JP2021197262A - Vacuum switching device - Google Patents

Vacuum switching device Download PDF

Info

Publication number
JP2021197262A
JP2021197262A JP2020102111A JP2020102111A JP2021197262A JP 2021197262 A JP2021197262 A JP 2021197262A JP 2020102111 A JP2020102111 A JP 2020102111A JP 2020102111 A JP2020102111 A JP 2020102111A JP 2021197262 A JP2021197262 A JP 2021197262A
Authority
JP
Japan
Prior art keywords
electric field
contact
curved portion
field relaxation
curvature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020102111A
Other languages
Japanese (ja)
Other versions
JP7471929B2 (en
Inventor
智博 竪山
Tomohiro Tateyama
直紀 浅利
Naoki Asari
滉太 濱田
Kota Hamada
淳一 近藤
Junichi Kondo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Infrastructure Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2020102111A priority Critical patent/JP7471929B2/en
Publication of JP2021197262A publication Critical patent/JP2021197262A/en
Application granted granted Critical
Publication of JP7471929B2 publication Critical patent/JP7471929B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

To provide a vacuum switching device in which dielectric breakdown or arc discharge starting from electric field relaxing members is suppressed so as to be capable of reducing damage to the electric field relaxing members.SOLUTION: A vacuum switching device comprises: an insulating container which is made of an insulating material in a cylindrical shape, and which has openings on both ends in a cylinder axial direction; a pair of electrodes which are housed in the insulating container, and whose contacts can be brought into contact with or brought out of contact from each other; sealing metal fittings which are bonded to the openings so as to close the insulating container; and a pair of electric field relaxing members which are made of a material having dielectric breakdown field strength equivalent to that of a material of the contacts, and which relax electric field strength between the insulating container and the contacts. Each of the contacts has a first curved part whose surface is curved at a predetermined radius of curvature. Each of the electric field relaxing members has a second curved part whose surface is curved at a predetermined radius of curvature. The radius of curvature of the surface of the first curved part is smaller than that of the surface of the second curved part.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、真空開閉装置に関する。 Embodiments of the present invention relate to a vacuum switchgear.

例えば、ビル、工場、病院などには、電力の配送電系統における電路の保護、電力の制御、設備の監視などを図るために金属閉鎖形スイッチギヤ(以下、単にスイッチギヤという)が備えられている。スイッチギヤは、金属容器(筐体)によって外部から隔てられた空間に主回路導体、電力ケーブル、接地装置、変流器、真空遮断器、真空断路器などを収容して構成されている。真空遮断器および真空断路器は、絶縁容器内に配置された電極を導電状態または絶縁状態に適宜切り換えて電流を遮断する真空開閉装置(真空バルブとも称される)を有している。導電状態は一対の電極の接点が接触(閉極)した状態であり、絶縁状態はこれら接点が分離(開極)した状態である。絶縁状態には、接点が接触して電極間が閉じることで形成される回路の遮断状態や断路状態が含まれる。 For example, buildings, factories, hospitals, etc. are equipped with metal closed switchgear (hereinafter referred to simply as switchgear) to protect electric circuits in the power distribution system, control power, and monitor equipment. There is. The switchgear is configured to accommodate a main circuit conductor, a power cable, a grounding device, a current transformer, a vacuum circuit breaker, a vacuum circuit breaker, etc. in a space separated from the outside by a metal container (housing). The vacuum circuit breaker and the vacuum circuit breaker have a vacuum switchgear (also referred to as a vacuum valve) that cuts off the current by appropriately switching the electrodes arranged in the insulated container to the conductive state or the insulated state. The conductive state is a state in which the contacts of the pair of electrodes are in contact (closed poles), and the insulating state is a state in which these contacts are separated (open poles). The insulated state includes a cut-off state and a disconnecting state of a circuit formed by contacting contacts and closing the electrodes.

真空開閉装置において負荷電流を遮断した際、アーク放電によって接点表面が損傷すると、接点間の絶縁性能が低下するおそれがある。このような接点間の絶縁性能低下を抑制するべく、電界緩和部材(電界緩和シールド)を設けた真空開閉装置が知られている。かかる電界緩和シールドは、例えば固定側電極の接点と可動側電極の接点をそれぞれ取り囲むように配置され、接点と絶縁容器との間の電位勾配、換言すれば電界強度を緩和する。一例として、固定側電極の接点の電界緩和シールドは、通電軸の側面に固着され、可動側電極の接点の電界緩和シールドは、真空開閉装置の封着板に固着される。 When the load current is cut off in the vacuum switchgear, if the contact surface is damaged by the arc discharge, the insulation performance between the contacts may deteriorate. A vacuum switchgear provided with an electric field relaxation member (electric field relaxation shield) is known in order to suppress such deterioration of insulation performance between contacts. The electric field relaxation shield is arranged so as to surround the contact of the fixed side electrode and the contact of the movable side electrode, respectively, and relaxes the potential gradient between the contact and the insulating container, in other words, the electric field strength. As an example, the electric field relaxation shield of the contact of the fixed side electrode is fixed to the side surface of the current-carrying shaft, and the electric field relaxation shield of the contact of the movable side electrode is fixed to the sealing plate of the vacuum switchgear.

特開2020−27782号公報Japanese Unexamined Patent Publication No. 2020-27782 特開2004−235121号公報Japanese Unexamined Patent Publication No. 2004-235121 特開昭63−160122号公報Japanese Unexamined Patent Publication No. 63-160122

負荷電流の遮断時、接点間にアークが生じて電界緩和シールドが損傷すると、その損傷の程度によっては電界緩和シールドの絶縁性能が低下する。このため、接点と電界緩和シールドとの間にギャップを設けてアークの移行を妨げるようなシールド構造も知られている。このようなシールド構造では、接点から電界緩和シールドへのアークの移行を抑制可能となる。 When the load current is cut off, if an arc is generated between the contacts and the electric field relaxation shield is damaged, the insulation performance of the electric field relaxation shield deteriorates depending on the degree of the damage. For this reason, a shield structure is also known in which a gap is provided between the contact and the electric field relaxation shield to prevent the migration of the arc. With such a shield structure, it is possible to suppress the transfer of the arc from the contact to the electric field relaxation shield.

その一方で、電界緩和シールドを起点にアーク放電や絶縁破壊などが生じた場合、電界緩和シールドの損傷を十分に抑制できないおそれがある。このため、電界緩和シールドを起点としたアーク放電や絶縁破壊などを抑制し、電界緩和シールドの損傷を低減させることが求められている。 On the other hand, if arc discharge or dielectric breakdown occurs starting from the electric field relaxation shield, damage to the electric field relaxation shield may not be sufficiently suppressed. Therefore, it is required to suppress arc discharge and dielectric breakdown starting from the electric field relaxation shield to reduce damage to the electric field relaxation shield.

実施形態の真空開閉装置は、絶縁容器と、電極と、封着金具と、電界緩和部材とを備える。絶縁容器は、絶縁材で筒状に構成され、筒軸方向の両端に開口部をそれぞれ有する。電極は、絶縁容器に収容され、互いの接点を接離可能な一対をなす。封着金具は、開口部にそれぞれ接合され、絶縁容器を閉塞する。電界緩和部材は、一対をなし、接点の素材と同等の絶縁破壊電界強度を有する素材で形成され、絶縁容器と接点との間の電界強度を緩和する。接点は、所定の曲率半径で表面が湾曲する第1の湾曲部を有する。電界緩和部材は、所定の曲率半径で表面が湾曲する第2の湾曲部を有する。第1の湾曲部の表面の曲率半径は、第2の湾曲部の表面の曲率半径よりも小さい。 The vacuum switchgear of the embodiment includes an insulating container, electrodes, sealing fittings, and an electric field relaxation member. The insulating container is formed of an insulating material in a cylindrical shape, and has openings at both ends in the cylindrical axial direction. The electrodes are housed in an insulating container and form a pair in which the contacts can be brought into contact with each other. The sealing metal fittings are joined to the openings, respectively, to close the insulating container. The electric field relaxation members form a pair and are formed of a material having a dielectric breakdown electric field strength equivalent to that of the contact material, and relax the electric field strength between the insulating container and the contact. The contacts have a first curved portion whose surface is curved with a predetermined radius of curvature. The electric field relaxation member has a second curved portion whose surface is curved with a predetermined radius of curvature. The radius of curvature of the surface of the first curved portion is smaller than the radius of curvature of the surface of the second curved portion.

