JP2904452B2 - Contact material for vacuum valve - Google Patents

Contact material for vacuum valve

Info

Publication number
JP2904452B2
JP2904452B2 JP23361391A JP23361391A JP2904452B2 JP 2904452 B2 JP2904452 B2 JP 2904452B2 JP 23361391 A JP23361391 A JP 23361391A JP 23361391 A JP23361391 A JP 23361391A JP 2904452 B2 JP2904452 B2 JP 2904452B2
Authority
JP
Japan
Prior art keywords
cutting
arc
current
conductive component
contact material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23361391A
Other languages
Japanese (ja)
Other versions
JPH0574284A (en
Inventor
敦史 山本
功 奥冨
経世 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP23361391A priority Critical patent/JP2904452B2/en
Publication of JPH0574284A publication Critical patent/JPH0574284A/en
Application granted granted Critical
Publication of JP2904452B2 publication Critical patent/JP2904452B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電流裁断特性に優れた
真空バルブ用接点材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a contact material for a vacuum valve having excellent current cutting characteristics.

【0002】[0002]

【従来の技術】真空中でのアーク拡散性を利用して、高
真空中で電流遮断を行わせる真空バルブの接点は、対向
する固定、可動の2つの接点から構成されている。この
真空バルブを用いて電動機負荷などの誘導性回路の電流
を遮断する時、過度の異常サージ電圧が発生して負荷機
器を破壊させる恐れがある。この異常サージ電圧の発生
原因は、例えば、真空中における小電流遮断時に発生す
る裁断現象(交流電流波形の自然ゼロ点を待たずに強制
的に電流遮断が行われる事)、あるいは高周波消弧現象
などによるものである。裁断現象による異常サージ電圧
の値Vs は、回路のサージインピースダンスZo・Ic
で表される。従って、異常サージ電圧Vsを低くするた
めには電流裁断値Icを小さくしなくてはならない。
2. Description of the Related Art The contacts of a vacuum valve for interrupting a current in a high vacuum by utilizing arc diffusivity in a vacuum are composed of two fixed and movable contacts facing each other. When the current of an inductive circuit such as a motor load is cut off by using this vacuum valve, an excessive abnormal surge voltage may be generated to destroy the load device. The cause of the abnormal surge voltage is, for example, a cutting phenomenon that occurs when a small current is interrupted in a vacuum (current interruption is performed without waiting for a natural zero point of an AC current waveform) or a high-frequency arc extinguishing phenomenon And so on. The value of the abnormal surge voltage Vs due to the cutting phenomenon is the surge impulse dance Zo · Ic of the circuit.
It is represented by Therefore, in order to lower the abnormal surge voltage Vs, the current cutoff value Ic must be reduced.

【0003】上記の要求に対して、炭化タングステン
(WC)と銀(Ag)とを複合化した合金の接点を用い
た真空開閉器が開発され(米国特許第3683138
号)実用化されている。このAg−WC系合金の接点に
は、次のような特徴がある。 (1)WCの介在が電子放射を容易にさせる。 (2)電界放射電子の衝突による電極面の加熱に基づく
接点材料の蒸発を促進させる。 (3)接点材料の炭化物がアークにより分解し、荷電体
を生成してアークを接続する。
In response to the above requirements, a vacuum switch using a contact made of an alloy of a composite of tungsten carbide (WC) and silver (Ag) has been developed (US Pat. No. 3,683,138).
No.) has been put to practical use. The contact of the Ag-WC alloy has the following characteristics. (1) The presence of WC facilitates electron emission. (2) The evaporation of the contact material based on the heating of the electrode surface by the collision of the field emission electrons is promoted. (3) The carbide of the contact material is decomposed by the arc to generate a charged body and connect the arc.

【0004】また、低裁断電流特性を発揮する他の接点
材料として、ビスマス(Bi)と銅(Cu)とを複合化
した合金が製造され、この材料が真空バルブに実用化さ
れている(特公昭35−14974号、米国特許第29
75256号、特公昭41−12131号、米国特許第
3246979号)。この合金のうちBiを10重量%
(以下wt%)としたもの(特公昭35−14974
号)はその適度な蒸気圧特性を有するので、低い裁断電
流特性を発揮し、またBiを0.5wt%とした(特公
昭41−12131号)ものは、結晶粒界に偏析して存
在する結果、合金自体を脆化し低い溶着引き外し力を実
現し大電流遮断性に優れている。
Further, as another contact material exhibiting a low cutting current characteristic, an alloy in which bismuth (Bi) and copper (Cu) are compounded has been manufactured, and this material has been put to practical use in a vacuum valve (see, for example, Japanese Patent Application Laid-Open No. H11-157556). No. 35-14974, U.S. Pat. No. 29
No. 75256, Japanese Patent Publication No. 41-12131, U.S. Pat. No. 3,246,979). 10% by weight of Bi in this alloy
(Hereinafter referred to as wt%) (Japanese Patent Publication No. 35-14974).
No.) has a low cutting current characteristic since it has an appropriate vapor pressure characteristic, and the one in which Bi is 0.5 wt% (Japanese Patent Publication No. 41-12131) is segregated at crystal grain boundaries. As a result, the alloy itself is embrittled to realize a low welding pull-off force, and is excellent in large current interrupting properties.

