JP2013242978A - Vacuum valve - Google Patents

Vacuum valve Download PDF

Info

Publication number
JP2013242978A
JP2013242978A JP2012113904A JP2012113904A JP2013242978A JP 2013242978 A JP2013242978 A JP 2013242978A JP 2012113904 A JP2012113904 A JP 2012113904A JP 2012113904 A JP2012113904 A JP 2012113904A JP 2013242978 A JP2013242978 A JP 2013242978A
Authority
JP
Japan
Prior art keywords
contact
pair
vacuum valve
shield
contacts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012113904A
Other languages
Japanese (ja)
Other versions
JP5854925B2 (en
Inventor
Daiki Donen
大樹 道念
Mitsuru Tsukima
満 月間
Junichi Abe
淳一 安部
Tomokazu Yoshida
友和 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012113904A priority Critical patent/JP5854925B2/en
Publication of JP2013242978A publication Critical patent/JP2013242978A/en
Application granted granted Critical
Publication of JP5854925B2 publication Critical patent/JP5854925B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To stabilize insulation performance of a contact and a shield efficiently by suppressing discharge occurring on the creepage of an insulation container in the voltage conditioning step of a vacuum valve, and to provide an inexpensive vacuum valve by shortening the voltage conditioning step thereby reducing the manufacturing cost.SOLUTION: The vacuum valve includes a pair of electrodes 4, 5 which hold a pair of contacts 43, 53 arranged oppositely in a vacuum container, respectively, via contact holding parts 42, 52 and making and breaking the pair of contacts, and a shield 7 formed to surround the pair of contacts and the contact holding parts facing each other and fixed to the vacuum container. A nickel plating layer 8 is provided at a part of at least one of the pair of contacts and contact holding parts facing the shield.

Description

この発明は、真空の優れた拡散性能と絶縁性能を活用して回路電流を遮断する真空バルブに関するものである。   The present invention relates to a vacuum valve that cuts off a circuit current by utilizing the excellent diffusion performance and insulation performance of a vacuum.

真空バルブに組み込まれる電極では、接点の背後にコイルを設けることで、接点間に発生する真空アークに対して磁界を印加し、アークを駆動・拡散する技術が広く用いられている。これにより接点の一部分のみが集中加熱され多量のプラズマが生じることを防ぎ、遮断性能を向上させることができる。遮断性能に加えて、真空バルブでは良好な絶縁性能が要求される。コイルは通電性能を確保するために銅を主体とした金属で構成されるが、銅の絶縁性能は低くコイルから放電が生じ易い。特許文献1に示す真空バルブ用電極では、コイルの表面に対してクロムやタングステンで被膜を施す技術が開示されている。これにより電流遮断中の電極間において、コイルに起因する放電の発生を防止している。
また真空バルブは円筒型の絶縁容器内に電極が配置される構造であり、電流遮断時に発生する電極材料の蒸気によって絶縁容器が汚損されると、絶縁性能が低下してしまう。そのため、電極を囲むようにシールドを配置して絶縁容器を保護する構造をとることが多い。コストや設置容積の観点からは、シールド及び絶縁容器の容積を小型化することが望ましいが、電極とシールド間の距離を不用意に縮めると、両者の間で放電が発生してしまう問題がある。特許文献2では電極のうちシールドと対向する箇所に、高い絶縁性能を有する溶融層もしくは金属被膜を設けることで、電極とシールドの間に発生する放電を抑制し、真空バルブの小型化を図る技術が開示されている。
In an electrode incorporated in a vacuum valve, a technique of driving and diffusing an arc by applying a magnetic field to a vacuum arc generated between the contacts by providing a coil behind the contacts is widely used. As a result, only a part of the contacts is heated in a concentrated manner to prevent a large amount of plasma from being generated, and the interruption performance can be improved. In addition to shut-off performance, vacuum valves require good insulation performance. The coil is made of a metal mainly composed of copper in order to ensure current-carrying performance, but the insulation performance of copper is low and electric discharge is likely to occur from the coil. In the vacuum valve electrode disclosed in Patent Document 1, a technique for coating the surface of the coil with chromium or tungsten is disclosed. This prevents the occurrence of electric discharge caused by the coil between the current-interrupting electrodes.
The vacuum valve has a structure in which an electrode is disposed in a cylindrical insulating container. If the insulating container is contaminated by the vapor of the electrode material generated when the current is interrupted, the insulating performance is deteriorated. Therefore, in many cases, a shield is arranged so as to surround the electrode to protect the insulating container. From the viewpoint of cost and installation volume, it is desirable to reduce the volume of the shield and the insulating container. However, if the distance between the electrode and the shield is reduced carelessly, there is a problem that electric discharge occurs between the two. . Patent Document 2 discloses a technique for suppressing the discharge generated between the electrode and the shield and reducing the size of the vacuum valve by providing a molten layer or a metal film having high insulation performance at a position facing the shield in the electrode. Is disclosed.

