には、優れた耐電圧特性を有する真空バルブ用接点、その製造方法ならびこれを搭載した真空バルブに関わる。   Embodiments of the present invention relate to a vacuum valve contact and a vacuum valve using the same, and more specifically, to a vacuum valve contact having excellent withstand voltage characteristics, a manufacturing method thereof, and a vacuum valve equipped with the same. Involved.

真空バルブ用接点材料としては、例えば、導電成分であるCuやAgに、用途に応じた種々の成分が複合化された材料が従来提案されている。特に、耐電圧特性および大電流遮断特性を有する接点材料としては、Cu−Cr合金が一般に使用されている。   As a contact material for a vacuum valve, for example, a material in which various components according to applications are combined with Cu or Ag which are conductive components has been conventionally proposed. In particular, a Cu—Cr alloy is generally used as a contact material having a withstand voltage characteristic and a large current interruption characteristic.

この接点材料は、Crの複合化により優れた遮断性能を発揮し、Cr25〜35wt%付近まではCrの複合量増大に伴い遮断性能、耐電圧性能ともに向上する傾向があるが、さらにCr複合量を増大させると遮断性能は低下する傾向にある。また、一般的にCr複合量の増大は接触抵抗も増大させる傾向がある。   This contact material exhibits excellent breaking performance due to the composite of Cr, and there is a tendency to improve both the breaking performance and the withstand voltage performance as the Cr composite amount increases up to around Cr 25 to 35 wt%. When the value is increased, the blocking performance tends to decrease. In general, an increase in Cr composite amount tends to increase contact resistance.

機器の使用環境の変化やコンパクト化に伴い、開閉機器には、より高電界の環境下での使用が求められている。特に真空バルブ用接点材料が搭載される真空開閉機器に関しては、環境調和の観点から、より高電圧の領域への適用が望まれ、真空バルブの耐電圧性能の向上が期待されている。   With changes in the use environment of devices and downsizing, switchgear devices are required to be used in environments with higher electric fields. In particular, vacuum switchgear equipped with a contact material for a vacuum valve is desired to be applied to a higher voltage region from the viewpoint of environmental harmony, and is expected to improve the withstand voltage performance of the vacuum valve.

上記のようなCrの複合量の調整によって、遮断性能および低接触抵抗を維持しつつ耐電圧特性を向上させることは限界に近づきつつある。そこで、Crの複合量を増大させることなく、接点表面の物理特性を制御し、接点材料としての他の機能を向上させることが求められている。   By adjusting the composite amount of Cr as described above, it is approaching the limit to improve the withstand voltage characteristics while maintaining the breaking performance and the low contact resistance. Therefore, it is required to control the physical characteristics of the contact surface and improve other functions as a contact material without increasing the composite amount of Cr.

本発明者らは、上記課題に対して鋭意研究を重ねた結果、耐電圧性能向上に影響を及ぼす接点最表面の物理特性として仕事関数に着目し、耐電圧性能と仕事関数との間に相関があることを見出した。   As a result of intensive research on the above problems, the present inventors have focused on the work function as a physical property of the outermost surface of the contact that affects the withstand voltage performance improvement, and there is a correlation between the withstand voltage performance and the work function. Found that there is.

本発明の実施形態による真空バルブ用接点は、CuおよびCrを5〜100重量%含有してなるCu-Cr合金によって接点接触部分の表面が覆われてなる真空バルブ用接点であって、前記のCu-Cr合金の仕事関数の値が、Cu固有の仕事関数とCr固有の仕事関数との平均値よりも大きいこと、を特徴とするものである。   A vacuum valve contact according to an embodiment of the present invention is a vacuum valve contact in which a surface of a contact contact portion is covered with a Cu-Cr alloy containing 5 to 100% by weight of Cu and Cr. The value of the work function of the Cu—Cr alloy is characterized by being larger than the average value of the work function specific to Cu and the work function specific to Cr.

また、本発明の実施形態による真空バルブ用接点材料の製造方法は、CuおよびCrを5〜100重量%含有してなるCu-Cr合金によって接点接触部分の表面が覆われてなる真空バルブ用接点であって、前記のCu-Cr合金の仕事関数の値が、Cu固有の仕事関数とCr固有の仕事関数との平均値よりも大きい真空バルブ用接点材料を製造する方法であって、
前記のCu-Cr合金を、高エネルギー線を基板に照射することにより当該基板の照射部領域を瞬間的に溶融させ再凝固させる液相プロセス および(または)
気相状態のCuおよび気相状態のCrの両者を基板上で固化して堆積させる気相プロセスによって形成すること、を特徴とする。
In addition, the method for manufacturing a contact material for a vacuum valve according to an embodiment of the present invention includes a contact for a vacuum valve in which the surface of the contact contact portion is covered with a Cu—Cr alloy containing 5 to 100% by weight of Cu and Cr. A method for producing a contact material for a vacuum valve, wherein a work function value of the Cu-Cr alloy is larger than an average value of a work function specific to Cu and a work function specific to Cr,
A liquid phase process in which the irradiated region of the substrate is instantaneously melted and re-solidified by irradiating the substrate with a high energy ray of the Cu—Cr alloy and / or
It is characterized by being formed by a vapor phase process in which both vapor phase Cu and vapor phase Cr are solidified and deposited on a substrate.

そして、本発明の実施形態による真空バルブは、上記の真空バルブ用接点を具備すること、を特徴とするものである。   And the vacuum valve by embodiment of this invention comprises the said contact for vacuum valves, It is characterized by the above-mentioned.