第1の実施形態に係る真空開閉装置の構成を概略的に示す筒軸(軸芯)を含む一平面での断面図。The cross-sectional view in one plane including the cylinder shaft (axis core) which shows the structure of the vacuum switchgear which concerns on 1st Embodiment. 有効面積と絶縁破壊電界強度の関係を示す図。The figure which shows the relationship between the effective area and the dielectric breakdown electric field strength. 図1における電界緩和シールドおよび接点の形態を拡大して概略的に示す図。The figure which shows the form of the electric field relaxation shield and the contact in FIG. 1 enlarged and schematic. 第2の実施形態に係る電界緩和シールドおよび接点の形態を概略的に示す図。The figure schematically showing the mode of the electric field relaxation shield and the contact which concerns on 2nd Embodiment. 表面粗さと絶縁破壊電界強度の関係を示す図。The figure which shows the relationship between the surface roughness and the dielectric breakdown electric field strength. 第3の実施形態に係る電界緩和シールドおよび接点の形態を概略的に示す図。The figure schematically showing the mode of the electric field relaxation shield and the contact which concerns on 3rd Embodiment.

以下、実施形態に係る真空開閉装置について、図1から図6を参照して説明する。真空開閉装置(真空バルブとも称される)は、例えば電力の配送電系統における電路の保護、電力の制御、設備の監視などを目的に設置される金属閉鎖形スイッチギヤの真空断路器などに備えられ、電流(一例として負荷電流)を遮断するスイッチとして利用される。 Hereinafter, the vacuum switchgear according to the embodiment will be described with reference to FIGS. 1 to 6. A vacuum switchgear (also called a vacuum valve) is provided for a vacuum circuit breaker of a metal closed switchgear installed for the purpose of protecting electric circuits, controlling electric current, monitoring equipment, etc. in an electric power distribution system, for example. It is used as a switch to cut off the current (load current as an example).

(第1の実施形態)
図1は、第1の実施形態の真空開閉装置1の構成を概略的に示す図であって、後述する筒軸(軸芯C)を含む一平面での断面図である。なお、以下の説明においては、図1に矢印UPで示す方向を上、その反対方向を下としてそれぞれ規定する。これらの方向は、真空開閉装置が実装された状態での方向と一致していればよいが、異なっていてもよい。
(First Embodiment)
FIG. 1 is a diagram schematically showing the configuration of the vacuum switchgear 1 of the first embodiment, and is a cross-sectional view taken along a plane including a tubular shaft (axis core C) described later. In the following description, the direction indicated by the arrow UP in FIG. 1 is defined as the upper direction, and the opposite direction is defined as the lower direction. These directions may be the same as the directions in which the vacuum switchgear is mounted, but may be different.

図1に示すように、真空開閉装置1は、絶縁容器2と、封着金具3と、電極4と、電界緩和部材5とを備えている。 As shown in FIG. 1, the vacuum switchgear 1 includes an insulating container 2, a sealing metal fitting 3, an electrode 4, and an electric field relaxation member 5.

絶縁容器2は、絶縁材で筒状に構成され、筒軸(軸芯C)方向の両端に開口部21(第1の開口部21aおよび第2の開口部21b)をそれぞれ有している。絶縁材としては、アルミナ(Al)等のセラミック、ガラスなどを適用できるが、これらに限定されない。開口部21は、封着金具3で閉塞されている。具体的には、第1の開口部21aが第1の封着金具3aで閉塞され、第2の開口部21bが第2の封着金具3bで閉塞されている。封着金具3は、アルミニウムやステンレス鋼(SUS)などの金属材料で形成可能である。ただし、素材はこれらに限定されない。封着金具3は、例えば略円板状をなし、周縁部が絶縁容器2の軸芯C方向の端部に接合され、軸芯Cと同軸状に配置されている。 The insulating container 2 is formed of an insulating material in a cylindrical shape, and has openings 21 (first opening 21a and second opening 21b) at both ends in the direction of the cylinder axis (axis C). As the insulating material , ceramics such as alumina (Al 2 O 3 ), glass and the like can be applied, but the insulating material is not limited thereto. The opening 21 is closed with the sealing metal fitting 3. Specifically, the first opening 21a is closed by the first sealing metal fitting 3a, and the second opening 21b is closed by the second sealing metal fitting 3b. The sealing metal fitting 3 can be formed of a metal material such as aluminum or stainless steel (SUS). However, the material is not limited to these. The sealing metal fitting 3 has, for example, a substantially disk shape, and the peripheral edge portion thereof is joined to the end portion of the insulating container 2 in the axis C direction and is arranged coaxially with the axis C.

電界緩和シールド5a,5bは、例えばアルミニウムやステンレス鋼(SUS)などの金属材料で形成可能である。ただし、素材はこれらに限定されない。電界緩和シールド5a,5bは、例えば銀、金、銅などにより封着金具3(第1の封着金具3aおよび第2の封着金具3b)にろう付けされ、封着金具3から絶縁容器2の内部22に突出している。図1に示す例では、電界緩和シールド5a,5bの突出端は、全周に亘って縮径するように湾曲して折り返されている。 The electric field relaxation shields 5a and 5b can be formed of a metal material such as aluminum or stainless steel (SUS). However, the material is not limited to these. The electric field relaxation shields 5a and 5b are brazed to the sealing metal fittings 3 (first sealing metal fittings 3a and second sealing metal fittings 3b) with, for example, silver, gold, copper, etc. It protrudes to the inside 22 of the. In the example shown in FIG. 1, the protruding ends of the electric field relaxation shields 5a and 5b are curved and folded so as to reduce the diameter over the entire circumference.

電極4は、通電軸6と接点7を有している。電極4は、一対をなす固定電極4aと可動電極4bを含んで構成されている。固定電極4aは、後述する第1の通電軸6aと第1の接点7aを有し、絶縁容器2に対して位置が変動(変位)しない。可動電極4bは、後述する第2の通電軸6bと第2の接点7bを有し、固定電極4aに対して接離可能に変位(本実施形態では上下動)する。 The electrode 4 has a current-carrying shaft 6 and a contact 7. The electrode 4 includes a pair of fixed electrodes 4a and a movable electrode 4b. The fixed electrode 4a has a first energizing shaft 6a and a first contact 7a, which will be described later, and the position does not change (displace) with respect to the insulating container 2. The movable electrode 4b has a second energizing shaft 6b and a second contact 7b, which will be described later, and is displaced (moves up and down in the present embodiment) so as to be contactable and detachable with respect to the fixed electrode 4a.

通電軸6は、導電材、例えば銅(無酸素銅)、アルミニウム、クロムなどで形成可能である。ただし、素材はこれらに限定されない。通電軸6は、絶縁容器2の軸芯Cと同軸状に一対をなして配置された第1の通電軸6aおよび第2の通電軸6bにより構成されている。 The energizing shaft 6 can be formed of a conductive material such as copper (oxygen-free copper), aluminum, chromium, or the like. However, the material is not limited to these. The energizing shaft 6 is composed of a first energizing shaft 6a and a second energizing shaft 6b arranged in a pair coaxially with the axis C of the insulating container 2.

第1の通電軸6aは、接点7(具体的には後述する第1の接点7a)から第1の封着金具3aへ向けて伸び、第1の封着金具3aの孔部31aから絶縁容器2の外部へ突出している。孔部31aは、第1の封着金具3aの中心部を貫通している。第1の通電軸6aは、孔部31aにおいて第1の封着金具3aと接合され、第1の封着金具3a、端的には真空開閉装置1における位置が固定されている。 The first energizing shaft 6a extends from the contact 7 (specifically, the first contact 7a described later) toward the first sealing metal fitting 3a, and extends from the hole portion 31a of the first sealing metal fitting 3a to the insulating container. It protrudes to the outside of 2. The hole portion 31a penetrates the central portion of the first sealing metal fitting 3a. The first energizing shaft 6a is joined to the first sealing metal fitting 3a at the hole portion 31a, and the position of the first sealing metal fitting 3a, in short, the vacuum switchgear 1 is fixed.

