JP7471929B2 - Vacuum Switchgear - Google Patents

Vacuum Switchgear Download PDF

Info

Publication number
JP7471929B2
JP7471929B2 JP2020102111A JP2020102111A JP7471929B2 JP 7471929 B2 JP7471929 B2 JP 7471929B2 JP 2020102111 A JP2020102111 A JP 2020102111A JP 2020102111 A JP2020102111 A JP 2020102111A JP 7471929 B2 JP7471929 B2 JP 7471929B2
Authority
JP
Japan
Prior art keywords
electric field
curved portion
contacts
contact
shield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020102111A
Other languages
Japanese (ja)
Other versions
JP2021197262A (en
Inventor
智博 竪山
直紀 浅利
滉太 濱田
淳一 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Infrastructure Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2020102111A priority Critical patent/JP7471929B2/en
Publication of JP2021197262A publication Critical patent/JP2021197262A/en
Application granted granted Critical
Publication of JP7471929B2 publication Critical patent/JP7471929B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Description

本発明の実施形態は、真空開閉装置に関する。 An embodiment of the present invention relates to a vacuum opening and closing device.

例えば、ビル、工場、病院などには、電力の配送電系統における電路の保護、電力の制御、設備の監視などを図るために金属閉鎖形スイッチギヤ(以下、単にスイッチギヤという)が備えられている。スイッチギヤは、金属容器(筐体)によって外部から隔てられた空間に主回路導体、電力ケーブル、接地装置、変流器、真空遮断器、真空断路器などを収容して構成されている。真空遮断器および真空断路器は、絶縁容器内に配置された電極を導電状態または絶縁状態に適宜切り換えて電流を遮断する真空開閉装置(真空バルブとも称される)を有している。導電状態は一対の電極の接点が接触(閉極)した状態であり、絶縁状態はこれら接点が分離(開極)した状態である。絶縁状態には、接点が接触して電極間が閉じることで形成される回路の遮断状態や断路状態が含まれる。 For example, buildings, factories, hospitals, etc. are equipped with metal-enclosed switchgear (hereinafter simply referred to as switchgear) to protect electrical circuits in power distribution systems, control power, monitor facilities, etc. Switchgear is configured by accommodating main circuit conductors, power cables, grounding devices, current transformers, vacuum circuit breakers, vacuum disconnectors, etc. in a space separated from the outside by a metal container (housing). Vacuum circuit breakers and vacuum disconnectors have vacuum switching devices (also called vacuum valves) that interrupt current by appropriately switching electrodes arranged in an insulating container to a conductive state or an insulating state. The conductive state is a state in which the contacts of a pair of electrodes are in contact (closed), and the insulating state is a state in which these contacts are separated (open). The insulating state includes a circuit interruption state and a disconnection state formed when the contacts are in contact and the electrodes are closed.

真空開閉装置において負荷電流を遮断した際、アーク放電によって接点表面が損傷すると、接点間の絶縁性能が低下するおそれがある。このような接点間の絶縁性能低下を抑制するべく、電界緩和部材(電界緩和シールド)を設けた真空開閉装置が知られている。かかる電界緩和シールドは、例えば固定側電極の接点と可動側電極の接点をそれぞれ取り囲むように配置され、接点と絶縁容器との間の電位勾配、換言すれば電界強度を緩和する。一例として、固定側電極の接点の電界緩和シールドは、通電軸の側面に固着され、可動側電極の接点の電界緩和シールドは、真空開閉装置の封着板に固着される。 When a vacuum switchgear interrupts a load current, if the contact surface is damaged by an arc discharge, the insulation performance between the contacts may be reduced. To prevent such a reduction in the insulation performance between the contacts, a vacuum switchgear is known that is provided with an electric field mitigation member (electric field mitigation shield). Such an electric field mitigation shield is arranged, for example, so as to surround the contact of the fixed electrode and the contact of the movable electrode, respectively, and reduces the potential gradient between the contacts and the insulating container, in other words the electric field strength. As an example, the electric field mitigation shield of the contact of the fixed electrode is fixed to the side of the current-carrying shaft, and the electric field mitigation shield of the contact of the movable electrode is fixed to the sealing plate of the vacuum switchgear.

特開2020-27782号公報JP 2020-27782 A 特開2004-235121号公報JP 2004-235121 A 特開昭63-160122号公報Japanese Patent Application Laid-Open No. 63-160122

負荷電流の遮断時、接点間にアークが生じて電界緩和シールドが損傷すると、その損傷の程度によっては電界緩和シールドの絶縁性能が低下する。このため、接点と電界緩和シールドとの間にギャップを設けてアークの移行を妨げるようなシールド構造も知られている。このようなシールド構造では、接点から電界緩和シールドへのアークの移行を抑制可能となる。 When the load current is interrupted, if an arc occurs between the contacts and the electric field mitigation shield is damaged, the insulating performance of the electric field mitigation shield may decrease depending on the extent of the damage. For this reason, a shielding structure is known that provides a gap between the contacts and the electric field mitigation shield to prevent the transfer of the arc. With such a shielding structure, it is possible to suppress the transfer of the arc from the contacts to the electric field mitigation shield.

その一方で、電界緩和シールドを起点にアーク放電や絶縁破壊などが生じた場合、電界緩和シールドの損傷を十分に抑制できないおそれがある。このため、電界緩和シールドを起点としたアーク放電や絶縁破壊などを抑制し、電界緩和シールドの損傷を低減させることが求められている。 However, if arc discharge or dielectric breakdown occurs originating from the electric field mitigation shield, damage to the electric field mitigation shield may not be sufficiently suppressed. For this reason, there is a demand to suppress arc discharge and dielectric breakdown originating from the electric field mitigation shield and reduce damage to the electric field mitigation shield.

実施形態の真空開閉装置は、絶縁容器と、電極と、封着金具と、電界緩和部材とを備える。絶縁容器は、絶縁材で筒状に構成され、筒軸方向の両端に開口部をそれぞれ有する。電極は、絶縁容器に収容され、互いの接点を接離可能な一対をなす。封着金具は、開口部にそれぞれ接合され、絶縁容器を閉塞する。電界緩和部材は、一対をなし、接点の素材と同等の絶縁破壊電界強度を有する素材で形成され、絶縁容器と接点との間の電界強度を緩和する。接点は、所定の曲率半径で表面が湾曲する第1の湾曲部を有する。電界緩和部材は、所定の曲率半径で表面が湾曲する第2の湾曲部を有する。第1の湾曲部の表面の曲率半径は、第2の湾曲部の表面の曲率半径よりも小さい。第2の湾曲部の表面は、第1の湾曲部の表面よりも表面粗さが細かい。 A vacuum switchgear according to an embodiment includes an insulating container, an electrode, a sealing metal fitting, and an electric field relaxation member. The insulating container is made of an insulating material and has a cylindrical shape, and has openings at both ends in the cylindrical axial direction. The electrodes are housed in the insulating container and form a pair of electrodes capable of connecting and disconnecting their contacts. The sealing metal fittings are respectively joined to the openings and close the insulating container. The electric field relaxation members form a pair and are formed of a material having a dielectric breakdown electric field strength equivalent to that of the material of the contacts, and relax the electric field strength between the insulating container and the contacts. The contacts have a first curved portion whose surface is curved with a predetermined radius of curvature. The electric field relaxation member has a second curved portion whose surface is curved with a predetermined radius of curvature. The radius of curvature of the surface of the first curved portion is smaller than the radius of curvature of the surface of the second curved portion. The surface of the second curved portion has a finer surface roughness than the surface of the first curved portion.