本発明の実施形態による真空バルブ用接点は、優れた耐電圧性能を発揮することができ、高耐電圧領域で使用される真空バルブ用の接点に特に適している。   The contact for vacuum valve by embodiment of this invention can exhibit the outstanding withstand voltage performance, and is especially suitable for the contact for vacuum valves used in a high withstand voltage area | region.

本発明の実施形態による真空バルブの概要を示す断面図。Sectional drawing which shows the outline | summary of the vacuum valve by embodiment of this invention.

発明の実施するための形態BEST MODE FOR CARRYING OUT THE INVENTION

<真空バルブ用接点>
本発明の実施形態による真空バルブ用接点は、CuおよびCrを5〜100重量%含有してなるCu-Cr合金によって表面が覆われてなる真空バルブ用接点であって、その接点接触面となるCu-Cr合金の仕事関数の値が、Cu固有の仕事関数とCr固有の仕事関数との平均値よりも大きいこと、を特徴とする。
<Vacuum valve contacts>
A vacuum valve contact according to an embodiment of the present invention is a vacuum valve contact whose surface is covered with a Cu—Cr alloy containing 5 to 100% by weight of Cu and Cr, and serves as a contact contact surface thereof. The work function value of the Cu—Cr alloy is characterized by being larger than the average value of the work function inherent to Cu and the work function inherent to Cr.

ここで、「仕事関数」とは、「固体表面から1個の電子を取り出すのに必要な最小のエネルギー。固体中のフェルミ準位と真空準位とのエネルギーの差で与えられる」(JIS C5600:2006 2−4−19)を意味する。なお、本明細書では、特に指摘がない場合、「仕事関数」とは、具体的には、予め真空中でのイオンエッチング等よってクリーニングした状態の測定試料表面のX線光電子分光法により測定した値を言う。   Here, the “work function” is “the minimum energy required to extract one electron from the surface of the solid. It is given by the difference in energy between the Fermi level and the vacuum level in the solid” (JIS C5600). : 2006 2-4-19). In the present specification, unless otherwise indicated, the “work function” is specifically measured by X-ray photoelectron spectroscopy of a measurement sample surface that has been previously cleaned by ion etching or the like in a vacuum. Say the value.

本発明の実施形態による真空バルブ用接点は、Cu-Cr合金によって表面が覆われてなるものである。このCu-Cr合金は、CuおよびCrを5〜100重量含有してなる。すなわち、Cu元素およびCr元素の合計量が、Cu-Cr合金の全量の5〜100重量%を占めている。Cu-Cr合金は、好ましくはCuおよびCrを50〜100重量%、特に好ましくは75〜100重量%、含むことができる。   The contact for a vacuum valve according to the embodiment of the present invention is one whose surface is covered with a Cu—Cr alloy. This Cu—Cr alloy contains 5 to 100 weights of Cu and Cr. That is, the total amount of Cu element and Cr element accounts for 5 to 100% by weight of the total amount of Cu—Cr alloy. The Cu—Cr alloy can preferably contain 50 to 100% by weight of Cu and Cr, particularly preferably 75 to 100% by weight.

Cu-Cr合金に含まれるCuおよびCr以外の成分としては、例えば、V、Ta、Nb、Mo等を挙げることができる。なお、これらの元素は、二種類以上含まれることがある。   Examples of components other than Cu and Cr contained in the Cu—Cr alloy include V, Ta, Nb, and Mo. Note that two or more of these elements may be included.

CuとCrとの合計量が5重量%未満である場合、好ましくない。Cu-Cr合金におけるCuとCrとの存在割合(重量比)は、Cu:Crが1:19〜19:1であり、好ましくは、Cu:Crが2:3〜9:1である。   When the total amount of Cu and Cr is less than 5% by weight, it is not preferable. The abundance ratio (weight ratio) of Cu and Cr in the Cu—Cr alloy is such that Cu: Cr is 1:19 to 19: 1, and preferably Cu: Cr is 2: 3 to 9: 1.

そして、本発明の実施形態による真空バルブ用接点は、その接点接触面となるCu-Cr合金の仕事関数が、Cu固有の仕事関数とCr固有の仕事関数との平均値よりも大きいものである。ここで、「接点接触面」とは、その最表面のみだけでなく、その近傍(具体的には、最表面から深さ10000μmまで)をも含めて言うものである。従って、本発明の実施形態による真空バルブ用接点は、接点接触面(最表面から深さ10000μmまで)のCu-Cr合金の仕事関数が、Cu固有の仕事関数とCr固有の仕事関数との平均値よりも大きいものを包含する。   In the vacuum valve contact according to the embodiment of the present invention, the work function of the Cu—Cr alloy serving as the contact surface is larger than the average value of the work function inherent to Cu and the work function inherent to Cr. . Here, the “contact contact surface” includes not only the outermost surface but also the vicinity thereof (specifically, from the outermost surface to a depth of 10,000 μm). Therefore, in the contact for the vacuum valve according to the embodiment of the present invention, the work function of the Cu—Cr alloy on the contact surface (from the outermost surface to a depth of 10,000 μm) is an average of the work function inherent to Cu and the work function inherent to Cr. Includes anything greater than the value.