第2の通電軸6bは、接点7(具体的には後述する第2の接点7b)から第2の封着金具3bへ向けて伸び、第2の封着金具3bの孔部31bから絶縁容器2の外部へ突出している。孔部31bは、第2の封着金具3bの中心部を貫通している。第2の通電軸6bは、後述する第2の接点7bとともに軸芯C方向へ進退する。したがって、第2の通電軸6bと孔部31bとの間には、孔部31bにおいて第2の通電軸6bの変位(軸芯C方向への進退)を許容する空隙Sが形成されている。換言すれば、第2の通電軸6bの軸径は、孔部31bの孔径よりも小さい。第2の通電軸6bには、第2の通電軸6bを軸芯C方向へ進退可能に支持するベローズ8が取り付けられている。 The second energizing shaft 6b extends from the contact 7 (specifically, the second contact 7b described later) toward the second sealing metal fitting 3b, and extends from the hole portion 31b of the second sealing metal fitting 3b to the insulating container. It protrudes to the outside of 2. The hole portion 31b penetrates the central portion of the second sealing metal fitting 3b. The second energizing shaft 6b advances and retreats in the axis C direction together with the second contact 7b described later. Therefore, a gap S is formed between the second energizing shaft 6b and the hole portion 31b to allow the displacement of the second energizing shaft 6b (advancing / retreating in the axis C direction) in the hole portion 31b. In other words, the shaft diameter of the second energizing shaft 6b is smaller than the hole diameter of the hole portion 31b. A bellows 8 that supports the second energizing shaft 6b so as to be able to advance and retreat in the axis C direction is attached to the second energizing shaft 6b.

ベローズ8は、軸芯C方向へ伸縮可能な蛇腹状に構成され、封着金具3(第1の封着金具3a、第2の封着金具3b)とともに、絶縁容器2の内部22を気密に保つ。絶縁容器2の内部22の圧力は、1×10−2Pa以下であることが好ましい。ベローズ8の一端8aは、第2の封着金具3bに接合されている。ベローズ8の他端8bは、第2の通電軸6bに接合されている。ベローズ8の他端8bは、例えば他端8bを覆うカバー部材(ベローズカバー)を介して第2の通電軸6bに接合されていてもよい。ベローズカバーは、アークによって飛散する金属溶融物のベローズ8への付着を抑制するとともに、空隙Sを気密に封止する。 The bellows 8 is configured in a bellows shape that can be expanded and contracted in the axis C direction, and together with the sealing metal fittings 3 (first sealing metal fittings 3a and second sealing metal fittings 3b), airtightly keeps the inside 22 of the insulating container 2 airtight. keep. The pressure inside the insulating container 2 is preferably 1 × 10 -2 Pa or less. One end 8a of the bellows 8 is joined to the second sealing metal fitting 3b. The other end 8b of the bellows 8 is joined to the second energizing shaft 6b. The other end 8b of the bellows 8 may be joined to the second energizing shaft 6b via, for example, a cover member (bellows cover) that covers the other end 8b. The bellows cover suppresses the adhesion of the metal melt scattered by the arc to the bellows 8, and airtightly seals the void S.

固定電極4aと可動電極4bの周囲には、これらの電極4a,4b、端的には接点7a,7bを取り囲むように筒状のアークシールド9が配置されている。アークシールド9は、開極状態において第1の接点7aと第2の接点7bの間にアークが生じた際、アークによって溶融した金属が飛散するのを防ぎ、金属溶融物が内周面23に付着して絶縁容器2の絶縁性能が低下することを抑制する。アークシールド9は、例えばステンレス鋼(SUS)や銅などで形成可能であるが、これらに限定されない。アークシールド9は、外周面91から絶縁容器2に向けて突出する突起92を有している。突起92は、例えば外周面91の全周に亘って連続し、絶縁容器2の内周面23に接合されている。 Around the fixed electrode 4a and the movable electrode 4b, a cylindrical arc shield 9 is arranged so as to surround the electrodes 4a and 4b, and in short, the contacts 7a and 7b. The arc shield 9 prevents the metal melted by the arc from scattering when an arc is generated between the first contact 7a and the second contact 7b in the open pole state, and the metal melt is transferred to the inner peripheral surface 23. It suppresses the adhesion and deterioration of the insulating performance of the insulating container 2. The arc shield 9 can be formed of, for example, stainless steel (SUS), copper, or the like, but is not limited thereto. The arc shield 9 has a protrusion 92 protruding from the outer peripheral surface 91 toward the insulating container 2. For example, the protrusion 92 is continuous over the entire circumference of the outer peripheral surface 91 and is joined to the inner peripheral surface 23 of the insulating container 2.

固定電極4aおよび可動電極4bは、接点7をそれぞれ有し、これらの接点7を接離させる。接点7は、一対をなす第1の接点7aと第2の接点7bを含んで構成されている。第1の接点7aは、可動電極4bと接離する固定電極4aの端部に相当する。第2の接点7bは、固定電極4aと接離する可動電極4bの端部に相当する。 The fixed electrode 4a and the movable electrode 4b each have a contact 7, and these contacts 7 are brought into contact with each other. The contact 7 is configured to include a pair of a first contact 7a and a second contact 7b. The first contact 7a corresponds to the end of the fixed electrode 4a that comes into contact with and separates from the movable electrode 4b. The second contact 7b corresponds to the end of the movable electrode 4b that comes into contact with and separates from the fixed electrode 4a.

第1の接点7aと第2の接点7bは、対向配置され、固定電極4aに対して可動電極4bが変位することで接離する。接点7a,7bの接離により、固定電極4aと可動電極4bとの間が導電状態と絶縁状態に遷移される。導電状態は接点7a,7bが接触(閉極)した状態であり、絶縁状態は接点7a,7bが分離(開極)した状態である。絶縁状態には、接点7a,7bが接触して電極4a,4b間が閉じることで形成される回路の断路状態が含まれる。 The first contact 7a and the second contact 7b are arranged so as to face each other, and the movable electrode 4b is displaced with respect to the fixed electrode 4a to be brought into contact with each other. By the contact and separation of the contacts 7a and 7b, the connection between the fixed electrode 4a and the movable electrode 4b is changed to the conductive state and the insulated state. The conductive state is a state in which the contacts 7a and 7b are in contact (closed poles), and the insulating state is a state in which the contacts 7a and 7b are separated (open poles). The insulating state includes a disconnecting state of a circuit formed by contacting the contacts 7a and 7b and closing the electrodes 4a and 4b.

第1の接点7aおよび第2の接点7bは、導電性を有する合金、例えば銅クロム(CuCr)で形成されている。銅クロムの組成は特に限定されないが、一例として銅(Cu)が75%から65%程度、クロム(Cr)が25%から35%程度、好ましくは銅(Cu)が75%程度、クロム(Cr)が25%程度である場合を想定する。ただし、第1の接点7aおよび第2の接点7bの素材はこれに限定されず、例えばAgWやCuCrTeなどの合金とすることも可能である。 The first contact 7a and the second contact 7b are made of a conductive alloy, for example, copper chromium (CuCr). The composition of copper-chromium is not particularly limited, but as an example, copper (Cu) is about 75% to 65%, chromium (Cr) is about 25% to 35%, preferably copper (Cu) is about 75%, and chromium (Cr). ) Is about 25%. However, the materials of the first contact 7a and the second contact 7b are not limited to this, and alloys such as AgW and CuCrTe can be used.