特開2010−113821号公報(第3〜4頁、図1)JP 2010-113821 (pages 3 to 4, FIG. 1) 特開2006−318795号公報(第1頁、図1)Japanese Patent Laying-Open No. 2006-318795 (first page, FIG. 1)

前記のように真空バルブの電極のうち、接点の接触面から見て側面側に金属被膜を施すことが、電極とシールド間の放電抑制、及び電流遮断時の電極間における放電抑制に効果的であることが知られている。しかしながら金属被膜からの暗流放出によってシールドの浮遊電位が変化し、絶縁容器沿面における放電が誘発されることがある。電極に施す金属被膜が、電極と直接関係のない絶縁容器の沿面放電に影響するという事実はこれまで明らかにされておらず、前記放電を抑制するための被膜設計は行われていなかった。そのため製造プロセスにおいて絶縁性能安定化のための処理工程が長くなり、製造コストが増加するという課題があった。   As described above, it is effective to suppress the discharge between the electrode and the shield and the discharge between the electrodes when the current is interrupted by applying the metal film on the side surface of the electrode of the vacuum valve as viewed from the contact surface of the contact. It is known that there is. However, the discharge of the dark current from the metal coating may change the floating potential of the shield and induce a discharge along the surface of the insulating container. The fact that the metal coating applied to the electrode affects the creeping discharge of the insulating container not directly related to the electrode has not been clarified so far, and the coating design for suppressing the discharge has not been performed. For this reason, there has been a problem that the processing steps for stabilizing the insulation performance in the manufacturing process become long and the manufacturing cost increases.

この発明は上記のような実状に鑑みなされたもので、被膜からの暗流放出が抑制され、シールド電位の偏りによる沿面放電の誘発を防止することで、絶縁性能安定化の処理工程の短縮が可能で、安価にできる真空バルブを提供することを目的としている。   The present invention has been made in view of the above-described circumstances, and the discharge of dark current from the coating is suppressed, and by preventing the occurrence of creeping discharge due to the bias of the shield potential, it is possible to shorten the treatment process for stabilizing the insulation performance. Therefore, an object is to provide a vacuum valve that can be made inexpensive.

この発明に係る真空バルブは、真空容器内に対向された一対の接点を、それぞれ接点保持部を介して保持して前記一対の接点が接離されるように設けられた一対の電極と、対向された前記一対の接点及び前記接点保持部のまわりを包囲するように形成され前記真空容器に固定されたシールドと、を備え、前記一対の接点及び前記一対の接点保持部の少なくとも一方における前記シールドと対向する箇所に、ニッケルメッキ層を設けるようにしたものである。   The vacuum valve according to the present invention is opposed to a pair of electrodes provided so that the pair of contacts opposed to each other in the vacuum vessel are held via contact holding portions and the pair of contacts are contacted and separated. And a shield fixed to the vacuum vessel so as to surround the pair of contacts and the contact holding portion, and the shield in at least one of the pair of contacts and the pair of contact holding portions. A nickel plating layer is provided at the opposite location.

この発明によれば、仕事関数の高いニッケルを被膜材料に用いたことで被膜からの暗流放出が抑制されるため、シールド電位の偏りによるセラミック沿面放電の誘発を防止することができる。これにより絶縁性能安定化の処理工程が短縮され、真空バルブを安価に提供することができる。   According to this invention, since nickel having a high work function is used for the coating material, the discharge of the dark current from the coating is suppressed, so that it is possible to prevent the induction of the ceramic creeping discharge due to the bias of the shield potential. As a result, the process for stabilizing the insulation performance is shortened, and the vacuum valve can be provided at a low cost.

本発明の実施の形態1に係る真空バルブを示す断面図である。It is sectional drawing which shows the vacuum valve which concerns on Embodiment 1 of this invention. 図1に示す真空バルブにおいて、ニッケルとクロムの仕事関数の差が、絶縁容器の沿面電界に与える影響を計算した結果を示すグラフ図である。In the vacuum valve shown in FIG. 1, it is a graph which shows the result of having calculated the influence which the difference of the work function of nickel and chromium has on the creeping electric field of an insulating container. 図1に示す真空バルブにおいて、電流遮断時に接点側面へアークが移動した場合における、接点側面におけるアーク発生時間に対する、溶融するニッケルメッキ厚の関係を計算した結果を示すグラフ図である。In the vacuum valve shown in FIG. 1, it is a graph which shows the result of having calculated the relationship of the molten nickel plating thickness with respect to the arc generation time in a contact side surface when an arc moves to the contact side surface at the time of interruption of electric current. 本発明の実施の形態3に係る真空バルブを示す断面端面図である。It is a section end view showing the vacuum valve concerning Embodiment 3 of the present invention. 図4に示す真空バルブの電極構造の変形例を示す要部断面端面図である。FIG. 5 is a cross-sectional end view of a main part showing a modification of the electrode structure of the vacuum valve shown in FIG. 4.

実施の形態1.
図1は、本発明の実施の形態に係る真空バルブを示す断面図である。図において、真空バルブは、両端に固定側端板1と可動側端板2が接合され、内部が真空に保たれた円筒型の絶縁容器3と、固定側端板1に接合された棒状の固定側導体41、及び固定側導体41の容器内先端部に固定側接点保持部42を介して接合された固定側接点43からなる固定側電極4と、可動側端板2に設けられたベローズ6を介して気密を保持して軸A方向に移動可能に保持された棒状の可動側導体51及び可動側導体51の容器内側先端部に可動側接点保持部52を介して接合され固定側接点43と対向された可動側接点53からなる可動側電極5と、固定側接点43、固定側接点保持部42、可動側接点53、及び可動側接点保持部52のまわりを包囲するように形成され絶縁容器3に固定されたシールド7と、を備えている。
Embodiment 1 FIG.
FIG. 1 is a cross-sectional view showing a vacuum valve according to an embodiment of the present invention. In the figure, the vacuum valve has a cylindrical insulating container 3 in which a fixed side end plate 1 and a movable side end plate 2 are joined at both ends and the inside is kept in a vacuum, and a rod-like shape joined to the fixed side end plate 1. The fixed side electrode 41 which consists of the fixed side conductor 41 and the fixed side contact 43 joined to the front-end | tip part in the container of the fixed side conductor 41 via the fixed side contact holding part 42, and the bellows provided in the movable side end plate 2 6 is fixed to the rod-shaped movable side conductor 51 that is airtightly held via 6 and is held movably in the direction of the axis A, and the container inner tip of the movable side conductor 51 via the movable side contact holding portion 52. 43 is formed so as to surround the movable side electrode 5 composed of the movable side contact 53 opposed to 43, and the fixed side contact 43, the fixed side contact holding part 42, the movable side contact 53, and the movable side contact holding part 52. And a shield 7 fixed to the insulating container 3. .