本発明の実施形態による真空バルブ用接点では、「Cu-Cr合金の仕事関数」、「Cu固有の仕事関数」ならびに「Cr固有の仕事関数」を、例えば、「X線電子分光法による同定法」で同定することができる。   In the contact for the vacuum valve according to the embodiment of the present invention, the “work function of Cu—Cr alloy”, “work function unique to Cu” and “work function unique to Cr” are determined by, for example, “identification method by X-ray electron spectroscopy” Can be identified.

ここで、「X線電子分光法による同定法」では測定毎にその測定値の絶対値が変動することがあるが、「Cu-Cr合金の仕事関数」、「Cu固有の仕事関数」ならびに「Cr固有の仕事関数」を同時に測定した場合、本発明の実施形態による真空バルブ用接点では、どの同定サンプルにおいても「接点接触面となるCu-Cr合金の仕事関数が、Cu固有の仕事関数とCr固有の仕事関数との平均値よりも大きい」という条件が充足されている。   Here, in the “identification method by X-ray electron spectroscopy”, the absolute value of the measured value may fluctuate for each measurement, but “work function of Cu—Cr alloy”, “work function unique to Cu” and “ When the work function unique to Cr is measured at the same time, in the vacuum valve contact according to the embodiment of the present invention, the work function of the Cu—Cr alloy serving as the contact contact surface is the same as the work function unique to Cu in any identification sample. The condition “greater than the average value with the work function inherent to Cr” is satisfied.

本発明の実施形態による真空バルブ用接点を、例えば「X線電子分光法による同定法」によって同定した場合、「Cu固有の仕事関数」は4.35eV、「Cr固有の仕事関数」は4.35eV、接点接触面となるCu-Cr合金の仕事関数は4.4〜4.8eVという値となって、上記の条件(即ち、「接点接触面となるCu-Cr合金の仕事関数が、Cu固有の仕事関数とCr固有の仕事関数との平均値よりも大きい」という条件)が充足されている。   When the contact for the vacuum valve according to the embodiment of the present invention is identified by, for example, “identification method by X-ray electron spectroscopy”, “Cu-specific work function” is 4.35 eV, and “Cr-specific work function” is 4. 35 eV, the work function of the Cu—Cr alloy serving as the contact contact surface is a value of 4.4 to 4.8 eV, and the above condition (that is, “the work function of the Cu—Cr alloy serving as the contact contact surface is Cu The condition “which is larger than the average value of the intrinsic work function and the intrinsic work function of Cr” is satisfied.

本発明の実施形態による真空バルブ用接点の最表面のCu-Cr合金の仕事関数は、Cu固有の仕事関数とCr固有の仕事関数との平均値よりも、好ましくは0.5eV以上、特に好ましくは1.0eV以上、大きい。   The work function of the Cu—Cr alloy on the outermost surface of the vacuum valve contact according to the embodiment of the present invention is preferably 0.5 eV or more, particularly preferably an average value of the work function inherent to Cu and the work function inherent to Cr. Is greater than 1.0 eV.

本発明の実施形態による真空バルブ用接点は、上記のCu-Cr合金によって表面が覆われてなるものである。本発明の実施形態による真空バルブ用接点の好ましい具体例としては、上記のCu-Cr合金からなる被覆層と基材とを具備してなるものを挙げることができる。   A contact for a vacuum valve according to an embodiment of the present invention is formed by covering the surface with the Cu—Cr alloy. As a preferable specific example of the contact for a vacuum valve according to the embodiment of the present invention, there can be mentioned one provided with the coating layer made of the Cu—Cr alloy and the base material.

この基材としては、各種の金属材料からなる基材を用いることができる。好ましい基材としては、例えば、Cuを5〜100重量%含有してなる基材、例えばCu-Cr合金からなる基材を挙げることができる。   As this base material, base materials made of various metal materials can be used. As a preferable base material, for example, a base material containing 5 to 100% by weight of Cu, for example, a base material made of a Cu—Cr alloy can be mentioned.

なお、この基板は、本発明の実施形態による真空バルブ用接点の製造方法の、(イ)液相プロセスにおける「照射対象Cu-Cr合金」、あるいは(ロ)気相プロセスにおける「付着対象」に相当するものと捉えることができる場合がある。   In addition, this board | substrate is (i) "irradiation object Cu-Cr alloy" in a liquid phase process of the manufacturing method of the contact for vacuum valves by embodiment of this invention, or (b) "attachment object" in a gaseous-phase process. In some cases, it can be regarded as equivalent.

本発明の実施形態による真空バルブ用接点において、上記の所定のCu-Cr合金からなる被覆層および基材の厚さは、真空バルブ用接点材料の具体的用途、目的、耐久性等を考慮して適宜定めることができる。所定のCu-Cr合金からなる被覆層の厚さは、好ましくは0.001〜10000μm、特に好ましくは0.01〜1000μm、であり、基材の厚さは、好ましくは0.1〜100mmである。   In the contact for the vacuum valve according to the embodiment of the present invention, the thickness of the coating layer and the base material made of the predetermined Cu—Cr alloy is considered in consideration of the specific use, purpose, durability, etc. of the contact material for the vacuum valve. Can be determined as appropriate. The thickness of the coating layer made of a predetermined Cu—Cr alloy is preferably 0.001 to 10,000 μm, particularly preferably 0.01 to 1000 μm, and the thickness of the substrate is preferably 0.1 to 100 mm. is there.