電界緩和部材(以下、電界緩和シールドという)5は、接点7の近傍に配置され、接点7と絶縁容器2との間の電位勾配、換言すれば電界強度を緩和する。電界緩和シールド5は、一対をなす第1の電界緩和シールド5aと第2の電界緩和シールド5bを含んで構成されている。これらの電界緩和シールド5a,5bは、一対の電極4a,4bの各々に対応して一つずつ配置されている。第1の電界緩和シールド5aは、第1の接点7aの近傍に配置されている。第2の電界緩和シールド5bは、第2の接点7bの近傍に配置されている。 The electric field relaxation member (hereinafter referred to as an electric field relaxation shield) 5 is arranged in the vicinity of the contact 7, and relaxes the potential gradient between the contact 7 and the insulating container 2, in other words, the electric field strength. The electric field relaxation shield 5 includes a pair of a first electric field relaxation shield 5a and a second electric field relaxation shield 5b. These electric field relaxation shields 5a and 5b are arranged one by one corresponding to each of the pair of electrodes 4a and 4b. The first electric field relaxation shield 5a is arranged in the vicinity of the first contact 7a. The second electric field relaxation shield 5b is arranged in the vicinity of the second contact 7b.

接点7a,7bの接離方向(軸芯C方向)において、一の電界緩和シールド5は、これに対応する一の接点7よりも他の接点7から離れて配置される。すなわち、第1の電界緩和シールド5aは、第1の接点7aよりも第2の接点7bから離れて配置されている。第2の電界緩和シールド5bは、第2の接点7bよりも第1の接点7aから離れて配置されている。換言すれば、第1の接点7aは、第1の電界緩和シールド5aよりも第2の接点7b寄りに配置され、第2の接点7bは、第2の電界緩和シールド5bよりも第1の接点7a寄りに配置されている。これにより、接点7a,7bの接離方向(軸芯C方向)において、接点7a,7b同士の対向距離は、電界緩和シールド5a,5b同士の対向距離よりも狭くなる。第1の接点7aは、第1の電界緩和シールド5aよりも第2の接点7bとの接触方向へ突出する。第2の接点7bは、第2の電界緩和シールド5bよりも第1の接点7aとの接触方向へ突出する。したがって、接点7a,7bの接離時、電界緩和シールド5a,5b同士が干渉せず、接点7a,7bの接離に支障を及ぼすことはない。 In the contact / separation direction (axis C direction) of the contacts 7a and 7b, one electric field relaxation shield 5 is arranged farther from the other contact 7 than the corresponding one contact 7. That is, the first electric field relaxation shield 5a is arranged farther from the second contact 7b than the first contact 7a. The second electric field relaxation shield 5b is arranged farther from the first contact 7a than the second contact 7b. In other words, the first contact 7a is located closer to the second contact 7b than the first field relaxation shield 5a, and the second contact 7b is the first contact than the second field relaxation shield 5b. It is located closer to 7a. As a result, in the contact / separation direction (axis C direction) of the contacts 7a and 7b, the facing distance between the contacts 7a and 7b becomes narrower than the facing distance between the electric field relaxation shields 5a and 5b. The first contact 7a protrudes from the first electric field relaxation shield 5a in the contact direction with the second contact 7b. The second contact 7b protrudes from the second electric field relaxation shield 5b in the contact direction with the first contact 7a. Therefore, when the contacts 7a and 7b are connected and separated, the electric field relaxation shields 5a and 5b do not interfere with each other and do not interfere with the contact and separation of the contacts 7a and 7b.

電界緩和シールド5(第1の電界緩和シールド5aおよび第2の電界緩和シールド5b)は、接点7(第1の接点7aおよび第2の接点7b)の素材と同等の絶縁破壊電界強度を有する素材で形成されている。絶縁破壊電界強度(Eb)は、有効面積(Seff)によって規定される。図2には、有効面積と絶縁破壊電界強度の関係を示す。有効面積は、対象となる系、例えば全対象部材の総表面領域のうち、最大電界強度の90%以上の電界強度を有する領域の面積である。絶縁破壊電界強度は、有効面積をk乗した値をα倍した値として算出される(Eb=α×Seff^k)。kおよびαは素材によって決まる係数であり、kの値は−0.2から−0.3程度である。 The electric field relaxation shield 5 (first electric field relaxation shield 5a and second electric field relaxation shield 5b) is a material having the same dielectric breakdown electric field strength as the material of the contact 7 (first contact 7a and second contact 7b). Is formed of. The dielectric breakdown electric field strength (Eb) is defined by the effective area (Seff). FIG. 2 shows the relationship between the effective area and the dielectric breakdown electric field strength. The effective area is the area of a region having an electric field strength of 90% or more of the maximum electric field strength in the total surface region of the target system, for example, all the target members. The dielectric breakdown electric field strength is calculated as a value obtained by multiplying the value obtained by multiplying the effective area by k by α (Eb = α × Seff ^ k). k and α are coefficients determined by the material, and the value of k is about −0.2 to −0.3.

有効面積と絶縁破壊電界強度の関係は、対象となる系の素材(構成材料)に応じて変動するが、一般的には図2に示すように有効面積が大きくなるほど、絶縁破壊電界強度が低くなる。したがって、絶縁破壊電界強度を高めるためには、有効面積を小さくすることが好ましい。上述したように、接点7は、銅クロムのように絶縁性能と電流遮断性能のいずれの特性にも優れた素材で構成される。これに対し、電界緩和シールド5は、銅クロムと同等の絶縁破壊電界強度を有する素材、例えばステンレス鋼(SUS)で形成されている。なお、電界緩和シールド5の素材はこれに限定されず、例えば接点材料として、AgWやCuCrTeなどの合金が使用されている場合、これらと同程度の絶縁破壊電界強度を有する任意の素材をシールド材料として使用すればよい。 The relationship between the effective area and the dielectric breakdown electric field strength varies depending on the material (constituent material) of the target system, but in general, as shown in FIG. 2, the larger the effective area, the lower the dielectric breakdown electric field strength. Become. Therefore, in order to increase the dielectric breakdown electric field strength, it is preferable to reduce the effective area. As described above, the contact 7 is made of a material having excellent insulation performance and current cutoff performance, such as copper chrome. On the other hand, the electric field relaxation shield 5 is made of a material having a dielectric breakdown electric field strength equivalent to that of copper chromium, for example, stainless steel (SUS). The material of the electric field relaxation shield 5 is not limited to this. For example, when an alloy such as AgW or CuCrTe is used as the contact material, any material having the same dielectric breakdown electric field strength as these is used as the shield material. It may be used as.

ここで、例えば、真空断路器の場合、負荷電流を遮断する必要はあるが、真空遮断器で遮断を要する程度の課題電流を遮断することまでは要求されないため、真空遮断器と比べて接点7の表面積は小さくてもよい。したがって、本実施形態に係る真空開閉装置1の小型化および低コスト化を図るべく、接点7の大きさを小さくすることが可能である。しかしながら、接点7が小さくなるほど接点7に作用する電界強度が高くなり、耐電圧性能の低下を招きやすい。このため、本実施形態では、接点7の近傍に第1の通電軸6aおよび第2の通電軸6bの周囲をそれぞれ覆うように電界緩和シールド5を配置し、接点7の近傍の電界強度を緩和し、高耐電圧化を図っている。 Here, for example, in the case of a vacuum disconnector, it is necessary to cut off the load current, but since it is not required to cut off the problem current to the extent that the vacuum circuit breaker needs to be cut off, the contact 7 is compared with the vacuum circuit breaker. The surface area of the circuit breaker may be small. Therefore, it is possible to reduce the size of the contact 7 in order to reduce the size and cost of the vacuum switchgear 1 according to the present embodiment. However, the smaller the contact 7, the higher the electric field strength acting on the contact 7, and the lower the withstand voltage performance is likely to occur. Therefore, in the present embodiment, the electric field relaxation shield 5 is arranged in the vicinity of the contact 7 so as to cover the periphery of the first energization shaft 6a and the second energization shaft 6b, respectively, and the electric field strength in the vicinity of the contact 7 is relaxed. However, we are trying to increase the withstand voltage.