そして、前記固定側接点43、固定側接点保持部42、可動側接点53、及び可動側接点保持部52のシールド7に対向している面には、本発明の特徴部分の1つであるニッケルメッキ層8が設けられている。ニッケルメッキ層8は、シールド7に向かって発生する放電を抑制するためのもので、各部材を切削加工した後に、その側面部に対して好ましくは膜厚50μm以上の厚みで施される。なお、各部材に設けられたニッケルメッキ層8を区別するために、固定側接点43、可動側接点53、固定側接点保持部42、及び可動側接点保持部52の順に、ニッケルメッキ層8を、それぞれニッケルメッキ層8a、ニッケルメッキ層8b、ニッケルメッキ層8c、及びニッケルメッキ層8dと呼ぶことがある。   The surface of the fixed side contact 43, the fixed side contact holding portion 42, the movable side contact 53, and the movable side contact holding portion 52 facing the shield 7 is nickel which is one of the characteristic portions of the present invention. A plating layer 8 is provided. The nickel plating layer 8 is for suppressing the electric discharge generated toward the shield 7, and after each member is cut, it is preferably applied to the side surface portion with a thickness of 50 μm or more. In order to distinguish the nickel plating layer 8 provided on each member, the nickel plating layer 8 is formed in the order of the fixed contact 43, the movable contact 53, the fixed contact holding part 42, and the movable contact holding part 52. May be referred to as a nickel plating layer 8a, a nickel plating layer 8b, a nickel plating layer 8c, and a nickel plating layer 8d, respectively.

前記固定側接点保持部42と可動側接点保持部52は、固定側接点43と可動側接点53をそれぞれ位置ずれなく導体に固定するものであり、例えば固定側導体41及び可動側導体51に対して切削加工を施すことで固定側導体41及び可動側導体51と一体に形成してもよいし、固定側導体41及び可動側導体51に別の部材を接合することで設けてもよい。また、ベローズ6は可撓性を持つため、内部を真空に保った状態で可動側接点53を軸Aに沿って紙面左右方向に動作させることができる。前記動作により固定側接点43と可動側接点53を接触または開離させることで、回路電流の開閉を行う。その他の構成は、従来のものと同様であるので説明を省略する。   The fixed-side contact holding part 42 and the movable-side contact holding part 52 fix the fixed-side contact 43 and the movable-side contact 53 to the conductor without any positional displacement. For example, with respect to the fixed-side conductor 41 and the movable-side conductor 51, The fixed side conductor 41 and the movable side conductor 51 may be formed integrally by cutting, or may be provided by joining another member to the fixed side conductor 41 and the movable side conductor 51. Further, since the bellows 6 has flexibility, the movable contact 53 can be moved in the left-right direction along the axis A in a state where the inside is kept in a vacuum. The circuit current is opened and closed by bringing the fixed side contact 43 and the movable side contact 53 into contact with each other or opening them by the above operation. Other configurations are the same as those of the conventional one, and thus the description thereof is omitted.

次に、前記のように構成された実施の形態1の動作について説明する。前記のような真空バルブによって回路電流が遮断されたときには、固定側接点43と可動側接点53から金属蒸気が発生する。シールド7は、前記金属蒸気が絶縁容器3の内面に付着して、絶縁容器3の絶縁性能が低下することを防止している。また、シールド7は絶縁容器3によって支持されており、電位が浮遊する構成である。固定側端板1より金属部材を介してシールド7を支持する構成も考えられるが、この場合可動側接点53とシールド7の間に生じる電位差が大きくなるため、絶縁距離を多くとる必要があり、バルブ寸法の大型化に繋がる。本構成のようにシールド7の電位を浮遊させることで、シールド電位が自動的に固定側接点43と可動側接点53の中間電位へと変化するため、簡易な構成で必要な絶縁距離を最小化することができる。   Next, the operation of the first embodiment configured as described above will be described. When the circuit current is interrupted by the vacuum valve as described above, metal vapor is generated from the stationary contact 43 and the movable contact 53. The shield 7 prevents the metal vapor from adhering to the inner surface of the insulating container 3 to deteriorate the insulating performance of the insulating container 3. Further, the shield 7 is supported by the insulating container 3 and has a configuration in which the potential is floated. Although the structure which supports the shield 7 via the metal member from the fixed side end plate 1 is also conceivable, in this case, since the potential difference generated between the movable side contact 53 and the shield 7 becomes large, it is necessary to increase the insulation distance. This leads to an increase in valve dimensions. By floating the potential of the shield 7 as in this configuration, the shield potential automatically changes to an intermediate potential between the fixed contact 43 and the movable contact 53, so the required insulation distance is minimized with a simple configuration. can do.