<真空バルブ用接点の製造方法>
本発明の実施形態による真空バルブ用接点の製造方法は、CuおよびCrを全量の5〜100重量%含有してなるCu-Cr合金からなる真空バルブ用接点材料であって、その接点接触面となるCu-Cr合金の仕事関数が、Cu成分固有の仕事関数とCr成分固有の仕事関数との平均値よりも大きい真空バルブ用接点材料を製造する方法であって、
前記のCu-Cr合金を、(イ)高エネルギー線を基板に照射することにより当該基板の照射部領域を瞬間的に溶融させ再凝固させる液相プロセス および(または)
(ロ) 気相状態のCuおよび気相状態のCrの両者を基板上で固化して堆積させる気相プロセスによって形成すること、を特徴とする。
<Vacuum valve contact manufacturing method>
A method for manufacturing a contact for a vacuum valve according to an embodiment of the present invention is a contact material for a vacuum valve made of a Cu-Cr alloy containing 5 to 100% by weight of Cu and Cr, and the contact contact surface thereof. A method for producing a contact material for a vacuum valve having a work function of a Cu-Cr alloy of which is larger than an average value of a work function specific to a Cu component and a work function specific to a Cr component,
(A) a liquid phase process in which the substrate is irradiated with high energy rays to instantaneously melt and re-solidify the irradiated region of the substrate; and / or
(B) It is characterized in that it is formed by a vapor phase process in which both vapor phase Cu and vapor phase Cr are solidified and deposited on a substrate.

(イ)で示される「液相プロセス」は、具体的には、高エネルギー線の照射対象となるCu-Cr合金基板(以下、「照射対象Cu-Cr合金基板」と記載することがある)に、高エネルギー線を照射して、その表面部を瞬間的に溶融させ再凝固させることによって、このCu-Cr合金基板の表面に所定のCu-Cr合金層を形成させる工程である。   Specifically, the “liquid phase process” indicated by (a) is a Cu—Cr alloy substrate to be irradiated with high energy rays (hereinafter, sometimes referred to as “irradiated Cu—Cr alloy substrate”). In this step, the surface portion of the Cu—Cr alloy substrate is formed on the surface of the Cu—Cr alloy substrate by irradiating the surface with high energy rays to instantaneously melt and resolidify the surface portion.

「照射対象Cu-Cr合金基板」は、本発明の実施形態による真空バルブ用接点が得られやすいものを用いる。従って、この「照射対象Cu-Cr合金基板」は、Cu元素およびCr元素の合計量が、Cu-Cr合金の全量の5〜100重量%を占めている。Cu-Cr合金は、好ましくはCuおよびCrを50〜100重量%、特に好ましくは75〜100重量%、含むことができる。Cu-Cr合金に、含まれるCuおよびCr以外の成分としては、例えば、V、Ta、Nb、Mo等を挙げることができる。なお、これらの元素は、二種類以上含まれることがある。「照射対象Cu-Cr合金基板」におけるCuとCrとの存在割合(重量比)は、Cu:Crが1:19〜19:1であり、好ましくは、Cu:Crが2:3〜9:1である。この「照射対象Cu-Cr合金」としては、例えば、従来のCu-Cr合金(例えば、「Cu-Cr合金の仕事関数が、Cu成分固有の仕事関数とCr成分固有の仕事関数との平均値よりも小さいCu-Cr合金)も包含される。   As the “irradiation target Cu—Cr alloy substrate”, a substrate on which the contact for the vacuum valve according to the embodiment of the present invention is easily obtained is used. Therefore, in the “irradiation target Cu—Cr alloy substrate”, the total amount of the Cu element and the Cr element occupies 5 to 100% by weight of the total amount of the Cu—Cr alloy. The Cu—Cr alloy can preferably contain 50 to 100% by weight of Cu and Cr, particularly preferably 75 to 100% by weight. Examples of components other than Cu and Cr contained in the Cu—Cr alloy include V, Ta, Nb, and Mo. Note that two or more of these elements may be included. The abundance ratio (weight ratio) of Cu and Cr in the “irradiation target Cu—Cr alloy substrate” is such that Cu: Cr is 1:19 to 19: 1, and preferably Cu: Cr is 2: 3 to 9: 1. As this “irradiation target Cu—Cr alloy”, for example, a conventional Cu—Cr alloy (for example, the work function of “Cu—Cr alloy is the average value of the work function specific to the Cu component and the work function specific to the Cr component”). Smaller Cu—Cr alloy).

高エネルギー線としては、電子ビーム、レーザおよび分子線から選ばれるものが好ましく、この中では、特に電子ビーム、とりわけパルス電子ビーム、が好ましい。高エネルギー線の照射による溶融は、好ましくは「照射対象Cu-Cr合金基板」の表面ならびに表面から深さ1000μmまでの領域、特に好ましくは表面ならびに表面から深さ100μmまでの領域、を行うことができる。高エネルギー線の照射は、「照射対象Cu-Cr合金基板」の同じ表面領域ないし異なる表面領域に対して、複数回照射することができる。   The high energy beam is preferably selected from an electron beam, a laser, and a molecular beam. Among them, an electron beam, particularly a pulsed electron beam is particularly preferable. Melting by irradiation with high energy rays is preferably performed on the surface of the “irradiation target Cu—Cr alloy substrate” and the region from the surface to a depth of 1000 μm, particularly preferably the surface and the region from the surface to a depth of 100 μm. it can. Irradiation with high energy rays can be performed multiple times on the same surface region or different surface regions of the “irradiation target Cu—Cr alloy substrate”.