第1の実施形態に係る真空開閉装置の構成を概略的に示す筒軸(軸芯)を含む一平面での断面図。1 is a cross-sectional view taken along a plane including a cylindrical axis (axial core) and illustrating a schematic configuration of a vacuum switchgear according to a first embodiment. 有効面積と絶縁破壊電界強度の関係を示す図。FIG. 13 is a graph showing the relationship between effective area and dielectric breakdown field strength. 図1における電界緩和シールドおよび接点の形態を拡大して概略的に示す図。FIG. 2 is an enlarged schematic diagram showing the configuration of the electric field mitigation shield and the contacts in FIG. 1 . 第2の実施形態に係る電界緩和シールドおよび接点の形態を概略的に示す図。FIG. 13 is a diagram showing a schematic configuration of an electric field mitigation shield and a contact according to a second embodiment. 表面粗さと絶縁破壊電界強度の関係を示す図。FIG. 1 is a graph showing the relationship between surface roughness and dielectric breakdown field strength. 第3の実施形態に係る電界緩和シールドおよび接点の形態を概略的に示す図。FIG. 13 is a diagram showing a schematic configuration of an electric field mitigation shield and a contact according to a third embodiment.

以下、実施形態に係る真空開閉装置について、図1から図6を参照して説明する。真空開閉装置(真空バルブとも称される)は、例えば電力の配送電系統における電路の保護、電力の制御、設備の監視などを目的に設置される金属閉鎖形スイッチギヤの真空断路器などに備えられ、電流(一例として負荷電流)を遮断するスイッチとして利用される。 The vacuum switchgear according to the embodiment will be described below with reference to Figs. 1 to 6. The vacuum switchgear (also called a vacuum valve) is provided in a vacuum disconnector of a metal-enclosed switchgear that is installed for the purpose of protecting electrical circuits in an electric power distribution system, controlling electric power, monitoring equipment, etc., and is used as a switch that cuts off a current (load current, as an example).

(第1の実施形態)
図1は、第1の実施形態の真空開閉装置1の構成を概略的に示す図であって、後述する筒軸(軸芯C)を含む一平面での断面図である。なお、以下の説明においては、図1に矢印UPで示す方向を上、その反対方向を下としてそれぞれ規定する。これらの方向は、真空開閉装置が実装された状態での方向と一致していればよいが、異なっていてもよい。
First Embodiment
Fig. 1 is a diagram showing a schematic configuration of a vacuum switchgear 1 according to a first embodiment, and is a cross-sectional view taken along a plane including a cylinder axis (axial core C) described later. In the following description, the direction indicated by the arrow UP in Fig. 1 is defined as up, and the opposite direction is defined as down. These directions need only match the directions when the vacuum switchgear is mounted, but may be different.

図1に示すように、真空開閉装置1は、絶縁容器2と、封着金具3と、電極4と、電界緩和部材5とを備えている。 As shown in FIG. 1, the vacuum opening and closing device 1 includes an insulating container 2, a sealing metal fitting 3, an electrode 4, and an electric field relaxation member 5.

絶縁容器2は、絶縁材で筒状に構成され、筒軸(軸芯C)方向の両端に開口部21(第1の開口部21aおよび第2の開口部21b)をそれぞれ有している。絶縁材としては、アルミナ(Al)等のセラミック、ガラスなどを適用できるが、これらに限定されない。開口部21は、封着金具3で閉塞されている。具体的には、第1の開口部21aが第1の封着金具3aで閉塞され、第2の開口部21bが第2の封着金具3bで閉塞されている。封着金具3は、アルミニウムやステンレス鋼(SUS)などの金属材料で形成可能である。ただし、素材はこれらに限定されない。封着金具3は、例えば略円板状をなし、周縁部が絶縁容器2の軸芯C方向の端部に接合され、軸芯Cと同軸状に配置されている。 The insulating container 2 is made of an insulating material and has openings 21 (first opening 21a and second opening 21b) at both ends in the direction of the cylindrical axis (axis core C). As the insulating material, ceramics such as alumina (Al 2 O 3 ), glass, etc. can be used, but are not limited to these. The openings 21 are closed by a sealing metal fitting 3. Specifically, the first opening 21a is closed by a first sealing metal fitting 3a, and the second opening 21b is closed by a second sealing metal fitting 3b. The sealing metal fitting 3 can be made of a metal material such as aluminum or stainless steel (SUS). However, the material is not limited to these. The sealing metal fitting 3 is, for example, substantially disk-shaped, and its peripheral portion is joined to the end of the insulating container 2 in the direction of the axis core C, and is arranged coaxially with the axis core C.

電界緩和シールド5a,5bは、例えばアルミニウムやステンレス鋼(SUS)などの金属材料で形成可能である。ただし、素材はこれらに限定されない。電界緩和シールド5a,5bは、例えば銀、金、銅などにより封着金具3(第1の封着金具3aおよび第2の封着金具3b)にろう付けされ、封着金具3から絶縁容器2の内部22に突出している。図1に示す例では、電界緩和シールド5a,5bの突出端は、全周に亘って縮径するように湾曲して折り返されている。 The electric field mitigation shields 5a and 5b can be made of metal materials such as aluminum and stainless steel (SUS). However, the materials are not limited to these. The electric field mitigation shields 5a and 5b are brazed to the sealing metal fittings 3 (the first sealing metal fitting 3a and the second sealing metal fitting 3b) with, for example, silver, gold, copper, etc., and protrude from the sealing metal fittings 3 into the interior 22 of the insulating container 2. In the example shown in FIG. 1, the protruding ends of the electric field mitigation shields 5a and 5b are curved and folded back so as to reduce in diameter all around.

電極4は、通電軸6と接点7を有している。電極4は、一対をなす固定電極4aと可動電極4bを含んで構成されている。固定電極4aは、後述する第1の通電軸6aと第1の接点7aを有し、絶縁容器2に対して位置が変動(変位)しない。可動電極4bは、後述する第2の通電軸6bと第2の接点7bを有し、固定電極4aに対して接離可能に変位(本実施形態では上下動)する。 The electrode 4 has a current-carrying shaft 6 and a contact 7. The electrode 4 is composed of a pair of fixed electrodes 4a and movable electrodes 4b. The fixed electrode 4a has a first current-carrying shaft 6a and a first contact 7a, which will be described later, and does not fluctuate (displace) in position relative to the insulating container 2. The movable electrode 4b has a second current-carrying shaft 6b and a second contact 7b, which will be described later, and displaces (moves up and down in this embodiment) so as to be able to approach and separate from the fixed electrode 4a.

通電軸6は、導電材、例えば銅(無酸素銅)、アルミニウム、クロムなどで形成可能である。ただし、素材はこれらに限定されない。通電軸6は、絶縁容器2の軸芯Cと同軸状に一対をなして配置された第1の通電軸6aおよび第2の通電軸6bにより構成されている。 The current-carrying shaft 6 can be made of a conductive material such as copper (oxygen-free copper), aluminum, or chromium. However, the material is not limited to these. The current-carrying shaft 6 is composed of a first current-carrying shaft 6a and a second current-carrying shaft 6b that are arranged in a pair coaxially with the axial core C of the insulating container 2.

第1の通電軸6aは、接点7(具体的には後述する第1の接点7a)から第1の封着金具3aへ向けて伸び、第1の封着金具3aの孔部31aから絶縁容器2の外部へ突出している。孔部31aは、第1の封着金具3aの中心部を貫通している。第1の通電軸6aは、孔部31aにおいて第1の封着金具3aと接合され、第1の封着金具3a、端的には真空開閉装置1における位置が固定されている。 The first current-carrying shaft 6a extends from the contact 7 (specifically, the first contact 7a described below) toward the first sealing metal fitting 3a and protrudes from the hole 31a of the first sealing metal fitting 3a to the outside of the insulating container 2. The hole 31a penetrates the center of the first sealing metal fitting 3a. The first current-carrying shaft 6a is joined to the first sealing metal fitting 3a at the hole 31a, and its position in the first sealing metal fitting 3a, and ultimately in the vacuum opening and closing device 1, is fixed.