高耐圧被膜を設けることで、真空バルブの絶縁性能を向上させる技術は既に知られているが、本構成のようにシールド7の電位が浮遊している場合には、被膜の選定が真空バルブの絶縁性能安定化処理に影響を与えるため、特別な注意が必要である。
真空中の絶縁性能は電極のミクロな表面状態に強く影響されるため、予め故意に絶縁破壊させて弱点部分を改質する電圧コンディショニング処理によって、絶縁性能を安定化させることができる。表1は、固定側接点43及び固定側接点保持部42とシールド7の間の絶縁性能を安定化させるために実施された電圧コンディショニング処理の結果をまとめたものである。なお、表1には、前記のように構成された実施の形態1による真空バルブについて測定された試験結果を、比較のためにクロムによって接点側面を被膜した比較例の真空バルブについて測定された試験結果を併記している。
A technique for improving the insulation performance of a vacuum valve by providing a high pressure-resistant coating is already known. However, when the potential of the shield 7 is floating as in this configuration, the selection of the coating is not limited to the vacuum valve. Special care is required to affect the insulation performance stabilization process.
Since the insulation performance in a vacuum is strongly influenced by the micro surface state of the electrode, the insulation performance can be stabilized by a voltage conditioning process in which a weak point portion is reformed intentionally in advance. Table 1 summarizes the results of the voltage conditioning process performed to stabilize the insulation performance between the fixed side contact 43 and the fixed side contact holding part 42 and the shield 7. Table 1 shows the test results measured for the vacuum valve according to the first embodiment configured as described above, and the test measured for the comparative vacuum valve whose contact side surface was coated with chromium for comparison. The results are also shown.

Figure 2013242978
Figure 2013242978

表1から明らかなように、本実施の形態1の真空バルブでは146回の放電回数で絶縁性能が安定化しているが、クロム被膜を設けた比較例では絶縁性能安定化までに266回の放電回数を必要としている。放電箇所の内訳を見ると、本実施の形態1はほぼ全ての放電が固定側接点43とシールド7の間で発生し、電極表面状態の改質に寄与している。一方、比較例では74回もの放電が絶縁容器3の沿面を介して固定側端板1とシールド7の間で発生している。この放電は電圧コンディショニングの本来の目的である固定側接点43及び固定側接点保持部42とシールド7の間の絶縁性能安定化には寄与しないため、不必要な電圧コンディショニングを行っていると言える。   As is apparent from Table 1, the insulation performance is stabilized after the number of discharges of 146 in the vacuum valve of the first embodiment, but in the comparative example provided with the chromium film, the discharge is performed 266 times until the insulation performance is stabilized. I need a number of times. Looking at the breakdown of the discharge locations, in the first embodiment, almost all of the discharge occurs between the fixed contact 43 and the shield 7 and contributes to the modification of the electrode surface state. On the other hand, in the comparative example, as many as 74 discharges are generated between the fixed end plate 1 and the shield 7 through the creeping surface of the insulating container 3. Since this discharge does not contribute to stabilization of the insulation performance between the fixed side contact 43 and the fixed side contact holding part 42 and the shield 7 which is an original purpose of voltage conditioning, it can be said that unnecessary voltage conditioning is performed.

前記のように、接点側面の被膜が絶縁容器の沿面放電に影響する原因として、被膜からの暗流放出によるシールド浮遊電位の偏りが考えられる。接点及び接点保持部の側面には高い電界が発生するため、仕事関数が低い材料によって被膜を施すと、被膜から真空中に向かって暗流が放出される。シールド7は、固定側端板1と可動側端板2の中間電位となることを期待して電気的に浮遊させているが、暗流による電荷がシールド7に蓄積すると、シールド7の電位が中間電位から偏ってしまう。これにより絶縁容器沿面の電界が一部のみ強調され、沿面放電に至るものと考えられる。   As described above, the cause of the influence of the coating on the side surface of the contact on the creeping discharge of the insulating container is the bias of the shield floating potential due to the discharge of dark current from the coating. Since a high electric field is generated on the side surfaces of the contact and the contact holding portion, when a film is applied with a material having a low work function, a dark current is emitted from the film toward the vacuum. The shield 7 is electrically floated in the hope that it becomes an intermediate potential between the fixed side end plate 1 and the movable side end plate 2. However, when the charge due to the dark current accumulates in the shield 7, the potential of the shield 7 becomes intermediate. Deviation from potential. Thereby, it is considered that only a part of the electric field along the creeping surface of the insulating container is emphasized, leading to creeping discharge.