(ロ)で示される「気相プロセス」は、具体的には、気相状態のCuおよび気相状態のCrの両者を、その付着対象となる基板上で固化して堆積させて、所定のCu-Cr合金層を形成させる工程である。   Specifically, the “vapor phase process” shown in (b) is a method in which both Cu in a vapor phase and Cr in a vapor phase are solidified and deposited on a substrate to be attached, This is a step of forming a Cu—Cr alloy layer.

この「気相プロセス」において、所定のCu-Cr合金を形成させるために行われる気相状態のCuおよび気相状態のCrの生成およびその固化は、真空蒸着、マグネトロンスパッタ、イオンプレーティングおよびアーク放電によって行うことが好ましい。この中では、特にマグネトロンスパッタおよびアーク放電によるものが好ましい。   In this “vapor phase process”, the formation and solidification of vapor phase Cu and vapor phase Cr to form a predetermined Cu—Cr alloy are performed by vacuum deposition, magnetron sputtering, ion plating and arc. It is preferable to carry out by discharging. Among these, those by magnetron sputtering and arc discharge are particularly preferable.

気相状態のCuおよび気相状態のCrの供給源としては、所定のCu-Cr合金を形成させるために、好ましくは、例えば、Cu粉末およびCr粉末の混合粉末、Cu-Cr焼結合金およびCu-Crインゴットを用いることができる。   As a supply source of vapor-phase Cu and vapor-phase Cr, in order to form a predetermined Cu—Cr alloy, preferably, for example, a mixed powder of Cu powder and Cr powder, a Cu—Cr sintered alloy, and Cu—Cr ingots can be used.

気相状態のCuおよび気相状態のCrの付着対象となる基板は、本発明の実施形態による真空バルブ用接点が得られやすいものを用いる。従って、この「付着対象」は、Cu元素量が、5〜100重量%を占めているCu合金である。Cu合金に含まれるCu以外の成分としては、例えばCr、V、Ta、Nb、Mo、W等を挙げることができる。なお、これらの元素は、二種類以上含まれることがある。   As the substrate to which the vapor phase Cu and the vapor phase Cr are to be attached, a substrate on which the vacuum valve contact according to the embodiment of the present invention can be easily obtained is used. Therefore, this “adhesion target” is a Cu alloy in which the amount of Cu element occupies 5 to 100% by weight. Examples of components other than Cu contained in the Cu alloy include Cr, V, Ta, Nb, Mo, and W. Note that two or more of these elements may be included.

また、アーク放電による気相プロセスは、接点になる基板を電極として対向して配置し、この電極に電圧を印加してアーク放電を発生させ、前記の対向して配置された片方の基板を気相状態のCuおよび気相状態のCrの供給源とし、残りの片方の基板を付着対象とすることによって行うことができる。   In the gas phase process by arc discharge, a substrate serving as a contact is disposed as an electrode, and a voltage is applied to the electrode to generate an arc discharge. This can be done by using a supply source of Cu in the phase state and Cr in the vapor phase state and the other one of the substrates as the deposition target.

複数回のアーク放電を極性を反転させて行う場合には、対向して配置された双方の基板のそれぞれが、気相状態のCuおよび気相状態のCrの供給源、ならびに気相状態のCuおよび気相状態のCrの付着対象となる。このように、複数回のアーク放電を極性を反転させて所定のCu-Cr合金の形成を行う場合には、均等な厚さのCu-Cr合金層を形成することが容易になる。   In the case where the arc discharge is performed a plurality of times with the polarity reversed, both of the substrates arranged opposite to each other are supplied with a supply source of vapor-phase Cu and vapor-phase Cr, and vapor-phase Cu In addition, it becomes an adhesion target of Cr in the gas phase. As described above, when a predetermined Cu—Cr alloy is formed by reversing the polarity of a plurality of arc discharges, it is easy to form a Cu—Cr alloy layer having an equal thickness.

付着対象上に形成する所定のCu-Cr合金からなる被覆層の厚さは、上記(イ)の「液相プロセス」および(ロ)の「気相プロセス」のいずれのおいても、好ましくは0.001〜10000μm、特に好ましくは0.01〜1000μm、である。   The thickness of the coating layer made of a predetermined Cu—Cr alloy formed on the object to be adhered is preferably set in any of the above “liquid phase process” and (b) “gas phase process”. 0.001 to 10000 μm, particularly preferably 0.01 to 1000 μm.

また、本発明の実施形態による真空バルブ用接点の製造方法では、(イ)で示される「液相プロセス」と(ロ)で示される「気相プロセス」とは、どちらか一方のみを採用することができるし、両方を併用することができる。両方を併用する場合、(イ)の「液相プロセス」を実施した後に、(ロ)の「気相プロセス」を実施することが特に好ましい。このような場合、液相プロセスにより形成された凝固組織が気相プロセスにおける気相状態のCuおよび気相状態のCrの供給源となるため、形成される被覆層のCu原子およびCr原子が微細且つ均質に被覆層内に分散する状態となって、Cu-Cr接点表面の仕事関数を最大限に達成することが容易となる。   In the method for manufacturing a contact for a vacuum valve according to the embodiment of the present invention, only one of the “liquid phase process” indicated by (A) and the “gas phase process” indicated by (B) is employed. Or both can be used together. When both are used in combination, it is particularly preferable to carry out the “gas phase process” in (b) after the “liquid phase process” in (a). In such a case, since the solidified structure formed by the liquid phase process becomes a supply source of Cu in the gas phase and Cr in the gas phase in the gas phase process, the Cu atoms and Cr atoms in the formed coating layer are fine. In addition, it becomes easy to achieve the maximum work function of the Cu—Cr contact surface by being uniformly dispersed in the coating layer.