第2の通電軸6bは、接点7(具体的には後述する第2の接点7b)から第2の封着金具3bへ向けて伸び、第2の封着金具3bの孔部31bから絶縁容器2の外部へ突出している。孔部31bは、第2の封着金具3bの中心部を貫通している。第2の通電軸6bは、後述する第2の接点7bとともに軸芯C方向へ進退する。したがって、第2の通電軸6bと孔部31bとの間には、孔部31bにおいて第2の通電軸6bの変位(軸芯C方向への進退)を許容する空隙Sが形成されている。換言すれば、第2の通電軸6bの軸径は、孔部31bの孔径よりも小さい。第2の通電軸6bには、第2の通電軸6bを軸芯C方向へ進退可能に支持するベローズ8が取り付けられている。 The second current-carrying shaft 6b extends from the contact 7 (specifically, the second contact 7b described later) toward the second sealing metal fitting 3b and protrudes from the hole 31b of the second sealing metal fitting 3b to the outside of the insulating container 2. The hole 31b penetrates the center of the second sealing metal fitting 3b. The second current-carrying shaft 6b advances and retreats in the direction of the axis C together with the second contact 7b described later. Therefore, between the second current-carrying shaft 6b and the hole 31b, a gap S is formed that allows the second current-carrying shaft 6b to be displaced (advance and retreat in the direction of the axis C) in the hole 31b. In other words, the shaft diameter of the second current-carrying shaft 6b is smaller than the hole diameter of the hole 31b. The second current-carrying shaft 6b is fitted with a bellows 8 that supports the second current-carrying shaft 6b so that it can advance and retreat in the direction of the axis C.

ベローズ8は、軸芯C方向へ伸縮可能な蛇腹状に構成され、封着金具3(第1の封着金具3a、第2の封着金具3b)とともに、絶縁容器2の内部22を気密に保つ。絶縁容器2の内部22の圧力は、1×10-2Pa以下であることが好ましい。ベローズ8の一端8aは、第2の封着金具3bに接合されている。ベローズ8の他端8bは、第2の通電軸6bに接合されている。ベローズ8の他端8bは、例えば他端8bを覆うカバー部材(ベローズカバー)を介して第2の通電軸6bに接合されていてもよい。ベローズカバーは、アークによって飛散する金属溶融物のベローズ8への付着を抑制するとともに、空隙Sを気密に封止する。 The bellows 8 is configured in a bellows shape expandable and contractible in the direction of the axis C, and together with the sealing metal fittings 3 (first sealing metal fitting 3a, second sealing metal fitting 3b), keeps the interior 22 of the insulating container 2 airtight. The pressure in the interior 22 of the insulating container 2 is preferably 1×10 −2 Pa or less. One end 8a of the bellows 8 is joined to the second sealing metal fitting 3b. The other end 8b of the bellows 8 is joined to the second current-carrying shaft 6b. The other end 8b of the bellows 8 may be joined to the second current-carrying shaft 6b via, for example, a cover member (bellows cover) that covers the other end 8b. The bellows cover suppresses adhesion of molten metal scattered by the arc to the bellows 8 and hermetically seals the gap S.

固定電極4aと可動電極4bの周囲には、これらの電極4a,4b、端的には接点7a,7bを取り囲むように筒状のアークシールド9が配置されている。アークシールド9は、開極状態において第1の接点7aと第2の接点7bの間にアークが生じた際、アークによって溶融した金属が飛散するのを防ぎ、金属溶融物が内周面23に付着して絶縁容器2の絶縁性能が低下することを抑制する。アークシールド9は、例えばステンレス鋼(SUS)や銅などで形成可能であるが、これらに限定されない。アークシールド9は、外周面91から絶縁容器2に向けて突出する突起92を有している。突起92は、例えば外周面91の全周に亘って連続し、絶縁容器2の内周面23に接合されている。 A cylindrical arc shield 9 is arranged around the fixed electrode 4a and the movable electrode 4b, surrounding these electrodes 4a, 4b, and ultimately the contacts 7a, 7b. When an arc occurs between the first contact 7a and the second contact 7b in the open-contact state, the arc shield 9 prevents the metal melted by the arc from scattering, and prevents the molten metal from adhering to the inner circumferential surface 23, which would otherwise deteriorate the insulating performance of the insulating container 2. The arc shield 9 can be made of, for example, stainless steel (SUS) or copper, but is not limited to these. The arc shield 9 has a protrusion 92 that protrudes from the outer circumferential surface 91 toward the insulating container 2. The protrusion 92 is continuous, for example, around the entire circumference of the outer circumferential surface 91, and is joined to the inner circumferential surface 23 of the insulating container 2.

固定電極4aおよび可動電極4bは、接点7をそれぞれ有し、これらの接点7を接離させる。接点7は、一対をなす第1の接点7aと第2の接点7bを含んで構成されている。第1の接点7aは、可動電極4bと接離する固定電極4aの端部に相当する。第2の接点7bは、固定電極4aと接離する可動電極4bの端部に相当する。 The fixed electrode 4a and the movable electrode 4b each have a contact 7, which is brought into contact with and separated from each other. The contact 7 is composed of a pair of a first contact 7a and a second contact 7b. The first contact 7a corresponds to the end of the fixed electrode 4a that comes into contact with and separates from the movable electrode 4b. The second contact 7b corresponds to the end of the movable electrode 4b that comes into contact with and separates from the fixed electrode 4a.

第1の接点7aと第2の接点7bは、対向配置され、固定電極4aに対して可動電極4bが変位することで接離する。接点7a,7bの接離により、固定電極4aと可動電極4bとの間が導電状態と絶縁状態に遷移される。導電状態は接点7a,7bが接触(閉極)した状態であり、絶縁状態は接点7a,7bが分離(開極)した状態である。絶縁状態には、接点7a,7bが接触して電極4a,4b間が閉じることで形成される回路の断路状態が含まれる。 The first contact 7a and the second contact 7b are arranged opposite each other and come into contact with and separate from each other as the movable electrode 4b is displaced relative to the fixed electrode 4a. The contact and separation of the contacts 7a and 7b causes a transition between a conductive state and an insulating state between the fixed electrode 4a and the movable electrode 4b. The conductive state is a state in which the contacts 7a and 7b are in contact (closed), and the insulating state is a state in which the contacts 7a and 7b are separated (open). The insulating state includes a disconnected state of the circuit formed when the contacts 7a and 7b come into contact and close the gap between the electrodes 4a and 4b.

第1の接点7aおよび第2の接点7bは、導電性を有する合金、例えば銅クロム(CuCr)で形成されている。銅クロムの組成は特に限定されないが、一例として銅(Cu)が75%から65%程度、クロム(Cr)が25%から35%程度、好ましくは銅(Cu)が75%程度、クロム(Cr)が25%程度である場合を想定する。ただし、第1の接点7aおよび第2の接点7bの素材はこれに限定されず、例えばAgWやCuCrTeなどの合金とすることも可能である。 The first contact 7a and the second contact 7b are formed of a conductive alloy, for example, copper chromium (CuCr). The composition of the copper chromium is not particularly limited, but as an example, it is assumed that the composition is about 75% to 65% copper (Cu) and about 25% to 35% chromium (Cr), preferably about 75% copper (Cu) and about 25% chromium (Cr). However, the material of the first contact 7a and the second contact 7b is not limited to this, and it is also possible to use an alloy such as AgW or CuCrTe.