その一方で、電界緩和シールド5が配置されることで接点7近傍の電界強度が緩和されると、電界緩和シールド5近傍の電界強度が緩和された電界強度と同程度以上となる場合がある。この場合、電圧を上昇させた際に電界緩和シールド5を起点に絶縁破壊が生じたり、負荷電流を遮断した際にアーク放電が生じたりするなどのおそれがある。これらによって電界緩和シールド5が損傷すると、損傷した部分が絶縁上の脆弱部となり、真空断路器の絶縁性能が低下するおそれがある。 On the other hand, if the electric field strength in the vicinity of the contact 7 is relaxed by arranging the electric field relaxation shield 5, the electric field strength in the vicinity of the electric field relaxation shield 5 may be equal to or higher than the relaxed electric field strength. In this case, there is a possibility that dielectric breakdown may occur starting from the electric field relaxation shield 5 when the voltage is increased, or arc discharge may occur when the load current is cut off. If the electric field relaxation shield 5 is damaged by these, the damaged portion becomes a fragile portion in terms of insulation, and the insulation performance of the vacuum disconnector may deteriorate.

そこで、本実施形態では、電界緩和シールド5と接点7を適切な形態とし、これらの電界バランスを制御することで、電界緩和シールド5における絶縁破壊やアーク放電などの発生抑制を図っている。次に、電界緩和シールド5および接点7の形態について説明する。 Therefore, in the present embodiment, the electric field relaxation shield 5 and the contact 7 are set as appropriate forms, and the electric field balance between them is controlled to suppress the occurrence of dielectric breakdown and arc discharge in the electric field relaxation shield 5. Next, the form of the electric field relaxation shield 5 and the contact 7 will be described.

図3には、図1における電界緩和シールド5および接点7の形態を拡大して概略的に示す。
図3に示すように、接点7(第1の接点7aおよび第2の接点7b)は、軸芯Cとほぼ同心の円形をなした平板状の部材である。接点7の第1面71は、対向する接点7(第1の接点7aの場合には第2の接点7bであり、第2の接点7bの場合には第1の接点7a)との接離面である。接点7の第2面72は、通電軸6および電界緩和シールド5に対する固定面である。接点7は、例えば第2面72を銀、金、銅などにより通電軸6および電界緩和シールド5にろう付けすることで、これらに固定されている。
FIG. 3 schematically shows the form of the electric field relaxation shield 5 and the contact 7 in FIG. 1 in an enlarged manner.
As shown in FIG. 3, the contact 7 (first contact 7a and second contact 7b) is a flat plate-shaped member having a circular shape substantially concentric with the axis C. The first surface 71 of the contact 7 is in contact with and separated from the facing contact 7 (in the case of the first contact 7a, it is the second contact 7b, and in the case of the second contact 7b, the first contact 7a). It is a face. The second surface 72 of the contact 7 is a fixed surface with respect to the energizing shaft 6 and the electric field relaxation shield 5. The contact 7 is fixed to the second surface 72, for example, by brazing the second surface 72 to the current-carrying shaft 6 and the electric field relaxation shield 5 with silver, gold, copper, or the like.

接点7は、平坦部73と湾曲部(以下、第1の湾曲部という)74を有している。平坦部73は、対向する接点7と接離する平坦状の部位である。第1の湾曲部74は、接点7の周縁部位であり、平坦部73の周縁に全周に亘って連続している。第1の湾曲部74の表面75は、凹凸部、例えば突起、窪みや溝などのない一連の連続面とされている。 The contact 7 has a flat portion 73 and a curved portion (hereinafter referred to as a first curved portion) 74. The flat portion 73 is a flat portion that comes into contact with and separates from the facing contact 7. The first curved portion 74 is a peripheral portion of the contact point 7, and is continuous with the peripheral edge of the flat portion 73 over the entire circumference. The surface 75 of the first curved portion 74 is a series of continuous surfaces without uneven portions such as protrusions, dents and grooves.

電界緩和シールド5(第1の電界緩和シールド5aおよび第2の電界緩和シールド5b)は、厚さよりも直径の方が大きな扁平で軸芯Cとほぼ同心の環状をなしている。電界緩和シールド5の厚さは、軸芯C方向(図3においては上下方向)の最大長さである。電界緩和シールド5の直径、軸芯C方向と直交する方向(図3においては左右方向)の最大長さである。電界緩和シールド5の外周面51は、絶縁容器2の内周面23との対向面である。電界緩和シールド5の内周面52は、通電軸6に対する固定面である。電界緩和シールド5は、例えば内周面52を銀、金、銅などにより通電軸6の外周面にろう付けすることで、通電軸6に固定されている。 The electric field relaxation shield 5 (the first electric field relaxation shield 5a and the second electric field relaxation shield 5b) is flat and has a diameter larger than the thickness and is substantially concentric with the axis C. The thickness of the electric field relaxation shield 5 is the maximum length in the axis C direction (vertical direction in FIG. 3). It is the diameter of the electric field relaxation shield 5 and the maximum length in the direction orthogonal to the axis C direction (left-right direction in FIG. 3). The outer peripheral surface 51 of the electric field relaxation shield 5 is a surface facing the inner peripheral surface 23 of the insulating container 2. The inner peripheral surface 52 of the electric field relaxation shield 5 is a fixed surface with respect to the current-carrying shaft 6. The electric field relaxation shield 5 is fixed to the current-carrying shaft 6 by, for example, brazing the inner peripheral surface 52 to the outer peripheral surface of the current-carrying shaft 6 with silver, gold, copper or the like.

電界緩和シールド5は、基部53と湾曲部(以下、第2の湾曲部という)54を有している。基部53は、通電軸6に支持される円筒状の部位であり、両側の筒端(図3においては上下端)が平坦面とされている。第2の湾曲部54は、電界緩和シールド5の周縁部位であり、基部53の周縁に全周に亘って連続している。第2の湾曲部54の表面55は、凹凸部、例えば突起、窪みや溝などのない一連の連続面とされている。表面55は、電界緩和シールド5の外周面51に相当する。 The electric field relaxation shield 5 has a base portion 53 and a curved portion (hereinafter referred to as a second curved portion) 54. The base portion 53 is a cylindrical portion supported by the current-carrying shaft 6, and the cylinder ends (upper and lower ends in FIG. 3) on both sides are flat surfaces. The second curved portion 54 is a peripheral portion of the electric field relaxation shield 5, and is continuous with the peripheral edge of the base 53 over the entire circumference. The surface 55 of the second curved portion 54 is a series of continuous surfaces without uneven portions such as protrusions, dents and grooves. The surface 55 corresponds to the outer peripheral surface 51 of the electric field relaxation shield 5.

接点7において、第1の湾曲部74の表面75は、所定の曲率半径で湾曲する曲面となっている。また、電界緩和シールド5において、第2の湾曲部54の表面55は、所定の曲率半径で湾曲する曲面となっている。第1の湾曲部74の表面75の曲率半径は、第2の湾曲部54の表面55の曲率半径よりも小さい。 At the contact point 7, the surface 75 of the first curved portion 74 is a curved surface that curves with a predetermined radius of curvature. Further, in the electric field relaxation shield 5, the surface 55 of the second curved portion 54 is a curved surface curved with a predetermined radius of curvature. The radius of curvature of the surface 75 of the first curved portion 74 is smaller than the radius of curvature of the surface 55 of the second curved portion 54.

本実施形態では、電界緩和シールド5と接点7は、絶縁破壊電界強度が同程度の素材でそれぞれ形成されている。固定電極4a側および可動電極4b側で、電界緩和シールド5と接点7により構成される系(以下、対象系という)において、第1の湾曲部74の表面75の曲率半径を第2の湾曲部54の表面55の曲率半径よりも小さくすることで、電界緩和シールド5に作用する電界強度が接点7に作用する電界強度よりも低減される。 In the present embodiment, the electric field relaxation shield 5 and the contact 7 are each made of a material having the same dielectric breakdown electric field strength. In a system composed of an electric field relaxation shield 5 and a contact 7 on the fixed electrode 4a side and the movable electrode 4b side (hereinafter referred to as a target system), the radius of curvature of the surface 75 of the first curved portion 74 is set to the second curved portion. By making it smaller than the radius of curvature of the surface 55 of the 54, the electric field strength acting on the electric field relaxation shield 5 is reduced to be smaller than the electric field strength acting on the contact 7.