<真空バルブ>
本発明の実施形態による真空バルブは、上記の真空バルブ用接点を具備すること、を特徴とするものである。
<Vacuum valve>
A vacuum valve according to an embodiment of the present invention includes the above-described vacuum valve contact.

図1は、本発明の実施形態による真空バルブの好ましい具体例を示すものである。図1に示される真空バルブAは、「Cu-Cr合金の仕事関数の値が、Cu固有の仕事関数とCr固有の仕事関数との平均値よりも大きい被覆層に表面が覆われてなる真空バルブ用接点BおよびC」と、「アークシールドD」と、「アークシールドE」と、「ベローズF」とを具備してなるものである。   FIG. 1 shows a preferred specific example of a vacuum valve according to an embodiment of the present invention. The vacuum valve A shown in FIG. 1 is “a vacuum whose surface is covered with a coating layer in which the value of the work function of the Cu—Cr alloy is larger than the average value of the work function specific to Cu and the work function specific to Cr. The valve contacts B and C ”,“ arc shield D ”,“ arc shield E ”, and“ bellows F ”are provided.

仕事関数の測定
下記の各実施例および各比較例において、仕事関数の測定は下記の通りに行った。
Measurement of work function In each of the following examples and comparative examples, the work function was measured as follows.

測定前の測定試料表面のクリーニングにはArイオンによるイオンエッチングを用い、エッチング領域は2×2mmとし、エッチングレートは毎分5.6nmとした。   Ion etching with Ar ions was used to clean the surface of the measurement sample before measurement, the etching area was 2 × 2 mm, and the etching rate was 5.6 nm per minute.

仕事関数測定には、PHI社製Quantera SXMを用いた。励起X線原としてAlKα線(1486.6e∨)を使用し、X線径は100μmとした。測定試料表面に対する検出器の傾きは90°である。X線を測定試料表面に入射し、発生する光電子の運動エネルギーを分光することでスペクトルプロファイルを得る。金属の場合、フェルミ準位を基準として、真空準位を超えて発生した光電子の立ち上がりのエネルギー位置と運動エネルギー最大の位置、即ちフェルミ準位を求めることで仕事関数を算出した。   For measurement of work function, Quantera SXM manufactured by PHI was used. AlKα ray (1486.6e∨) was used as the excitation X-ray source, and the X-ray diameter was 100 μm. The inclination of the detector with respect to the measurement sample surface is 90 °. A spectrum profile is obtained by making X-rays incident on the surface of the measurement sample and dispersing the kinetic energy of the generated photoelectrons. In the case of a metal, the work function was calculated by obtaining the energy position of the rise of photoelectrons generated beyond the vacuum level and the maximum kinetic energy, that is, the Fermi level, using the Fermi level as a reference.

耐電圧性能評価
真空バルブに接点を組み込んだ状態で接点間のギャップを3mmとしてインパルス電源から電圧を印加し、絶縁破壊電圧を測定した。
Withstand voltage performance evaluation In a state in which contacts were incorporated in a vacuum valve, a voltage was applied from an impulse power source with a gap between the contacts being 3 mm, and a dielectric breakdown voltage was measured.

<実施例1>
真空溶解法により製造したCu−35%Cr材からなる基板の表面に、パルス電子ビームを繰り返し照射して、前記のCu−35%Cr材の表面領域を瞬間的に溶解および再凝固させた。この基板を加工して、2つの接点を得た。これを、真空バルブ内に組み込み、この接点を電極として、アーク放電プラズマを極性を反転させながら繰り返し発生させた。
<Example 1>
The surface of the substrate made of a Cu-35% Cr material manufactured by a vacuum melting method was repeatedly irradiated with a pulsed electron beam to instantaneously melt and re-solidify the surface region of the Cu-35% Cr material. This substrate was processed to obtain two contacts. This was incorporated into a vacuum bulb, and arc discharge plasma was repeatedly generated while reversing the polarity using this contact as an electrode.

その後、アーク放電プラズマ処理に付された接点を取り出して、その最表面のCu−Cr材の仕事関数をX線光電子分光法によって求めた。その結果、表面部のCu−Cr材の仕事関数は、で4.8eVあった。   Thereafter, the contact subjected to the arc discharge plasma treatment was taken out, and the work function of the outermost Cu—Cr material was determined by X-ray photoelectron spectroscopy. As a result, the work function of the Cu—Cr material on the surface portion was 4.8 eV.

Cu固有の仕事関数は4.35eVあり、Cr固有の仕事関数4.35eVあることから、被覆層の表面部のCu−Cr合金の仕事関数は、Cu固有の仕事関数とCr固有の仕事関数との平均値よりも大きい。   Since the work function specific to Cu is 4.35 eV and the work function specific to Cr is 4.35 eV, the work function of the Cu—Cr alloy on the surface portion of the coating layer is the work function specific to Cu and the work function specific to Cr. It is larger than the average value.