電界緩和部材(以下、電界緩和シールドという)5は、接点7の近傍に配置され、接点7と絶縁容器2との間の電位勾配、換言すれば電界強度を緩和する。電界緩和シールド5は、一対をなす第1の電界緩和シールド5aと第2の電界緩和シールド5bを含んで構成されている。これらの電界緩和シールド5a,5bは、一対の電極4a,4bの各々に対応して一つずつ配置されている。第1の電界緩和シールド5aは、第1の接点7aの近傍に配置されている。第2の電界緩和シールド5bは、第2の接点7bの近傍に配置されている。 The electric field mitigation member (hereinafter referred to as electric field mitigation shield) 5 is disposed near the contact 7 and mitigates the potential gradient, in other words the electric field strength, between the contact 7 and the insulating container 2. The electric field mitigation shield 5 is configured to include a pair of a first electric field mitigation shield 5a and a second electric field mitigation shield 5b. These electric field mitigation shields 5a, 5b are disposed one by one corresponding to each of the pair of electrodes 4a, 4b. The first electric field mitigation shield 5a is disposed near the first contact 7a. The second electric field mitigation shield 5b is disposed near the second contact 7b.

接点7a,7bの接離方向(軸芯C方向)において、一の電界緩和シールド5は、これに対応する一の接点7よりも他の接点7から離れて配置される。すなわち、第1の電界緩和シールド5aは、第1の接点7aよりも第2の接点7bから離れて配置されている。第2の電界緩和シールド5bは、第2の接点7bよりも第1の接点7aから離れて配置されている。換言すれば、第1の接点7aは、第1の電界緩和シールド5aよりも第2の接点7b寄りに配置され、第2の接点7bは、第2の電界緩和シールド5bよりも第1の接点7a寄りに配置されている。これにより、接点7a,7bの接離方向(軸芯C方向)において、接点7a,7b同士の対向距離は、電界緩和シールド5a,5b同士の対向距離よりも狭くなる。第1の接点7aは、第1の電界緩和シールド5aよりも第2の接点7bとの接触方向へ突出する。第2の接点7bは、第2の電界緩和シールド5bよりも第1の接点7aとの接触方向へ突出する。したがって、接点7a,7bの接離時、電界緩和シールド5a,5b同士が干渉せず、接点7a,7bの接離に支障を及ぼすことはない。 In the contact direction (axis C direction) of the contacts 7a and 7b, one electric field reduction shield 5 is disposed farther from the other contact 7 than the corresponding contact 7. That is, the first electric field reduction shield 5a is disposed farther from the second contact 7b than the first contact 7a. The second electric field reduction shield 5b is disposed farther from the first contact 7a than the second contact 7b. In other words, the first contact 7a is disposed closer to the second contact 7b than the first electric field reduction shield 5a, and the second contact 7b is disposed closer to the first contact 7a than the second electric field reduction shield 5b. As a result, in the contact direction (axis C direction) of the contacts 7a and 7b, the opposing distance between the contacts 7a and 7b is narrower than the opposing distance between the electric field reduction shields 5a and 5b. The first contact 7a protrudes in the contact direction with the second contact 7b than the first electric field reduction shield 5a. The second contact 7b protrudes further in the direction of contact with the first contact 7a than the second electric field reduction shield 5b. Therefore, when the contacts 7a and 7b are brought into contact with each other, the electric field reduction shields 5a and 5b do not interfere with each other, and there is no hindrance to the contact and separation of the contacts 7a and 7b.

電界緩和シールド5(第1の電界緩和シールド5aおよび第2の電界緩和シールド5b)は、接点7(第1の接点7aおよび第2の接点7b)の素材と同等の絶縁破壊電界強度を有する素材で形成されている。絶縁破壊電界強度(Eb)は、有効面積(Seff)によって規定される。図2には、有効面積と絶縁破壊電界強度の関係を示す。有効面積は、対象となる系、例えば全対象部材の総表面領域のうち、最大電界強度の90%以上の電界強度を有する領域の面積である。絶縁破壊電界強度は、有効面積をk乗した値をα倍した値として算出される(Eb=α×Seff^k)。kおよびαは素材によって決まる係数であり、kの値は-0.2から-0.3程度である。 The electric field mitigation shield 5 (first electric field mitigation shield 5a and second electric field mitigation shield 5b) is formed of a material having the same breakdown electric field strength as the material of the contacts 7 (first contacts 7a and second contacts 7b). The breakdown electric field strength (Eb) is determined by the effective area (Seff). Figure 2 shows the relationship between the effective area and the breakdown electric field strength. The effective area is the area of the target system, for example, the total surface area of all target components, that has an electric field strength of 90% or more of the maximum electric field strength. The breakdown electric field strength is calculated as the effective area raised to the power k multiplied by α (Eb = α x Seff^k). k and α are coefficients determined by the material, and the value of k is approximately -0.2 to -0.3.

有効面積と絶縁破壊電界強度の関係は、対象となる系の素材(構成材料)に応じて変動するが、一般的には図2に示すように有効面積が大きくなるほど、絶縁破壊電界強度が低くなる。したがって、絶縁破壊電界強度を高めるためには、有効面積を小さくすることが好ましい。上述したように、接点7は、銅クロムのように絶縁性能と電流遮断性能のいずれの特性にも優れた素材で構成される。これに対し、電界緩和シールド5は、銅クロムと同等の絶縁破壊電界強度を有する素材、例えばステンレス鋼(SUS)で形成されている。なお、電界緩和シールド5の素材はこれに限定されず、例えば接点材料として、AgWやCuCrTeなどの合金が使用されている場合、これらと同程度の絶縁破壊電界強度を有する任意の素材をシールド材料として使用すればよい。 The relationship between the effective area and the breakdown field strength varies depending on the material (constituent material) of the target system, but generally, as shown in FIG. 2, the larger the effective area, the lower the breakdown field strength. Therefore, in order to increase the breakdown field strength, it is preferable to make the effective area smaller. As described above, the contact 7 is made of a material such as copper chromium that has excellent properties in both insulation performance and current interruption performance. In contrast, the electric field mitigation shield 5 is made of a material that has a breakdown field strength equivalent to that of copper chromium, such as stainless steel (SUS). Note that the material of the electric field mitigation shield 5 is not limited to this, and for example, when an alloy such as AgW or CuCrTe is used as the contact material, any material that has a breakdown field strength equivalent to these may be used as the shield material.

ここで、例えば、真空断路器の場合、負荷電流を遮断する必要はあるが、真空遮断器で遮断を要する程度の課題電流を遮断することまでは要求されないため、真空遮断器と比べて接点7の表面積は小さくてもよい。したがって、本実施形態に係る真空開閉装置1の小型化および低コスト化を図るべく、接点7の大きさを小さくすることが可能である。しかしながら、接点7が小さくなるほど接点7に作用する電界強度が高くなり、耐電圧性能の低下を招きやすい。このため、本実施形態では、接点7の近傍に第1の通電軸6aおよび第2の通電軸6bの周囲をそれぞれ覆うように電界緩和シールド5を配置し、接点7の近傍の電界強度を緩和し、高耐電圧化を図っている。 Here, for example, in the case of a vacuum disconnector, although it is necessary to interrupt the load current, it is not required to interrupt the problem current to the extent that a vacuum circuit breaker would need to interrupt it, so the surface area of the contacts 7 may be smaller than that of a vacuum circuit breaker. Therefore, in order to reduce the size and cost of the vacuum switchgear 1 according to this embodiment, it is possible to reduce the size of the contacts 7. However, the smaller the contacts 7, the higher the electric field strength acting on the contacts 7, which is likely to lead to a decrease in voltage resistance performance. For this reason, in this embodiment, an electric field mitigation shield 5 is arranged near the contacts 7 so as to cover the periphery of the first current-carrying shaft 6a and the second current-carrying shaft 6b, respectively, to mitigate the electric field strength near the contacts 7 and achieve high voltage resistance.