このため、かかる対象系において、第2の湾曲部54における有効面積を第1の湾曲部74における有効面積よりも小さくできる。換言すれば、かかる対象系における有効面積を接点7の第1の湾曲部74により集中させることができる。これにより、該対象系における電界緩和シールド5の絶縁破壊電界強度を接点7に対して高めることができる。したがって、電流遮断時にアーク放電が発生した場合であっても、その発生個所を接点7a,7b間にとどめることができ、電界緩和シールド5a,5b間でのアーク放電を抑制できる。結果として、電界緩和シールド5の損傷を低減させ、電界緩和シールド5の絶縁破壊を抑制できる。ひいては、真空開閉装置1の絶縁性能の低下を抑止可能となる。 Therefore, in such a target system, the effective area of the second curved portion 54 can be made smaller than the effective area of the first curved portion 74. In other words, the effective area in the target system can be concentrated by the first curved portion 74 of the contact 7. As a result, the dielectric breakdown electric field strength of the electric field relaxation shield 5 in the target system can be increased with respect to the contact 7. Therefore, even if an arc discharge occurs when the current is cut off, the location where the arc discharge occurs can be kept between the contacts 7a and 7b, and the arc discharge between the electric field relaxation shields 5a and 5b can be suppressed. As a result, damage to the electric field relaxation shield 5 can be reduced, and dielectric breakdown of the electric field relaxation shield 5 can be suppressed. As a result, deterioration of the insulation performance of the vacuum switchgear 1 can be suppressed.

第2の湾曲部54の表面55の曲率半径に対する第1の湾曲部74の表面75の曲率半径の縮小の程度は、特に限定されない。例えば、接点7a,7bが分離(開極)して負荷電流が遮断された状態で、電界緩和シールド5の第2の湾曲部54に作用する最大電界強度は、接点7の第1の湾曲部74に作用する最大電界強度よりも小さくなるように、表面55よりも表面75の曲率半径を小さくすればよい。具体的には、電界緩和シールド5の第2の湾曲部54に作用する最大電界強度が接点7の第1の湾曲部74に作用する最大電界強度の90%以下程度となればよい。一例として、第1の湾曲部74の表面75の曲率半径が5mm程度である場合、第2の湾曲部54の表面55の曲率半径が20mm程度であればよい。 The degree of reduction of the radius of curvature of the surface 75 of the first curved portion 74 with respect to the radius of curvature of the surface 55 of the second curved portion 54 is not particularly limited. For example, when the contacts 7a and 7b are separated (opened) and the load current is cut off, the maximum electric field strength acting on the second curved portion 54 of the electric field relaxation shield 5 is the first curved portion of the contact 7. The radius of curvature of the surface 75 may be smaller than that of the surface 55 so as to be smaller than the maximum electric field strength acting on the 74. Specifically, the maximum electric field strength acting on the second curved portion 54 of the electric field relaxation shield 5 may be about 90% or less of the maximum electric field strength acting on the first curved portion 74 of the contact 7. As an example, when the radius of curvature of the surface 75 of the first curved portion 74 is about 5 mm, the radius of curvature of the surface 55 of the second curved portion 54 may be about 20 mm.

なお、本実施形態に係る電界緩和シールド5は、基部53と第2の湾曲部54とを有しているが、基部53が省略された構成であっても構わない。この場合、電界緩和シールドは、第2の湾曲部54に相当する部分として、軸芯Cと同心の貫通孔を中心部に有する環状の湾曲部を有して構成される。 The electric field relaxation shield 5 according to the present embodiment has a base portion 53 and a second curved portion 54, but the base portion 53 may be omitted. In this case, the electric field relaxation shield is configured to have an annular curved portion having a through hole concentric with the axis C in the central portion as a portion corresponding to the second curved portion 54.

上述したように、本実施形態では第1の湾曲部74および第2の湾曲部54において、表面55よりも表面75の曲率半径を小さくしたが、これに加えてこれらの湾曲部74,54を次のような形態とすることで、電界緩和シールド5a,5b間でのアーク放電の抑制を図ってもよい。以下、このような実施形態を第2の実施形態および第3の実施形態として説明する。これらの実施形態における真空開閉装置の基本的な構成は、第1の実施形態に係る真空開閉装置1(図1)と同様である。したがって、以下では、かかる真空開閉装置の基本的な構成についての説明は省略し、第2の実施形態および第3の実施形態の特徴である電界緩和シールドおよび接点について詳述する。その際、第1の実施形態と同一もしくは類似の構成部材については、同一の参照符号を用いる。 As described above, in the present embodiment, in the first curved portion 74 and the second curved portion 54, the radius of curvature of the surface 75 is made smaller than that of the surface 55, but in addition to this, these curved portions 74, 54 are used. The arc discharge between the electric field relaxation shields 5a and 5b may be suppressed by adopting the following form. Hereinafter, such an embodiment will be described as a second embodiment and a third embodiment. The basic configuration of the vacuum switchgear in these embodiments is the same as that of the vacuum switchgear 1 (FIG. 1) according to the first embodiment. Therefore, in the following, the description of the basic configuration of the vacuum switchgear will be omitted, and the electric field relaxation shield and the contacts which are the features of the second embodiment and the third embodiment will be described in detail. At that time, the same reference numerals are used for the same or similar components as those in the first embodiment.

(第2の実施形態)
図4には、第2の実施形態に係る電界緩和シールド5および接点7の形態を概略的に示す。例えば、電界緩和シールド5の大きさは、絶縁容器2の内部22の空間の大きさによって左右される。真空開閉装置1が小型化され、絶縁容器2の内部22に十分な空間を確保できない場合には、それに応じて電界緩和シールド5の大きさも制限される。この場合、電界緩和シールド5および接点7を適切な表面粗さとし、これらの電界バランスを制御することができる。例えば、Fowler−Nordheim理論では、真空中の絶縁性能は、対象となる系、例えば対象部材の表面粗さによっても規定される。かかる理論によれば、電界不平等性の高いミクロな突起部を想定し、局所的に電界が強調されて電界電子放出が顕著になり、この電界電子放出が絶縁破壊のトリガになるとされている。図5には、表面粗さと絶縁破壊電界強度の関係を示す。図5に示すように、表面粗さが細かく(一例として、表面粗さの尺度が小さく)なるほど、絶縁破壊電界強度が高くなる。したがって、絶縁破壊電界強度を高めるためには、表面粗さを細かくすることが好ましい。
(Second embodiment)
FIG. 4 schematically shows a mode of the electric field relaxation shield 5 and the contact 7 according to the second embodiment. For example, the size of the electric field relaxation shield 5 depends on the size of the space inside 22 of the insulating container 2. If the vacuum switchgear 1 is miniaturized and sufficient space cannot be secured inside the insulating container 2, the size of the electric field relaxation shield 5 is limited accordingly. In this case, the electric field relaxation shield 5 and the contact 7 have appropriate surface roughness, and the electric field balance between them can be controlled. For example, in the Waller-Nordheim theory, the insulation performance in vacuum is also defined by the surface roughness of the target system, for example, the target member. According to this theory, assuming a micro-projection with high electric field inequality, the electric field is locally emphasized and the field electron emission becomes remarkable, and this field electron emission triggers dielectric breakdown. .. FIG. 5 shows the relationship between the surface roughness and the dielectric breakdown electric field strength. As shown in FIG. 5, the finer the surface roughness (for example, the smaller the scale of the surface roughness), the higher the dielectric breakdown electric field strength. Therefore, in order to increase the dielectric breakdown electric field strength, it is preferable to make the surface roughness finer.