真空バルブに、上記のアーク放電プラズマ処理に付された接点を組み込んだ状態で接点間のギャップを3mmとしてインパルス電源から電圧を印加し、絶縁破壊電圧を測定したところ、真空溶解法により製造したCu−35%Cr材からなる接点よりも絶縁破壊電圧が31%向上したことを確認した。   A voltage applied from an impulse power source with a gap between the contacts set at 3 mm in a state in which the contacts subjected to the above arc discharge plasma treatment were incorporated into a vacuum bulb, and a dielectric breakdown voltage was measured. It was confirmed that the dielectric breakdown voltage was improved by 31% over the contact made of -35% Cr material.

<実施例2>
真空溶解法により製造したCu−35%Cr材をターゲットとしてマグネトロンスパッタ法により、純Cuからなる接点表面にCu-Cr合金薄膜を2μm形成した。この時のCu-Cr合金薄膜の組成はターゲット組成とほぼ同一のCu-36〜38%Crであった。
<Example 2>
A Cu—Cr alloy thin film having a thickness of 2 μm was formed on a contact surface made of pure Cu by a magnetron sputtering method using a Cu-35% Cr material manufactured by a vacuum melting method as a target. The composition of the Cu—Cr alloy thin film at this time was Cu-36 to 38% Cr, which was almost the same as the target composition.

その後、接点を取り出して、その最表面のCu−Cr材の仕事関数をX線光電子分光法によって求めた。その結果、表面部のCu−Cr材の仕事関数は、で4.75eVであった。   Thereafter, the contact was taken out, and the work function of the outermost surface Cu—Cr material was determined by X-ray photoelectron spectroscopy. As a result, the work function of the Cu—Cr material on the surface portion was 4.75 eV.

Cu固有の仕事関数は4.35eVであり、Cr固有の仕事関数4.35eVであることから、被覆層の表面部のCu−Cr合金の仕事関数は、Cu固有の仕事関数とCr固有の仕事関数との平均値よりも大きい。   Since the work function peculiar to Cu is 4.35 eV and the work function peculiar to Cr is 4.35 eV, the work function of the Cu—Cr alloy on the surface portion of the coating layer is the work function peculiar to Cu and the work peculiar to Cr. Greater than average with function.

真空バルブに、上記のアーク放電プラズマ処理に付された接点を組み込んだ状態で接点間のギャップを3mmとしてインパルス電源から電圧を印加し、絶縁破壊電圧を測定したところ、真空溶解法により製造したCu−35%Cr材からなる接点よりも絶縁破壊電圧が27%向上したことを確認した。   A voltage applied from an impulse power source with a gap between the contacts set at 3 mm in a state in which the contacts subjected to the above arc discharge plasma treatment were incorporated into a vacuum bulb, and a dielectric breakdown voltage was measured. It was confirmed that the dielectric breakdown voltage was improved by 27% over the contact made of -35% Cr material.

A 真空バルブ
B 固定電極の接点
C 可動電極の接点
D アークシールド
E アークシールド
F ベローズ
A Vacuum valve B Contact point of fixed electrode C Contact point of movable electrode D Arc shield E Arc shield F Bellows

Claims (7)

CuおよびCrを5〜100重量%含有してなるCu-Cr合金によって接点接触部分の表面が覆われてなる真空バルブ用接点であって、前記のCu-Cr合金の仕事関数の値が、Cu固有の仕事関数とCr固有の仕事関数との平均値よりも大きいことを特徴とする、真空バルブ用接点。   A contact for a vacuum valve in which a surface of a contact contact portion is covered with a Cu-Cr alloy containing 5 to 100% by weight of Cu and Cr, and the work function value of the Cu-Cr alloy is Cu A contact for a vacuum valve, which is larger than an average value of an intrinsic work function and an intrinsic work function of Cr. 前記のCu-Cr合金は、CuとCrとの存在割合(重量比)がCu:Crが1:19〜19:1である、請求項1に記載の真空バルブ用接点。   2. The contact for a vacuum valve according to claim 1, wherein the Cu—Cr alloy has a Cu: Cr abundance ratio (weight ratio) of Cu: Cr of 1:19 to 19: 1. CuおよびCrを5〜100重量%含有してなるCu-Cr合金によって接点接触部分の表面が覆われてなる真空バルブ用接点であって、前記のCu-Cr合金の仕事関数の値が、Cu固有の仕事関数とCr固有の仕事関数との平均値よりも大きい真空バルブ用接点材料を製造する方法であって、
前記のCu-Cr合金を、高エネルギー線を基板に照射することにより当該基板の照射部領域を瞬間的に溶融させ再凝固させる液相プロセス および(または)
気相状態のCuおよび気相状態のCrの両者を基板上で固化して堆積させる気相プロセスによって形成することを特徴とする、真空バルブ用接点の製造方法。
A contact for a vacuum valve in which a surface of a contact contact portion is covered with a Cu-Cr alloy containing 5 to 100% by weight of Cu and Cr, and the work function value of the Cu-Cr alloy is Cu A method of manufacturing a contact material for a vacuum valve that is larger than the average value of the intrinsic work function and the intrinsic work function of Cr,
A liquid phase process in which the irradiated region of the substrate is instantaneously melted and re-solidified by irradiating the substrate with a high energy ray of the Cu—Cr alloy and / or
A method for manufacturing a contact for a vacuum valve, characterized in that it is formed by a vapor phase process in which both Cu in a vapor phase and Cr in a vapor phase are solidified and deposited on a substrate.
前記の高エネルギー線が、電子ビーム、レーザおよび分子線から選ばれたものである、請求項3に記載の真空バルブ用接点の製造方法。   The manufacturing method of the contact for vacuum valves of Claim 3 whose said high energy ray is chosen from an electron beam, a laser, and a molecular beam. 前記の気相プロセスを、真空蒸着、マグネトロンスパッタ、イオンプレーティングおよびアーク放電によって行う、請求項3に記載の真空バルブ用接点の製造方法。   The method for manufacturing a contact for a vacuum valve according to claim 3, wherein the vapor phase process is performed by vacuum deposition, magnetron sputtering, ion plating, and arc discharge. Cuを5〜100重量%含有してなる基材上に、前記のCu-Cr合金を形成する、請求項3〜5のいずれか1項に記載の真空バルブ用接点の製造方法。   The manufacturing method of the contact for vacuum valves of any one of Claims 3-5 which forms the said Cu-Cr alloy on the base material containing 5 to 100 weight% of Cu. 前記の真空バルブ用接点を具備すること、を特徴とする真空バルブ。   A vacuum valve comprising the vacuum valve contact described above.
JP2015243994A 2015-12-15 2015-12-15 Method for manufacturing contact for vacuum valve Active JP6751293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015243994A JP6751293B2 (en) 2015-12-15 2015-12-15 Method for manufacturing contact for vacuum valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015243994A JP6751293B2 (en) 2015-12-15 2015-12-15 Method for manufacturing contact for vacuum valve