その一方で、電界緩和シールド5が配置されることで接点7近傍の電界強度が緩和されると、電界緩和シールド5近傍の電界強度が緩和された電界強度と同程度以上となる場合がある。この場合、電圧を上昇させた際に電界緩和シールド5を起点に絶縁破壊が生じたり、負荷電流を遮断した際にアーク放電が生じたりするなどのおそれがある。これらによって電界緩和シールド5が損傷すると、損傷した部分が絶縁上の脆弱部となり、真空断路器の絶縁性能が低下するおそれがある。 On the other hand, when the electric field strength near the contact 7 is alleviated by placing the electric field mitigation shield 5, the electric field strength near the electric field mitigation shield 5 may become equal to or greater than the alleviated electric field strength. In this case, there is a risk that insulation breakdown will occur starting from the electric field mitigation shield 5 when the voltage is increased, or that an arc discharge will occur when the load current is interrupted. If the electric field mitigation shield 5 is damaged as a result of these, the damaged portion will become a weak point in the insulation, and the insulating performance of the vacuum disconnector may be reduced.

そこで、本実施形態では、電界緩和シールド5と接点7を適切な形態とし、これらの電界バランスを制御することで、電界緩和シールド5における絶縁破壊やアーク放電などの発生抑制を図っている。次に、電界緩和シールド5および接点7の形態について説明する。 In this embodiment, the electric field mitigation shield 5 and the contacts 7 are appropriately shaped, and the electric field balance between them is controlled to suppress the occurrence of dielectric breakdown and arc discharge in the electric field mitigation shield 5. Next, the shapes of the electric field mitigation shield 5 and the contacts 7 will be described.

図3には、図1における電界緩和シールド5および接点7の形態を拡大して概略的に示す。
図3に示すように、接点7(第1の接点7aおよび第2の接点7b)は、軸芯Cとほぼ同心の円形をなした平板状の部材である。接点7の第1面71は、対向する接点7(第1の接点7aの場合には第2の接点7bであり、第2の接点7bの場合には第1の接点7a)との接離面である。接点7の第2面72は、通電軸6および電界緩和シールド5に対する固定面である。接点7は、例えば第2面72を銀、金、銅などにより通電軸6および電界緩和シールド5にろう付けすることで、これらに固定されている。
FIG. 3 shows an enlarged schematic view of the electric field mitigation shield 5 and the contacts 7 in FIG.
3, the contacts 7 (first contact 7a and second contact 7b) are circular, flat plate-like members that are substantially concentric with the axis C. A first surface 71 of the contacts 7 is a surface that comes into contact with the opposing contact 7 (the second contact 7b in the case of the first contact 7a, and the first contact 7a in the case of the second contact 7b). A second surface 72 of the contact 7 is a fixed surface to the current-carrying shaft 6 and the electric field mitigation shield 5. The contacts 7 are fixed to the current-carrying shaft 6 and the electric field mitigation shield 5 by brazing the second surface 72 to them with silver, gold, copper, or the like, for example.

接点7は、平坦部73と湾曲部(以下、第1の湾曲部という)74を有している。平坦部73は、対向する接点7と接離する平坦状の部位である。第1の湾曲部74は、接点7の周縁部位であり、平坦部73の周縁に全周に亘って連続している。第1の湾曲部74の表面75は、凹凸部、例えば突起、窪みや溝などのない一連の連続面とされている。 The contact 7 has a flat portion 73 and a curved portion (hereinafter referred to as the first curved portion) 74. The flat portion 73 is a flat portion that comes into contact with and separates from the opposing contact 7. The first curved portion 74 is a peripheral portion of the contact 7, and is continuous with the entire periphery of the flat portion 73. The surface 75 of the first curved portion 74 is a continuous surface that is free of uneven portions, such as protrusions, depressions, or grooves.

電界緩和シールド5(第1の電界緩和シールド5aおよび第2の電界緩和シールド5b)は、厚さよりも直径の方が大きな扁平で軸芯Cとほぼ同心の環状をなしている。電界緩和シールド5の厚さは、軸芯C方向(図3においては上下方向)の最大長さである。電界緩和シールド5の直径、軸芯C方向と直交する方向(図3においては左右方向)の最大長さである。電界緩和シールド5の外周面51は、絶縁容器2の内周面23との対向面である。電界緩和シールド5の内周面52は、通電軸6に対する固定面である。電界緩和シールド5は、例えば内周面52を銀、金、銅などにより通電軸6の外周面にろう付けすることで、通電軸6に固定されている。 The electric field mitigation shield 5 (first electric field mitigation shield 5a and second electric field mitigation shield 5b) is a flat annular shape with a diameter larger than its thickness, and is approximately concentric with the axis C. The thickness of the electric field mitigation shield 5 is the maximum length in the direction of the axis C (the vertical direction in FIG. 3). The diameter of the electric field mitigation shield 5 is the maximum length in the direction perpendicular to the direction of the axis C (the horizontal direction in FIG. 3). The outer peripheral surface 51 of the electric field mitigation shield 5 faces the inner peripheral surface 23 of the insulating container 2. The inner peripheral surface 52 of the electric field mitigation shield 5 is a fixed surface relative to the current-carrying shaft 6. The electric field mitigation shield 5 is fixed to the current-carrying shaft 6, for example, by brazing the inner peripheral surface 52 to the outer peripheral surface of the current-carrying shaft 6 with silver, gold, copper, etc.

電界緩和シールド5は、基部53と湾曲部(以下、第2の湾曲部という)54を有している。基部53は、通電軸6に支持される円筒状の部位であり、両側の筒端(図3においては上下端)が平坦面とされている。第2の湾曲部54は、電界緩和シールド5の周縁部位であり、基部53の周縁に全周に亘って連続している。第2の湾曲部54の表面55は、凹凸部、例えば突起、窪みや溝などのない一連の連続面とされている。表面55は、電界緩和シールド5の外周面51に相当する。 The electric field reduction shield 5 has a base 53 and a curved portion (hereinafter referred to as the second curved portion) 54. The base 53 is a cylindrical portion supported by the current-carrying shaft 6, and both ends of the tube (the upper and lower ends in FIG. 3) are flat surfaces. The second curved portion 54 is the peripheral portion of the electric field reduction shield 5, and is continuous with the entire periphery of the base 53. The surface 55 of the second curved portion 54 is a continuous surface without uneven portions, such as protrusions, depressions, or grooves. The surface 55 corresponds to the outer peripheral surface 51 of the electric field reduction shield 5.

接点7において、第1の湾曲部74の表面75は、所定の曲率半径で湾曲する曲面となっている。また、電界緩和シールド5において、第2の湾曲部54の表面55は、所定の曲率半径で湾曲する曲面となっている。第1の湾曲部74の表面75の曲率半径は、第2の湾曲部54の表面55の曲率半径よりも小さい。 At the contact 7, the surface 75 of the first curved portion 74 is a curved surface that is curved with a predetermined radius of curvature. At the electric field mitigation shield 5, the surface 55 of the second curved portion 54 is a curved surface that is curved with a predetermined radius of curvature. The radius of curvature of the surface 75 of the first curved portion 74 is smaller than the radius of curvature of the surface 55 of the second curved portion 54.

本実施形態では、電界緩和シールド5と接点7は、絶縁破壊電界強度が同程度の素材でそれぞれ形成されている。固定電極4a側および可動電極4b側で、電界緩和シールド5と接点7により構成される系(以下、対象系という)において、第1の湾曲部74の表面75の曲率半径を第2の湾曲部54の表面55の曲率半径よりも小さくすることで、電界緩和シールド5に作用する電界強度が接点7に作用する電界強度よりも低減される。 In this embodiment, the electric field mitigation shield 5 and the contact 7 are each formed from materials with similar breakdown electric field strengths. In a system (hereinafter referred to as the target system) formed by the electric field mitigation shield 5 and the contact 7 on the fixed electrode 4a side and the movable electrode 4b side, the radius of curvature of the surface 75 of the first curved portion 74 is made smaller than the radius of curvature of the surface 55 of the second curved portion 54, so that the electric field strength acting on the electric field mitigation shield 5 is reduced to be lower than the electric field strength acting on the contact 7.