このため、本実施形態に係る電界緩和シールド5において、第2の湾曲部54の表面55aは、第1の湾曲部74の表面75aよりも表面粗さが細かい。換言すれば、表面55aは表面75aよりも滑面であり、表面75aは表面55aよりも粗面である。表面55aよりも表面75aの表面粗さを細かくするための方法、つまり表面55aを表面75aよりも滑面とするための方法は、特に限定されない。例えば、電界緩和シールド5の第2の湾曲部54に対して、電解研磨や化学研磨などの表面処理を施し、表面55aの表面粗さを表面75aの表面粗さよりも細かくすればよい。その際、接点7の第1の湾曲部74に対して電解研磨や化学研磨などの表面処理を施すかどうかは問わない。すなわち、電界緩和シールド5の第2の湾曲部54は、相対的に第1の湾曲部74の表面75aよりも表面55aの表面粗さが細かければよい。表面75aに表面処理を施さない場合、その表面粗さは第1の実施形態に係る第1の湾曲部74の表面75の表面粗さと同じである。 Therefore, in the electric field relaxation shield 5 according to the present embodiment, the surface roughness of the surface 55a of the second curved portion 54 is finer than that of the surface 75a of the first curved portion 74. In other words, the surface 55a is a smoother surface than the surface 75a, and the surface 75a is a rougher surface than the surface 55a. The method for making the surface roughness of the surface 75a smaller than that of the surface 55a, that is, the method for making the surface 55a a smoother surface than the surface 75a is not particularly limited. For example, the second curved portion 54 of the electric field relaxation shield 5 may be subjected to surface treatment such as electrolytic polishing or chemical polishing to make the surface roughness of the surface 55a finer than the surface roughness of the surface 75a. At that time, it does not matter whether or not the first curved portion 74 of the contact 7 is subjected to surface treatment such as electrolytic polishing or chemical polishing. That is, the surface roughness of the surface 55a of the second curved portion 54 of the electric field relaxation shield 5 may be smaller than that of the surface 75a of the first curved portion 74. When the surface 75a is not surface-treated, its surface roughness is the same as the surface roughness of the surface 75 of the first curved portion 74 according to the first embodiment.

このように表面55aよりも表面75aの表面粗さを細かくすることで、固定電極4a側の対象系および可動電極4b側の対象系において、電界緩和シールド5の絶縁破壊電界強度を接点7に対して高めることができる。したがって、電界緩和シールド5a,5b間でのアーク放電を抑え、これらの絶縁破壊を抑制できる。 By making the surface roughness of the surface 75a finer than that of the surface 55a in this way, the dielectric breakdown electric field strength of the electric field relaxation shield 5 is applied to the contact 7 in the target system on the fixed electrode 4a side and the target system on the movable electrode 4b side. Can be enhanced. Therefore, it is possible to suppress the arc discharge between the electric field relaxation shields 5a and 5b and suppress these dielectric breakdowns.

なお、表面粗さの尺度としては、例えば算術平均粗さ(Ra)、最大高さ(Ry)、十点平均粗さ(Rz)などを用いることができる。表面粗さは、第1の湾曲部74と第2の湾曲部54の各表面75a,55aからランダムに選択した部分における上記いずれかの尺度で判断すればよい。 As the scale of the surface roughness, for example, an arithmetic average roughness (Ra), a maximum height (Ry), a ten-point average roughness (Rz), or the like can be used. The surface roughness may be determined by any of the above scales in a portion randomly selected from the surfaces 75a and 55a of the first curved portion 74 and the second curved portion 54.

(第3の実施形態)
図6には、第3の実施形態に係る電界緩和シールド5および接点7の形態を概略的に示す。
図6に示すように、本実施形態に係る電界緩和シールド5において、第2の湾曲部54の表面55は、第1の湾曲部74、端的には接点7の素材と絶縁性および電流遮断性がそれぞれ同等の高耐圧材で被膜されている。すなわち、表面55には、所定の被膜56が形成されている。
(Third embodiment)
FIG. 6 schematically shows a mode of the electric field relaxation shield 5 and the contact 7 according to the third embodiment.
As shown in FIG. 6, in the electric field relaxation shield 5 according to the present embodiment, the surface 55 of the second curved portion 54 has an insulating property and a current breaking property with the material of the first curved portion 74, in short, the contact 7. Are each coated with the same high pressure resistant material. That is, a predetermined coating 56 is formed on the surface 55.

被膜56は、第1の湾曲部74を含む接点7の素材に応じて、次のような素材で形成すればよい。例えば、接点7の素材が銅(Cu)が75%、クロム(Cr)が25%の銅クロム(CuCr)である場合、被膜56の素材は、銅(Cu)が75%から65%、クロム(Cr)が25%から35%程度の銅クロム、あるいはこれと同程度の高耐圧材であればよい。被膜56の形成方法は、特に限定されない。例えば、イオンプレーティング法、物理蒸着法(PVD)、化学蒸着法(CVD)などにより、表面55に被膜56を形成すればよい。 The coating 56 may be formed of the following materials depending on the material of the contact 7 including the first curved portion 74. For example, when the material of the contact 7 is copper (Cu) of 75% and chromium (Cr) of 25%, the material of the coating 56 is copper (Cu) of 75% to 65% and chromium. Copper chromium having (Cr) of about 25% to 35%, or a high pressure resistant material having the same level as this may be used. The method for forming the coating film 56 is not particularly limited. For example, the film 56 may be formed on the surface 55 by an ion plating method, a physical vapor deposition method (PVD), a chemical vapor deposition method (CVD), or the like.

このように表面55に高耐圧の被膜56を形成することで、固定電極4a側の対象系および可動電極4b側の対象系において、電界緩和シールド5a,5b間でのアーク放電が生じた場合であっても、これらの損傷を低減して絶縁破壊を抑制できる。例えば、電界緩和シールド5が接点7と比べてサイズが大きくなった場合、電界緩和シールド5の全体を別の高耐圧材で置換することはコストアップを招き、好ましくない。このような場合であっても、本実施形態では、電界緩和シールド5の素材を変更することなく、第2の湾曲部54の表面55に絶縁性および電流遮断性に優れた被膜56を形成することで、第2の湾曲部54の高耐圧化を図ることができる。したがって、比較的安価に電界緩和シールド5の絶縁性および電流遮断性を高めることができる。 By forming the high withstand voltage coating 56 on the surface 55 in this way, when an arc discharge occurs between the electric field relaxation shields 5a and 5b in the target system on the fixed electrode 4a side and the target system on the movable electrode 4b side. Even if there is, these damages can be reduced and dielectric breakdown can be suppressed. For example, when the electric field relaxation shield 5 has a larger size than the contact 7, it is not preferable to replace the entire electric field relaxation shield 5 with another high pressure resistant material because it causes an increase in cost. Even in such a case, in the present embodiment, the film 56 having excellent insulating property and current blocking property is formed on the surface 55 of the second curved portion 54 without changing the material of the electric field relaxation shield 5. As a result, the pressure resistance of the second curved portion 54 can be increased. Therefore, the insulating property and the current breaking property of the electric field relaxation shield 5 can be improved at a relatively low cost.

なお、被膜56の膜厚は、電流の遮断時に多少損耗することを考慮した厚みであることが好ましい。例えば、真空開閉装置1の開閉寿命に基づいて、および接点7の有効面積と電界緩和シールド5の有効面積との相対的な関係に基づいて電界緩和シールド5を起点とした遮断が生じる回数を予め想定し、その遮断回数に応じて被膜56の膜厚を設定することで、被膜56をより低コストで形成可能となる。 The film thickness of the coating 56 is preferably a thickness considering that it is slightly worn when the current is cut off. For example, the number of cutoffs starting from the electric field relaxation shield 5 is determined in advance based on the opening / closing life of the vacuum switchgear 1 and based on the relative relationship between the effective area of the contact 7 and the effective area of the electric field relaxation shield 5. Assuming that, by setting the film thickness of the coating film 56 according to the number of cutoffs, the coating film 56 can be formed at a lower cost.