表2に金属材料について求められた仕事関数の例を示す。特許文献1などにおいて高耐圧被膜材料として用いられているクロムやタングステンは、被膜を施す対象である銅よりも仕事関数が低い。これに対して、本発明の実施の形態1で用いるニッケルは真空中での高い絶縁性能と仕事関数を合わせ持つため、絶縁容器3内の沿面放電の抑制に有効に作用していると考えられる。図2は、表2に示すニッケルとクロムの仕事関数の差が、絶縁容器の沿面電界に与える影響を計算した結果を示すグラフ図である。なお、図2において、縦軸は、接点側面にニッケルメッキを施した場合の沿面電界と、クロムによって被膜を施した場合の沿面電界の比である。図2から、電圧印加時間が長くなると、ニッケルメッキの効果が顕著になり、クロム被膜の場合よりも最大で12%沿面電界が低減されることが分かる。   Table 2 shows examples of work functions obtained for metal materials. Chromium and tungsten used as a high pressure-resistant coating material in Patent Document 1 and the like have a work function lower than that of copper to be coated. On the other hand, nickel used in Embodiment 1 of the present invention has both a high insulation performance in vacuum and a work function, and is therefore considered to effectively act on the suppression of creeping discharge in the insulating container 3. . FIG. 2 is a graph showing the result of calculating the influence of the work function difference between nickel and chromium shown in Table 2 on the creeping electric field of the insulating container. In FIG. 2, the vertical axis represents the ratio of the creeping electric field when nickel plating is applied to the contact side surface and the creeping electric field when a coating is formed with chromium. From FIG. 2, it can be seen that as the voltage application time is increased, the effect of nickel plating becomes significant, and the creeping electric field is reduced by 12% at the maximum as compared with the case of the chromium coating.

Figure 2013242978
Figure 2013242978

接点の側面に被膜を設ける技術に関しては、例えば上記特許文献2などでも示されている。同文献では被膜によって接点とシールド7の間の絶縁性能を向上させ、真空バルブの小型化を図っている。それに対して本願発明者らは、接点側面のメッキ層8などの被膜について更に研究を重ねた結果、接点側面の被膜が電流遮断性能の向上にも寄与していることを新たに見出した。即ち、電流遮断時に、固定側接点43と可動側接点53の対向面で生じたアーク放電が接点の側面部に移動する場合があり、接点側面に設けた高耐圧層は絶縁性能不足による遮断失敗を防止する働きがある。従来の技術においても、同様の事象が働いていると推定される。   The technique for providing a film on the side surface of the contact is also shown in, for example, Patent Document 2 described above. In this document, the insulation performance between the contact point and the shield 7 is improved by a coating, and the vacuum valve is miniaturized. On the other hand, as a result of further research on the coating such as the plating layer 8 on the contact side, the inventors of the present application have newly found that the coating on the contact side contributes to the improvement of the current interruption performance. That is, when the current is interrupted, the arc discharge generated on the opposing surface of the fixed contact 43 and the movable contact 53 may move to the side surface of the contact, and the high breakdown voltage layer provided on the contact side fails due to insufficient insulation performance. There is a function to prevent. It is presumed that a similar event is working in the prior art.

然るに、金属被膜によって電流遮断性能の向上の効果を得ようとする場合、電流遮断時のエネルギーで溶融しない充分な被膜厚とすることが必要であり、その条件を満たすように構成することで、初めてより安定した効果が期待できる。図3は、電流遮断時に接点側面へアークが移動した場合における、接点側面におけるアーク発生時間に対する、溶融するニッケルメッキ厚の関係を計算した結果を示すグラフ図である。なお、電流遮断時のアーク挙動観測により、接点側面でのアーク発生時間は最大でも4msであることが分かっている。このことから、接点側面に設けるニッケルメッキ層の膜厚が50μm未満ではニッケルメッキ層が溶融する。この実施の形態1のように、ニッケルメッキ層の厚さを50μm以上としたことで、メッキ溶融による接点の露出を防止することができ、安定した遮断性能向上の効果が得られる。   However, when trying to obtain the effect of improving the current interruption performance by the metal coating, it is necessary to have a sufficient film thickness that does not melt with the energy at the time of current interruption, and by configuring to satisfy the condition, A stable effect can be expected for the first time. FIG. 3 is a graph showing the calculation result of the relationship between the thickness of the molten nickel plating and the arc generation time on the contact side surface when the arc moves to the contact side surface when the current is interrupted. In addition, it is known from the arc behavior observation at the time of current interruption that the arc generation time on the contact side surface is 4 ms at the maximum. For this reason, if the thickness of the nickel plating layer provided on the contact side surface is less than 50 μm, the nickel plating layer is melted. As in the first embodiment, by setting the thickness of the nickel plating layer to 50 μm or more, it is possible to prevent the contact from being exposed due to plating melting, and the effect of improving the stable breaking performance can be obtained.

上記のように、実施の形態1によれば、一対の固定側接点43及び可動側接点53、並びに一対の固定側接点保持部42及び可動側接点保持部52におけるシールド7と対向する外周面に、仕事関数の高いニッケルメッキ層8を50μm以上の膜厚で設けるようにしたことにより、ニッケルメッキ層8の被膜からの暗流放出が抑制され、シールド電位の偏りによる絶縁容器3の沿面電界が強調されることがなくなるため、絶縁容器3の沿面放電の誘発を防止することができる。これにより絶縁性能安定化のための真空バルブの電圧コンディショニング処理工程が効率的に行われ、所要時間が短縮されることで製造コストが削減され、真空バルブを安価に提供することができる。また、ニッケルメッキ層8の内、厚みが最大となる箇所の膜厚が50μm以上であるようにすることで、電流遮断時に、ニッケルメッキ側にアークが移動した場合でも、ニッケルメッキが溶融して内部電極が露出しないため、良好な遮断性能が期待できる。   As described above, according to the first embodiment, the pair of fixed side contact 43 and the movable side contact 53 and the pair of fixed side contact holding unit 42 and the movable side contact holding unit 52 on the outer peripheral surface facing the shield 7. By providing the nickel plating layer 8 having a high work function with a film thickness of 50 μm or more, the discharge of dark current from the coating of the nickel plating layer 8 is suppressed, and the creeping electric field of the insulating container 3 due to the bias of the shield potential is emphasized. Therefore, it is possible to prevent the creeping discharge of the insulating container 3 from being induced. As a result, the voltage conditioning process of the vacuum valve for stabilizing the insulation performance is efficiently performed, the required time is shortened, the manufacturing cost is reduced, and the vacuum valve can be provided at a low cost. Moreover, even if the arc moves to the nickel plating side at the time of interrupting the current, the nickel plating is melted by making the thickness of the portion of the nickel plating layer 8 where the thickness is the maximum be 50 μm or more. Since the internal electrode is not exposed, good blocking performance can be expected.