このため、かかる対象系において、第2の湾曲部54における有効面積を第1の湾曲部74における有効面積よりも小さくできる。換言すれば、かかる対象系における有効面積を接点7の第1の湾曲部74により集中させることができる。これにより、該対象系における電界緩和シールド5の絶縁破壊電界強度を接点7に対して高めることができる。したがって、電流遮断時にアーク放電が発生した場合であっても、その発生個所を接点7a,7b間にとどめることができ、電界緩和シールド5a,5b間でのアーク放電を抑制できる。結果として、電界緩和シールド5の損傷を低減させ、電界緩和シールド5の絶縁破壊を抑制できる。ひいては、真空開閉装置1の絶縁性能の低下を抑止可能となる。 Therefore, in such a target system, the effective area of the second curved portion 54 can be made smaller than the effective area of the first curved portion 74. In other words, the effective area of such a target system can be concentrated in the first curved portion 74 of the contact 7. This makes it possible to increase the dielectric breakdown field strength of the electric field mitigation shield 5 in the target system relative to the contact 7. Therefore, even if an arc discharge occurs when the current is interrupted, the occurrence point can be confined between the contacts 7a and 7b, and the arc discharge between the electric field mitigation shields 5a and 5b can be suppressed. As a result, damage to the electric field mitigation shield 5 can be reduced and dielectric breakdown of the electric field mitigation shield 5 can be suppressed. In turn, it becomes possible to suppress the deterioration of the insulation performance of the vacuum switchgear 1.

第2の湾曲部54の表面55の曲率半径に対する第1の湾曲部74の表面75の曲率半径の縮小の程度は、特に限定されない。例えば、接点7a,7bが分離(開極)して負荷電流が遮断された状態で、電界緩和シールド5の第2の湾曲部54に作用する最大電界強度は、接点7の第1の湾曲部74に作用する最大電界強度よりも小さくなるように、表面55よりも表面75の曲率半径を小さくすればよい。具体的には、電界緩和シールド5の第2の湾曲部54に作用する最大電界強度が接点7の第1の湾曲部74に作用する最大電界強度の90%以下程度となればよい。一例として、第1の湾曲部74の表面75の曲率半径が5mm程度である場合、第2の湾曲部54の表面55の曲率半径が20mm程度であればよい。 The degree of reduction in the radius of curvature of the surface 75 of the first curved portion 74 relative to the radius of curvature of the surface 55 of the second curved portion 54 is not particularly limited. For example, the radius of curvature of the surface 75 may be made smaller than that of the surface 55 so that the maximum electric field strength acting on the second curved portion 54 of the electric field mitigation shield 5 is smaller than the maximum electric field strength acting on the first curved portion 74 of the contact 7 when the contacts 7a and 7b are separated (opened) and the load current is interrupted. Specifically, the maximum electric field strength acting on the second curved portion 54 of the electric field mitigation shield 5 may be about 90% or less of the maximum electric field strength acting on the first curved portion 74 of the contact 7. As an example, when the radius of curvature of the surface 75 of the first curved portion 74 is about 5 mm, the radius of curvature of the surface 55 of the second curved portion 54 may be about 20 mm.

なお、本実施形態に係る電界緩和シールド5は、基部53と第2の湾曲部54とを有しているが、基部53が省略された構成であっても構わない。この場合、電界緩和シールドは、第2の湾曲部54に相当する部分として、軸芯Cと同心の貫通孔を中心部に有する環状の湾曲部を有して構成される。 The electric field mitigation shield 5 according to this embodiment has a base 53 and a second curved portion 54, but the base 53 may be omitted. In this case, the electric field mitigation shield is configured to have an annular curved portion having a through hole at the center that is concentric with the axis C as the portion corresponding to the second curved portion 54.

上述したように、本実施形態では第1の湾曲部74および第2の湾曲部54において、表面55よりも表面75の曲率半径を小さくしたが、これに加えてこれらの湾曲部74,54を次のような形態とすることで、電界緩和シールド5a,5b間でのアーク放電の抑制を図ってもよい。以下、このような実施形態を第2の実施形態および第3の実施形態として説明する。これらの実施形態における真空開閉装置の基本的な構成は、第1の実施形態に係る真空開閉装置1(図1)と同様である。したがって、以下では、かかる真空開閉装置の基本的な構成についての説明は省略し、第2の実施形態および第3の実施形態の特徴である電界緩和シールドおよび接点について詳述する。その際、第1の実施形態と同一もしくは類似の構成部材については、同一の参照符号を用いる。 As described above, in this embodiment, the radius of curvature of the surface 75 is smaller than that of the surface 55 in the first curved portion 74 and the second curved portion 54. In addition, the curved portions 74, 54 may be formed as follows to suppress arc discharge between the electric field mitigation shields 5a, 5b. Such embodiments will be described below as the second and third embodiments. The basic configuration of the vacuum opening and closing device in these embodiments is the same as that of the vacuum opening and closing device 1 according to the first embodiment (FIG. 1). Therefore, the basic configuration of the vacuum opening and closing device will be omitted below, and the electric field mitigation shield and contacts, which are the characteristics of the second and third embodiments, will be described in detail. In this case, the same reference numerals will be used for components that are the same or similar to those in the first embodiment.

(第2の実施形態)
図4には、第2の実施形態に係る電界緩和シールド5および接点7の形態を概略的に示す。例えば、電界緩和シールド5の大きさは、絶縁容器2の内部22の空間の大きさによって左右される。真空開閉装置1が小型化され、絶縁容器2の内部22に十分な空間を確保できない場合には、それに応じて電界緩和シールド5の大きさも制限される。この場合、電界緩和シールド5および接点7を適切な表面粗さとし、これらの電界バランスを制御することができる。例えば、Fowler-Nordheim理論では、真空中の絶縁性能は、対象となる系、例えば対象部材の表面粗さによっても規定される。かかる理論によれば、電界不平等性の高いミクロな突起部を想定し、局所的に電界が強調されて電界電子放出が顕著になり、この電界電子放出が絶縁破壊のトリガになるとされている。図5には、表面粗さと絶縁破壊電界強度の関係を示す。図5に示すように、表面粗さが細かく(一例として、表面粗さの尺度が小さく)なるほど、絶縁破壊電界強度が高くなる。したがって、絶縁破壊電界強度を高めるためには、表面粗さを細かくすることが好ましい。
Second Embodiment
FIG. 4 shows a schematic view of the electric field mitigation shield 5 and the contacts 7 according to the second embodiment. For example, the size of the electric field mitigation shield 5 depends on the size of the space inside 22 of the insulating container 2. If the vacuum switchgear 1 is miniaturized and sufficient space cannot be secured inside 22 of the insulating container 2, the size of the electric field mitigation shield 5 is limited accordingly. In this case, the electric field balance between the electric field mitigation shield 5 and the contacts 7 can be controlled by making the surface roughness appropriate. For example, in the Fowler-Nordheim theory, the insulation performance in a vacuum is also determined by the surface roughness of the target system, for example, the target member. According to this theory, assuming a microscopic protrusion with a high degree of electric field inequality, the electric field is locally emphasized, making the field electron emission prominent, and this field electron emission is said to trigger the dielectric breakdown. FIG. 5 shows the relationship between the surface roughness and the dielectric breakdown field strength. As shown in FIG. 5, the finer the surface roughness (for example, the smaller the scale of the surface roughness), the higher the dielectric breakdown field strength. Therefore, in order to increase the dielectric breakdown field strength, it is preferable to make the surface roughness finer.