また、本実施形態に係る電界緩和シールド5において、被膜56は、第2の湾曲部54の表面55に加えて、基部53の表面にも形成されている。すなわち、被膜56は、電界緩和シールド5が外部に曝される領域の全体にわたって形成されている。ただし、被膜56は、かかる領域の全体に形成されていなくともよく、少なくとも第2の湾曲部54の表面55の全体にわたって形成されていればよい。 Further, in the electric field relaxation shield 5 according to the present embodiment, the coating film 56 is formed not only on the surface 55 of the second curved portion 54 but also on the surface of the base portion 53. That is, the coating 56 is formed over the entire region where the electric field relaxation shield 5 is exposed to the outside. However, the coating 56 does not have to be formed over the entire surface of such a region, and may be formed at least over the entire surface 55 of the second curved portion 54.

以上、本発明のいくつかの実施形態を説明したが、上述した各実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although some embodiments of the present invention have been described above, the above-described embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and variations thereof are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.

1…真空開閉装置、2…絶縁容器、3…封着金具、4…電極、5,5a,5b…電界緩和部材(電界緩和シールド)、6…通電軸、7,7a,7b…接点、8…ベローズ、9…アークシールド、21…開口部、53…基部、54…第2の湾曲部、55,55a…第2の湾曲部の表面、56…被膜、73…平坦部、74…第1の湾曲部、75,75a…第1の湾曲部の表面、C…軸芯、S…空隙。 1 ... Vacuum opening / closing device, 2 ... Insulated container, 3 ... Sealing metal fittings, 4 ... Electrodes, 5,5a, 5b ... Electric field relaxation member (electric field relaxation shield), 6 ... Energizing shaft, 7,7a, 7b ... Contact, 8 ... Bellows, 9 ... Arc Shield, 21 ... Opening, 53 ... Base, 54 ... Second Curved Part, 55, 55a ... Surface of Second Curved Part, 56 ... Coating, 73 ... Flat Part, 74 ... First Curved portion, 75, 75a ... Surface of the first curved portion, C ... Axial core, S ... Void.

Claims (7)

絶縁材で筒状に構成され、筒軸方向の両端に開口部をそれぞれ有する絶縁容器と、
前記絶縁容器に収容され、互いの接点を接離可能な一対の電極と、
前記開口部にそれぞれ接合され、前記絶縁容器を閉塞する封着金具と、
前記接点の素材と同等の絶縁破壊電界強度を有する素材で形成され、前記絶縁容器と前記接点との間の電界強度を緩和する一対の電界緩和部材と、を備え、
前記接点は、所定の曲率半径で表面が湾曲する第1の湾曲部を有し、
前記電界緩和部材は、所定の曲率半径で表面が湾曲する第2の湾曲部を有し、
前記第1の湾曲部の表面の曲率半径は、前記第2の湾曲部の表面の曲率半径よりも小さい
真空開閉装置。
An insulating container that is made of an insulating material and has openings at both ends in the axial direction of the cylinder.
A pair of electrodes housed in the insulating container and capable of contacting and separating from each other,
A sealing metal fitting that is joined to each of the openings and closes the insulating container, and
It is provided with a pair of electric field relaxation members which are formed of a material having the same dielectric breakdown electric field strength as the material of the contact and relax the electric field strength between the insulating container and the contact.
The contact has a first curved portion whose surface is curved with a predetermined radius of curvature.
The electric field relaxation member has a second curved portion whose surface is curved with a predetermined radius of curvature.
A vacuum switchgear in which the radius of curvature of the surface of the first curved portion is smaller than the radius of curvature of the surface of the second curved portion.
一対の前記電界緩和部材は、一対の前記電極の各々に対応して一つずつ配置され、
一対の前記接点の接離方向において、一の前記電界緩和部材は、これに対応する一の前記接点よりも他の前記接点から離れて配置される
請求項1に記載の真空開閉装置。
The pair of electric field relaxation members are arranged one by one corresponding to each of the pair of electrodes.
The vacuum switchgear according to claim 1, wherein the electric field relaxation member is arranged at a distance from the contact other than the corresponding contact in the contact / separation direction of the pair of contacts.
前記第2の湾曲部の表面は、突起および窪みのない一連の連続面である
請求項2に記載の真空開閉装置。
The vacuum switchgear according to claim 2, wherein the surface of the second curved portion is a series of continuous surfaces without protrusions and dents.
前記電界緩和部材は、前記筒軸方向において、前記筒軸方向の最大長さよりも前記筒軸方向と直交する方向の最大長さの方が大きな扁平をなす
請求項3に記載の真空開閉装置。
The vacuum switchgear according to claim 3, wherein the electric field relaxation member is flattened in the tubular axis direction in a direction orthogonal to the tubular axis direction rather than a maximum length in the tubular axis direction.
前記第2の湾曲部の表面は、前記第1の湾曲部の表面よりも表面粗さが細かい
請求項1から4のいずれか一項に記載の真空開閉装置。
The vacuum switchgear according to any one of claims 1 to 4, wherein the surface of the second curved portion has a finer surface roughness than the surface of the first curved portion.
前記第2の湾曲部の表面は、前記第1の湾曲部の素材と絶縁性および電流遮断性が同等の素材で被膜されている
請求項1から4のいずれか一項に記載の真空開閉装置。
The vacuum switchgear according to any one of claims 1 to 4, wherein the surface of the second curved portion is coated with a material having the same insulating property and current blocking property as the material of the first curved portion. ..
一対の前記接点が分離して負荷電流が遮断された状態において、前記第2の湾曲部に作用する最大電界強度は、前記第1の湾曲部に作用する最大電界強度の90%以下である
請求項1から6のいずれか一項に記載の真空開閉装置。
A claim that the maximum electric field strength acting on the second curved portion is 90% or less of the maximum electric field strength acting on the first curved portion in a state where the pair of the contacts are separated and the load current is cut off. Item 6. The vacuum switchgear according to any one of Items 1 to 6.
JP2020102111A 2020-06-12 2020-06-12 Vacuum Switchgear Active JP7471929B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020102111A JP7471929B2 (en) 2020-06-12 2020-06-12 Vacuum Switchgear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020102111A JP7471929B2 (en) 2020-06-12 2020-06-12 Vacuum Switchgear

Publications (2)

Publication Number Publication Date
JP2021197262A true JP2021197262A (en) 2021-12-27
JP7471929B2 JP7471929B2 (en) 2024-04-22

Family

ID=79195833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020102111A Active JP7471929B2 (en) 2020-06-12 2020-06-12 Vacuum Switchgear

Country Status (1)

Country Link
JP (1) JP7471929B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5475559B2 (en) 2010-06-11 2014-04-16 株式会社東芝 Vacuum switchgear

Also Published As

Publication number Publication date
JP7471929B2 (en) 2024-04-22

Similar Documents

Publication Publication Date Title
CN113678219A (en) Vacuum valve
KR20090075664A (en) Vacuum circuit breaker
US10134546B2 (en) Maximizing wall thickness of a Cu—Cr floating center shield component by moving contact gap away from center flange axial location
JP2009508294A (en) Vacuum valve
KR19980042004A (en) Vacuum breaker with arc diffusion contact device
JP2010113821A (en) Electrode structure for vacuum circuit breaker
US20220270837A1 (en) Vacuum interrupter with double live shield
WO2011104751A1 (en) Vacuum valve
JP2021197262A (en) Vacuum switching device
JP5475559B2 (en) Vacuum switchgear
JP4703360B2 (en) Vacuum valve
JP7412876B2 (en) vacuum switchgear
JP2007305497A (en) Vacuum switch and conditioning processing method therefor
JP2006318795A (en) Vacuum valve
JP5537303B2 (en) Vacuum valve
JP7098414B2 (en) Vacuum switchgear
CN111415828A (en) Contact switch coating
JP5854925B2 (en) Vacuum valve
JP7170499B2 (en) vacuum valve
JP2006344557A (en) Vacuum valve and conditioning treatment method
US20220102096A1 (en) Vacuum interrupter with trap for running cathode tracks
CN115692090A (en) Vacuum valve
JP7030407B2 (en) Vacuum valve
JP2022132958A (en) vacuum valve
JP2024064677A (en) Molded Vacuum Valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240410

R150 Certificate of patent or registration of utility model

Ref document number: 7471929

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150