Publications (2)

Publication Number Publication Date
JP2017111907A true JP2017111907A (en) 2017-06-22
JP6751293B2 JP6751293B2 (en) 2020-09-02

Family

ID=59080844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015243994A Active JP6751293B2 (en) 2015-12-15 2015-12-15 Method for manufacturing contact for vacuum valve

Country Status (1)

Country Link
JP (1) JP6751293B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10223075A (en) * 1996-12-06 1998-08-21 Louis Renner Gmbh Chromium-copper contact material mold, its manufacture and its use
JP2003331698A (en) * 2002-05-08 2003-11-21 Hitachi Ltd Electrode for vacuum circuit breaker and manufacturing method therefor
JP2010113821A (en) * 2008-11-04 2010-05-20 Japan Ae Power Systems Corp Electrode structure for vacuum circuit breaker
JP2013242978A (en) * 2012-05-18 2013-12-05 Mitsubishi Electric Corp Vacuum valve

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10223075A (en) * 1996-12-06 1998-08-21 Louis Renner Gmbh Chromium-copper contact material mold, its manufacture and its use
JP2003331698A (en) * 2002-05-08 2003-11-21 Hitachi Ltd Electrode for vacuum circuit breaker and manufacturing method therefor
JP2010113821A (en) * 2008-11-04 2010-05-20 Japan Ae Power Systems Corp Electrode structure for vacuum circuit breaker
JP2013242978A (en) * 2012-05-18 2013-12-05 Mitsubishi Electric Corp Vacuum valve

Also Published As

Publication number Publication date
JP6751293B2 (en) 2020-09-02

Similar Documents

Publication Publication Date Title
US20060019035A1 (en) Base for decorative layer
US4132614A (en) Etching by sputtering from an intermetallic target to form negative metallic ions which produce etching of a juxtaposed substrate
US20100051445A1 (en) Coating Apparatus For The Coating Of A Substrate, As Well As A Method For The Coating Of A Substrate
TW201638985A (en) Composite target and X-ray tube with the composite target
JPS59208070A (en) Arc stabilization device
JP2011052304A (en) NiCu ALLOY TARGET MATERIAL FOR Cu ELECTRODE PROTECTIVE FILM
US8828499B2 (en) Use of a target for spark evaporation, and method for producing a target suitable for said use
KR20100135957A (en) Molybdenum-niobium alloys, sputtering targets containing such alloys, methods of making such targets, thin films prepared therefrom and uses thereof
FR2462011A1 (en) METHOD FOR IMPROVING SWITCH CONTACTS, CONTACT OBTAINED THEREBY AND SWITCH THEREFOR
JP6697251B2 (en) Contact material for vacuum valve, manufacturing method thereof, contact having this contact material, and vacuum valve
JP6751293B2 (en) Method for manufacturing contact for vacuum valve
KR0185509B1 (en) Contact electrode for vacuum interrupter
US6361663B1 (en) Vacuum arc evaporator
KR101888557B1 (en) ta-C composite coating layer, apparatus for manufacturing ta-C composite coating layer and method for manufacturing using the same
Schiller et al. The role of plasmatron/magnetron systems in physical vapor deposition techniques
JP6122975B2 (en) Method for coating a workpiece with a coating comprising a TixSi1-xN layer
Siddiqui et al. On the structural, morphological and electrical properties of tantalum oxy nitride thin films by varying oxygen percentage in reactive gases plasma
KR20200071732A (en) Sputter trap and processing method of various patterns
TWI429774B (en) Coils utilized in vapor deposition applications and methods of production
JP2006228684A (en) Contact point material for vacuum valve, the vacuum valve, and manufacturing method thereof
Kostrin et al. Peculiarities of the structure formation of nanoscale coatings from the vacuum arc discharge plasma
US4129765A (en) Electrical switching contact
US5199059A (en) X-ray tube anode with oxide coating
JP2006100243A (en) Composite contact, vacuum switch, and manufacturing method of composite contact
US9803274B2 (en) Process kit of physical vapor deposition chamber and fabricating method thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171128

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171129

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20180330

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200420

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200814

R150 Certificate of patent or registration of utility model

Ref document number: 6751293

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150