実施の形態2.
実施の形態1では、固定側接点43と固定側接点保持部42、及び可動側接点53と可動側接点保持部52の各部材のシールド7に対向する外周面の全てにニッケルメッキ層8を施している。しかし接点と接点保持部のうち、外径が大きくシールド7との距離が近い部材の方が、表面に発生する電界が大きいため、暗流放出によるシールド電位変化に大きく寄与する。そのため接点と接点保持部のうち、外径の大きい部材のみにニッケルメッキ層8を設け、外径の小さい部材に対するニッケルメッキ層8は省くこともできる。例えば図1の例においては、固定側接点43及び可動側接点53の外径が接点保持部42、52の外径よりも大きい。このため、ニッケルメッキ層8a、8bのみを設け、ニッケルメッキ層8c、8dは省いても良い。
Embodiment 2. FIG.
In the first embodiment, the nickel plating layer 8 is applied to all of the outer peripheral surfaces of the fixed-side contact 43 and the fixed-side contact holding portion 42 and the movable-side contact 53 and the movable-side contact holding portion 52 facing the shield 7 of each member. ing. However, of the contact and the contact holding part, the member having a larger outer diameter and a shorter distance from the shield 7 has a larger electric field generated on the surface, and thus greatly contributes to a change in shield potential due to dark current emission. Therefore, the nickel plating layer 8 can be provided only on a member having a large outer diameter among the contacts and the contact holding portion, and the nickel plating layer 8 for a member having a small outer diameter can be omitted. For example, in the example of FIG. 1, the outer diameters of the stationary contact 43 and the movable contact 53 are larger than the outer diameters of the contact holders 42 and 52. For this reason, only the nickel plating layers 8a and 8b may be provided, and the nickel plating layers 8c and 8d may be omitted.

前記のように構成された実施の形態2においては、暗流放出現象において支配的となる箇所に対してのみニッケルメッキ層を施し、その他の部位についてはニッケルメッキ層の形成処理を省くことで、ニッケルメッキ処理に要するコストを削減することができるので、より低コストな真空バルブを提供することが可能となる。   In the second embodiment configured as described above, the nickel plating layer is applied only to the portion that is dominant in the dark current emission phenomenon, and the nickel plating layer is not formed in the other portions, thereby removing the nickel plating layer. Since the cost required for the plating process can be reduced, a lower cost vacuum valve can be provided.

実施の形態3.
図4は本発明の実施の形態3に係る真空バルブを示す断面端面図、図5は図4に示す真空バルブの電極構造の変形例を示す要部断面端面図である。図4において、例えばステンレス鋼などの金属で形成された固定側接点保持部42及び可動側接点保持部52は、軸Aの中心部分でそれぞれ対応する固定側接点43、または可動側接点53を保持している。そして、これら接点保持部42、52の軸Aに対する外方部には、棒状の固定側導体41と固定側接点43、及び棒状の可動側導体51と可動側接点53を、それぞれ電気的に直列に接続する切り込み加工が施されて形成された銅などの良導体からなる固定側コイル電極44、及び可動側コイル電極54が設けられている。
Embodiment 3 FIG.
FIG. 4 is a cross-sectional end view showing a vacuum valve according to Embodiment 3 of the present invention, and FIG. 5 is a cross-sectional end view showing a principal part of a modification of the electrode structure of the vacuum valve shown in FIG. In FIG. 4, the fixed-side contact holding part 42 and the movable-side contact holding part 52 formed of a metal such as stainless steel hold the corresponding fixed-side contact 43 or the movable-side contact 53 at the center part of the axis A, respectively. doing. The rod-shaped fixed-side conductor 41 and the fixed-side contact 43, and the rod-shaped movable-side conductor 51 and the movable-side contact 53 are electrically connected in series to the outer portions of the contact holding portions 42 and 52 with respect to the axis A. A fixed side coil electrode 44 and a movable side coil electrode 54 made of a good conductor such as copper, which are formed by being cut and connected to each other, are provided.