このため、本実施形態に係る電界緩和シールド5において、第2の湾曲部54の表面55aは、第1の湾曲部74の表面75aよりも表面粗さが細かい。換言すれば、表面55aは表面75aよりも滑面であり、表面75aは表面55aよりも粗面である。表面55aよりも表面75aの表面粗さを細かくするための方法、つまり表面55aを表面75aよりも滑面とするための方法は、特に限定されない。例えば、電界緩和シールド5の第2の湾曲部54に対して、電解研磨や化学研磨などの表面処理を施し、表面55aの表面粗さを表面75aの表面粗さよりも細かくすればよい。その際、接点7の第1の湾曲部74に対して電解研磨や化学研磨などの表面処理を施すかどうかは問わない。すなわち、電界緩和シールド5の第2の湾曲部54は、相対的に第1の湾曲部74の表面75aよりも表面55aの表面粗さが細かければよい。表面75aに表面処理を施さない場合、その表面粗さは第1の実施形態に係る第1の湾曲部74の表面75の表面粗さと同じである。 For this reason, in the electric field mitigation shield 5 according to this embodiment, the surface 55a of the second curved portion 54 has a finer surface roughness than the surface 75a of the first curved portion 74. In other words, the surface 55a is smoother than the surface 75a, and the surface 75a is rougher than the surface 55a. The method for making the surface roughness of the surface 75a finer than the surface 55a, that is, the method for making the surface 55a smoother than the surface 75a, is not particularly limited. For example, the second curved portion 54 of the electric field mitigation shield 5 may be subjected to a surface treatment such as electrolytic polishing or chemical polishing, so that the surface roughness of the surface 55a may be made finer than the surface roughness of the surface 75a. In this case, it does not matter whether the first curved portion 74 of the contact 7 is subjected to a surface treatment such as electrolytic polishing or chemical polishing. In other words, the second curved portion 54 of the electric field mitigation shield 5 may have a relatively finer surface roughness than the surface 75a of the first curved portion 74. If surface treatment is not applied to surface 75a, its surface roughness is the same as the surface roughness of surface 75 of first curved portion 74 in the first embodiment.

このように表面55aよりも表面75aの表面粗さを細かくすることで、固定電極4a側の対象系および可動電極4b側の対象系において、電界緩和シールド5の絶縁破壊電界強度を接点7に対して高めることができる。したがって、電界緩和シールド5a,5b間でのアーク放電を抑え、これらの絶縁破壊を抑制できる。 By making the surface roughness of surface 75a finer than that of surface 55a in this way, the dielectric breakdown field strength of the electric field mitigation shield 5 can be increased with respect to the contact 7 in the target system on the fixed electrode 4a side and the target system on the movable electrode 4b side. Therefore, arc discharge between the electric field mitigation shields 5a and 5b can be suppressed, and dielectric breakdown therebetween can be suppressed.

なお、表面粗さの尺度としては、例えば算術平均粗さ(Ra)、最大高さ(Ry)、十点平均粗さ(Rz)などを用いることができる。表面粗さは、第1の湾曲部74と第2の湾曲部54の各表面75a,55aからランダムに選択した部分における上記いずれかの尺度で判断すればよい。 The surface roughness can be measured using, for example, arithmetic mean roughness (Ra), maximum height (Ry), or ten-point mean roughness (Rz). The surface roughness can be determined using any of the above-mentioned measures on randomly selected portions of the surfaces 75a, 55a of the first curved portion 74 and the second curved portion 54.

(第3の実施形態)
図6には、第3の実施形態に係る電界緩和シールド5および接点7の形態を概略的に示す。
図6に示すように、本実施形態に係る電界緩和シールド5において、第2の湾曲部54の表面55は、第1の湾曲部74、端的には接点7の素材と絶縁性および電流遮断性がそれぞれ同等の高耐圧材で被膜されている。すなわち、表面55には、所定の被膜56が形成されている。
Third Embodiment
FIG. 6 shows a schematic configuration of an electric field mitigation shield 5 and a contact 7 according to the third embodiment.
6 , in the electric field mitigation shield 5 according to this embodiment, the surface 55 of the second curved portion 54 is coated with a high-voltage material having the same insulating properties and current-blocking properties as the material of the first curved portion 74, or more specifically, the contact 7. That is, a predetermined coating 56 is formed on the surface 55.

被膜56は、第1の湾曲部74を含む接点7の素材に応じて、次のような素材で形成すればよい。例えば、接点7の素材が銅(Cu)が75%、クロム(Cr)が25%の銅クロム(CuCr)である場合、被膜56の素材は、銅(Cu)が75%から65%、クロム(Cr)が25%から35%程度の銅クロム、あるいはこれと同程度の高耐圧材であればよい。被膜56の形成方法は、特に限定されない。例えば、イオンプレーティング法、物理蒸着法(PVD)、化学蒸着法(CVD)などにより、表面55に被膜56を形成すればよい。 The coating 56 may be made of the following materials depending on the material of the contact 7 including the first curved portion 74. For example, if the material of the contact 7 is copper chromium (CuCr) with 75% copper (Cu) and 25% chromium (Cr), the material of the coating 56 may be copper chromium with approximately 75% to 65% copper (Cu) and 25% to 35% chromium (Cr), or a high-pressure resistant material of the same level. The method of forming the coating 56 is not particularly limited. For example, the coating 56 may be formed on the surface 55 by ion plating, physical vapor deposition (PVD), chemical vapor deposition (CVD), or the like.

このように表面55に高耐圧の被膜56を形成することで、固定電極4a側の対象系および可動電極4b側の対象系において、電界緩和シールド5a,5b間でのアーク放電が生じた場合であっても、これらの損傷を低減して絶縁破壊を抑制できる。例えば、電界緩和シールド5が接点7と比べてサイズが大きくなった場合、電界緩和シールド5の全体を別の高耐圧材で置換することはコストアップを招き、好ましくない。このような場合であっても、本実施形態では、電界緩和シールド5の素材を変更することなく、第2の湾曲部54の表面55に絶縁性および電流遮断性に優れた被膜56を形成することで、第2の湾曲部54の高耐圧化を図ることができる。したがって、比較的安価に電界緩和シールド5の絶縁性および電流遮断性を高めることができる。 By forming the high-voltage coating 56 on the surface 55 in this way, even if an arc discharge occurs between the electric field mitigation shields 5a, 5b in the target system on the fixed electrode 4a side and the target system on the movable electrode 4b side, the damage to these can be reduced and insulation breakdown can be suppressed. For example, if the electric field mitigation shield 5 becomes larger in size than the contact 7, replacing the entire electric field mitigation shield 5 with another high-voltage material will increase costs and is not preferable. Even in such a case, in this embodiment, the second curved portion 54 can be made to have a high voltage resistance by forming a coating 56 with excellent insulating properties and current blocking properties on the surface 55 of the second curved portion 54 without changing the material of the electric field mitigation shield 5. Therefore, the insulating properties and current blocking properties of the electric field mitigation shield 5 can be improved relatively inexpensively.

なお、被膜56の膜厚は、電流の遮断時に多少損耗することを考慮した厚みであることが好ましい。例えば、真空開閉装置1の開閉寿命に基づいて、および接点7の有効面積と電界緩和シールド5の有効面積との相対的な関係に基づいて電界緩和シールド5を起点とした遮断が生じる回数を予め想定し、その遮断回数に応じて被膜56の膜厚を設定することで、被膜56をより低コストで形成可能となる。 It is preferable that the thickness of the coating 56 be set in consideration of some wear when the current is interrupted. For example, the number of interruptions that will occur originating from the electric field mitigation shield 5 can be estimated in advance based on the switching life of the vacuum switchgear 1 and the relative relationship between the effective area of the contacts 7 and the effective area of the electric field mitigation shield 5, and the thickness of the coating 56 can be set according to the number of interruptions, making it possible to form the coating 56 at a lower cost.