前記固定側コイル電極44、及び可動側コイル電極54のシールド7に対向している面及び固定側及び可動側接点43、53の外周面には実施の形態1と同様のニッケルメッキ層8(8c、8d、8a、8b)が設けられている。この実施の形態3は固定側及び可動側接点43、53の背後にそれぞれ固定側及び可動側コイル電極44、54を設けることで接点間に磁界を発生させ、遮断性能を向上させる構成となっている。なお、図5の変形例に示すように、固定側コイル電極44、及び可動側コイル電極54の外径を、固定側及び可動側接点43、53の外径よりも大きくし、コイル電極の外周部分が外側に張り出す構成として、その張り出した部分にのみニッケルメッキ層8c、8dを設けるようにしてもよい。   The surface of the fixed side coil electrode 44 and the movable side coil electrode 54 facing the shield 7 and the outer peripheral surface of the fixed side and movable side contacts 43 and 53 are the same nickel plating layer 8 (8c) as in the first embodiment. , 8d, 8a, 8b). In the third embodiment, the fixed side and movable side coil electrodes 44 and 54 are provided behind the fixed side and movable side contacts 43 and 53, respectively, so that a magnetic field is generated between the contacts and the interruption performance is improved. Yes. As shown in the modification of FIG. 5, the outer diameters of the fixed-side coil electrode 44 and the movable-side coil electrode 54 are made larger than the outer diameters of the fixed-side and movable-side contacts 43 and 53, and the outer periphery of the coil electrode As a configuration in which the portion protrudes outward, the nickel plating layers 8c and 8d may be provided only on the protruding portion.

前記のように構成された実施の形態3によると、対向された一対の接点43、53間に均一な磁場が発生するため、遮断性能が向上することが期待できる。このように、コイルによる磁界を利用して遮断性能を向上させる真空バルブにおいても、請求項1と同様の効果を得ることができる。また、図5に示す変形例の構成では、固定側コイル電極44、及び可動側コイル電極54の外径を、固定側及び可動側接点42、53の外径に比べて大きくしているため、実施の形態2で述べた通り、固定側及び可動側接点42、53の外周面に対するニッケルメッキ層を省くことができるため安価に提供することができる。また、コイル電極が接点よりも外側に張り出すことで、接点間に均一な磁界を発生させ、良好な遮断性能を得ることができる。   According to the third embodiment configured as described above, since a uniform magnetic field is generated between the pair of contact points 43 and 53 facing each other, it can be expected that the breaking performance is improved. Thus, also in the vacuum valve which improves the interruption | blocking performance using the magnetic field by a coil, the effect similar to Claim 1 can be acquired. Further, in the configuration of the modification shown in FIG. 5, the outer diameters of the fixed side coil electrode 44 and the movable side coil electrode 54 are made larger than the outer diameters of the fixed side and movable side contacts 42, 53. As described in the second embodiment, since the nickel plating layer on the outer peripheral surfaces of the fixed side and movable side contacts 42 and 53 can be omitted, it can be provided at low cost. Further, since the coil electrode projects outward from the contact, a uniform magnetic field can be generated between the contacts, and a good breaking performance can be obtained.

なお、本発明は、その発明の範囲内において、各実施の形態の一部または全部を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。   It should be noted that within the scope of the present invention, a part or all of each embodiment can be freely combined, or each embodiment can be appropriately modified or omitted.

1 固定側端板、 2 可動側端板、 3 絶縁容器、 4 固定側電極、 41 固定側導体、 42 固定側接点保持部、 43 固定側接点、 44 固定側コイル電極、 5 可動側電極、 51 可動側導体、 52 可動側接点保持部、 53 可動側接点、 54 可動側コイル電極、 6 ベローズ、 7 シールド、 8(8a、8b、8c、8d) ニッケルメッキ層、 A 軸。   DESCRIPTION OF SYMBOLS 1 Fixed side end plate, 2 Movable side end plate, 3 Insulation container, 4 Fixed side electrode, 41 Fixed side conductor, 42 Fixed side contact holding part, 43 Fixed side contact, 44 Fixed side coil electrode, 5 Movable side electrode, 51 Movable side conductor, 52 Movable side contact holding portion, 53 Movable side contact, 54 Movable side coil electrode, 6 Bellows, 7 Shield, 8 (8a, 8b, 8c, 8d) Nickel plated layer, A axis.

Claims (6)

真空容器内に対向された一対の接点を、それぞれ接点保持部を介して保持して前記一対の接点が接離されるように設けられた一対の電極と、対向された前記一対の接点及び前記接点保持部のまわりを包囲するように形成され前記真空容器に固定されたシールドと、を備え、前記一対の接点及び前記一対の接点保持部の少なくとも一方における前記シールドと対向する箇所に、ニッケルメッキ層を設けたことを特徴とする真空バルブ。   A pair of contacts opposed to each other in the vacuum vessel are respectively held via a contact holding portion, and a pair of electrodes provided so that the pair of contacts are contacted and separated, and the pair of contacts and the contacts opposed to each other A shield formed so as to surround the holding portion and fixed to the vacuum vessel, and a nickel plating layer at a location facing at least one of the pair of contacts and the pair of contact holding portions A vacuum valve characterized by providing. 前記一対の接点及び前記一対の接点保持部の内、前記シールドとの距離が近い部材に前記ニッケルメッキ層を設けたことを特徴とする請求項1記載の真空バルブ。   2. The vacuum valve according to claim 1, wherein the nickel plating layer is provided on a member of the pair of contacts and the pair of contact holding portions that are close to the shield. 3. 前記接点保持部は、前記電極を構成する棒状に形成された導体の一部からなり、その棒状の導体よりも大径に形成された前記接点の外周面部に前記ニッケルメッキ層を設けたことを特徴とする請求項2記載の真空バルブ。   The contact holding part is composed of a part of a bar-shaped conductor constituting the electrode, and the nickel plating layer is provided on an outer peripheral surface part of the contact formed to have a diameter larger than that of the bar-shaped conductor. The vacuum valve according to claim 2. 前記接点保持部の外方部に、前記接点と前記電極を構成する棒状に形成された導体とを電気的に直列に接続するコイル電極を備え、該コイル電極における前記シールドと対向する箇所に前記ニッケルメッキ層が設けられていることを特徴とする請求項1または請求項2に記載の真空バルブ。   A coil electrode that electrically connects the contact and a rod-shaped conductor that constitutes the electrode in an outer portion of the contact holding portion is provided in a portion facing the shield in the coil electrode. The vacuum valve according to claim 1, wherein a nickel plating layer is provided. 前記コイル電極の外径を、前記接点の外径よりも大きくしたことを特徴とする請求項4記載の真空バルブ。   The vacuum valve according to claim 4, wherein an outer diameter of the coil electrode is larger than an outer diameter of the contact. 前記ニッケルメッキ層の膜厚は、50μm以上であることを特徴とする請求項1から請求項5の何れかに記載の真空バルブ。   The vacuum valve according to any one of claims 1 to 5, wherein a thickness of the nickel plating layer is 50 µm or more.
JP2012113904A 2012-05-18 2012-05-18 Vacuum valve Active JP5854925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012113904A JP5854925B2 (en) 2012-05-18 2012-05-18 Vacuum valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012113904A JP5854925B2 (en) 2012-05-18 2012-05-18 Vacuum valve

Publications (2)

Publication Number Publication Date
JP2013242978A true JP2013242978A (en) 2013-12-05
JP5854925B2 JP5854925B2 (en) 2016-02-09

Family

ID=49843687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012113904A Active JP5854925B2 (en) 2012-05-18 2012-05-18 Vacuum valve

Country Status (1)

Country Link
JP (1) JP5854925B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017111907A (en) * 2015-12-15 2017-06-22 株式会社東芝 Contact point for vacuum valve, method for manufacturing the same, and vacuum valve having contact point

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4574169A (en) * 1984-09-04 1986-03-04 Westinghouse Electric Corp. Bimetallic arc shield
JPS6215716A (en) * 1985-07-12 1987-01-24 株式会社日立製作所 Contact for vacuum breaker electrode
JPS634519A (en) * 1986-06-25 1988-01-09 株式会社日立製作所 Vacuum valve
JPH09171746A (en) * 1995-12-20 1997-06-30 Hitachi Ltd Vacuum circuit-breaker, vacuum valve and electric contact using same, and their manufacture
JP2006318795A (en) * 2005-05-13 2006-11-24 Mitsubishi Electric Corp Vacuum valve
JP2008021590A (en) * 2006-07-14 2008-01-31 Hitachi Ltd Electrical contact for vacuum valve, its manufacturing method, electrode for vacuum valve, vacuum valve, and vacuum breaker

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4574169A (en) * 1984-09-04 1986-03-04 Westinghouse Electric Corp. Bimetallic arc shield
JPS6215716A (en) * 1985-07-12 1987-01-24 株式会社日立製作所 Contact for vacuum breaker electrode
JPS634519A (en) * 1986-06-25 1988-01-09 株式会社日立製作所 Vacuum valve
JPH09171746A (en) * 1995-12-20 1997-06-30 Hitachi Ltd Vacuum circuit-breaker, vacuum valve and electric contact using same, and their manufacture
JP2006318795A (en) * 2005-05-13 2006-11-24 Mitsubishi Electric Corp Vacuum valve
JP2008021590A (en) * 2006-07-14 2008-01-31 Hitachi Ltd Electrical contact for vacuum valve, its manufacturing method, electrode for vacuum valve, vacuum valve, and vacuum breaker

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017111907A (en) * 2015-12-15 2017-06-22 株式会社東芝 Contact point for vacuum valve, method for manufacturing the same, and vacuum valve having contact point

Also Published As

Publication number Publication date
JP5854925B2 (en) 2016-02-09

Similar Documents

Publication Publication Date Title
CN102754175B (en) Vacuum bulb
CN108352272B (en) Maximizing CU-CR floating center shield assembly wall thickness by moving contact gap away from center flange axial position
WO2010052992A1 (en) Electrode structure for vacuum circuit breaker
JP5854925B2 (en) Vacuum valve
US10141151B2 (en) Fuse with separating element
JP5139179B2 (en) Vacuum valve
JP2006318795A (en) Vacuum valve
US9496106B2 (en) Electrode assembly and vacuum interrupter including the same
JP5525316B2 (en) Vacuum valve
JP5556596B2 (en) Vacuum valve
JP7030407B2 (en) Vacuum valve
JP5537303B2 (en) Vacuum valve
JP6395642B2 (en) Vacuum valve
JP2021197262A (en) Vacuum switching device
JP2011014285A (en) Vacuum valve
CN117038384A (en) Vacuum interrupter
EP4222767A1 (en) Vacuum interrupter with trap for running cathode tracks
JP5038661B2 (en) Vacuum valve
JP2015001999A (en) Electrode for vacuum circuit breaker and vacuum valve using the same
JP2014049353A (en) Solid insulation switch gear and vacuum valve for solid insulation switch gear
JP2002150902A (en) Vacuum valve
JP2008159386A (en) Vacuum valve
JP2015173055A (en) vacuum valve
JP2016015275A (en) Gas-blast circuit breaker
JP2015222674A (en) Vacuum valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151208

R150 Certificate of patent or registration of utility model

Ref document number: 5854925

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250