また、本実施形態に係る電界緩和シールド5において、被膜56は、第2の湾曲部54の表面55に加えて、基部53の表面にも形成されている。すなわち、被膜56は、電界緩和シールド5が外部に曝される領域の全体にわたって形成されている。ただし、被膜56は、かかる領域の全体に形成されていなくともよく、少なくとも第2の湾曲部54の表面55の全体にわたって形成されていればよい。 In addition, in the electric field mitigation shield 5 according to this embodiment, the coating 56 is formed on the surface 55 of the second curved portion 54 as well as on the surface of the base portion 53. That is, the coating 56 is formed over the entire area of the electric field mitigation shield 5 that is exposed to the outside. However, the coating 56 does not have to be formed over the entire area, and it is sufficient that the coating 56 is formed over at least the entire surface 55 of the second curved portion 54.

以上、本発明のいくつかの実施形態を説明したが、上述した各実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the present invention have been described above, the above-mentioned embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, substitutions, and modifications can be made without departing from the gist of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are included in the scope of the invention and its equivalents described in the claims.

1…真空開閉装置、2…絶縁容器、3…封着金具、4…電極、5,5a,5b…電界緩和部材(電界緩和シールド)、6…通電軸、7,7a,7b…接点、8…ベローズ、9…アークシールド、21…開口部、53…基部、54…第2の湾曲部、55,55a…第2の湾曲部の表面、56…被膜、73…平坦部、74…第1の湾曲部、75,75a…第1の湾曲部の表面、C…軸芯、S…空隙。 1...vacuum switchgear, 2...insulating container, 3...sealing metal fitting, 4...electrode, 5, 5a, 5b...electric field relaxation member (electric field relaxation shield), 6...current-carrying shaft, 7, 7a, 7b...contacts, 8...bellows, 9...arc shield, 21...opening, 53...base, 54...second curved portion, 55, 55a...surface of second curved portion, 56...coating, 73...flat portion, 74...first curved portion, 75, 75a...surface of first curved portion, C...shaft core, S...gap.

Claims (5)

絶縁材で筒状に構成され、筒軸方向の両端に開口部をそれぞれ有する絶縁容器と、
前記絶縁容器に収容され、互いの接点を接離可能な一対の電極と、
前記開口部にそれぞれ接合され、前記絶縁容器を閉塞する封着金具と、
前記接点の素材と同等の絶縁破壊電界強度を有する素材で形成され、前記絶縁容器と前記接点との間の電界強度を緩和する一対の電界緩和部材と、を備え、
前記接点は、所定の曲率半径で表面が湾曲する第1の湾曲部を有し、
前記電界緩和部材は、所定の曲率半径で表面が湾曲する第2の湾曲部を有し、
前記第1の湾曲部の表面の曲率半径は、前記第2の湾曲部の表面の曲率半径よりも小さく、
前記第2の湾曲部の表面は、前記第1の湾曲部の表面よりも表面粗さが細か
真空開閉装置。
an insulating container made of an insulating material and having a cylindrical shape and an opening at each end in a cylindrical axial direction;
A pair of electrodes housed in the insulating container and capable of connecting and disconnecting contacts with each other;
a sealing metal fitting joined to each of the openings and closing the insulating container;
a pair of electric field relaxation members formed of a material having a dielectric breakdown electric field strength equivalent to that of a material of the contacts, and relaxing the electric field strength between the insulating container and the contacts;
The tangent point has a first curved portion having a surface curved with a predetermined radius of curvature;
the electric field relaxation member has a second curved portion whose surface is curved at a predetermined radius of curvature,
a radius of curvature of the surface of the first curved portion is smaller than a radius of curvature of the surface of the second curved portion;
A vacuum switchgear , wherein a surface of the second curved portion has a finer surface roughness than a surface of the first curved portion .
一対の前記電界緩和部材は、一対の前記電極の各々に対応して一つずつ配置され、
一対の前記接点の接離方向において、一の前記電界緩和部材は、これに対応する一の前記接点よりも他の前記接点から離れて配置される
請求項1に記載の真空開閉装置。
The pair of electric field relaxation members are arranged corresponding to each of the pair of electrodes,
The vacuum switchgear according to claim 1 , wherein one of the electric field relaxation members is disposed farther away from the other of the contacts than a corresponding one of the contacts is disposed in a direction in which the pair of contacts move together.
前記第2の湾曲部の表面は、突起および窪みのない一連の連続面である
請求項2に記載の真空開閉装置。
The vacuum switchgear according to claim 2 , wherein the surface of the second curved portion is a continuous surface without any protrusions or depressions.
前記電界緩和部材は、前記筒軸方向において、前記筒軸方向の最大長さよりも前記筒軸方向と直交する方向の最大長さの方が大きな扁平をなす
請求項3に記載の真空開閉装置。
The vacuum switchgear according to claim 3 , wherein the electric field relaxation member is flattened in such a way that a maximum length in a direction perpendicular to the cylindrical axis direction is greater than a maximum length in the cylindrical axis direction.
一対の前記接点が分離して負荷電流が遮断された状態において、前記第2の湾曲部に作用する最大電界強度は、前記第1の湾曲部に作用する最大電界強度の90%以下である
請求項1からのいずれか一項に記載の真空開閉装置。
5. The vacuum switchgear according to claim 1, wherein when the pair of contacts are separated to interrupt the load current, a maximum electric field strength acting on the second curved portion is 90% or less of a maximum electric field strength acting on the first curved portion.
JP2020102111A 2020-06-12 2020-06-12 Vacuum Switchgear Active JP7471929B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020102111A JP7471929B2 (en) 2020-06-12 2020-06-12 Vacuum Switchgear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020102111A JP7471929B2 (en) 2020-06-12 2020-06-12 Vacuum Switchgear

Publications (2)

Publication Number Publication Date
JP2021197262A JP2021197262A (en) 2021-12-27
JP7471929B2 true JP7471929B2 (en) 2024-04-22

Family

ID=79195833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020102111A Active JP7471929B2 (en) 2020-06-12 2020-06-12 Vacuum Switchgear

Country Status (1)

Country Link
JP (1) JP7471929B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011258523A (en) 2010-06-11 2011-12-22 Toshiba Corp Vacuum switchgear device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011258523A (en) 2010-06-11 2011-12-22 Toshiba Corp Vacuum switchgear device

Also Published As

Publication number Publication date
JP2021197262A (en) 2021-12-27

Similar Documents

Publication Publication Date Title
US8497446B1 (en) Encapsulated vacuum interrupter with grounded end cup and drive rod
KR20090075664A (en) Vacuum circuit breaker
US10134546B2 (en) Maximizing wall thickness of a Cu—Cr floating center shield component by moving contact gap away from center flange axial location
KR19980042004A (en) Vacuum breaker with arc diffusion contact device
CN109920691B (en) Vacuum bottle for an electrical switching device
US20220270837A1 (en) Vacuum interrupter with double live shield
JP7471929B2 (en) Vacuum Switchgear
CN105529209A (en) Axial magnetic field coil for vacuum interrupter
WO2023021842A1 (en) Gas-insulated switching device
CN111415836B (en) Vacuum interrupter for vacuum circuit breaker
JP5475559B2 (en) Vacuum switchgear
JP5537303B2 (en) Vacuum valve
RU2230383C2 (en) Vacuum switch
JP2007115599A (en) Vacuum valve
EP3588528B1 (en) Gas-insulated high or medium voltage circuit breaker with ring-like element
US20220102096A1 (en) Vacuum interrupter with trap for running cathode tracks
EP4336536A1 (en) A contact assembly for an electrical circuit breaker
JP7170499B2 (en) vacuum valve
JPS61288332A (en) Vacuum apparatus
JP2024126422A (en) Vacuum valve
JP2006344557A (en) Vacuum valve and conditioning treatment method
JP2024123757A (en) Vacuum valve and vacuum circuit breaker using the same
Falkingham The shieldless insulation design of vacuum interrupters
JP2024064677A (en) Mold vacuum valve
JP2022132958A (en) vacuum valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240410

R150 Certificate of patent or registration of utility model

Ref document number: 7471929

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150