【0005】低裁断電流特性を得る他の接点材料とし
て、AgとCuとの比率をほぼ7:3とした、Ag−C
u−WC合金がある。この合金において従来にない限定
をしたAgとCuとの比率を選択するので、安定した裁
断電流特性を発揮する。また、耐弧性材料の粒界(例え
ば、WCの粒界)を0.2〜1μmとすることにより、
低裁断電流特性の改善に有効であることもわかってい
る。
[0005] As another contact material for obtaining low cutting current characteristics, Ag-C, in which the ratio of Ag to Cu is approximately 7: 3, is used.
There is a u-WC alloy. In this alloy, a ratio of Ag and Cu, which has never been limited, is selected, so that stable cutting current characteristics are exhibited. Further, by setting the grain boundary of the arc-resistant material (for example, the grain boundary of WC) to 0.2 to 1 μm,
It has also been found that it is effective for improving low cutting current characteristics.

【0006】[0006]

【発明が解決しようとする課題】真空遮断器には低サー
ジ性が要求され、そのためには、低裁断電流特性が要求
されていた。
The vacuum circuit breaker is required to have a low surge property, and for that purpose, a low cutting current characteristic is required.

【0007】しかしながら、真空バルブは、近年、大容
量電動機等の誘導性回路に適用されることが一層増える
と共に、高サージ・インピーダンス負荷も出現したた
め、真空バルブは、一層安定した低裁断特性を持つこと
が望まれるようになってきた。WCとAgを複合化した
合金の接点(米国特許第3683138号)では、裁断
電流が十分に低いとはいえない。
However, in recent years, the vacuum valve has been more and more applied to inductive circuits such as large-capacity electric motors, and a high surge impedance load has appeared. Therefore, the vacuum valve has more stable and low cutting characteristics. It has come to be desired. In the case of an alloy contact made of a composite of WC and Ag (US Pat. No. 3,683,138), the cutting current is not sufficiently low.

【0008】10wt%のBiとCuとを複合化した合
金(特公昭35−14974号、米国特許第29752
56号)では、開閉回路の増大と共に電極空間への金属
蒸気の供給量が減少し低裁断電流特性の劣化が現れ、高
蒸気圧元素量に依存して耐電圧特性の劣化も指摘されて
いる。0.5wt%のBiとCuとを複合化した合金
(特公昭41−12131号、米国特許第324697
9号)も、低裁断電流特性が不十分である。
An alloy in which 10 wt% of Bi and Cu are compounded (Japanese Patent Publication No. 35-14974, US Pat.
No. 56), it is pointed out that the supply amount of metal vapor to the electrode space decreases with the increase in the switching circuit, and the low cutting current characteristics deteriorate, and the withstand voltage characteristics deteriorate depending on the high vapor pressure element amount. . Alloy containing 0.5 wt% of Bi and Cu (Japanese Patent Publication No. 41-12131, U.S. Pat. No. 3,246,976)
No. 9) also has insufficient low cutting current characteristics.

【0009】また、AgとCuとの重量比率はほぼ7:
3としたAg−Cu−WC合金および耐弧性材料の粒径
が0.2〜1μmとする合金では、その平均的な電流裁
断特性については、ある程度改善されているものの、多
数回開閉した場合の裁断電流値の最大値についての配慮
は不十分である。
The weight ratio of Ag to Cu is approximately 7:
In the case of Ag-Cu-WC alloy and the alloy whose arc-resistant material has a particle size of 0.2 to 1 μm, although the average current cutting characteristics are improved to some extent, when the alloy is opened and closed many times, Of the maximum cutting current value is insufficient.

【0010】本発明は、上述の背景に基づきなされたも
のであり、その目的とするところは、極めて低い電流裁
断特性を有する真空遮断器用接点材料を提供し、苛酷化
する真空遮断器への要求に応えることである。
The present invention has been made on the basis of the above background, and has as its object to provide a contact material for a vacuum circuit breaker having extremely low current cutting characteristics, and to meet a demand for a severer vacuum circuit breaker. It is to respond to.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に本発明は、Agまたは/およびCuよりなる高導電成
分と、WC、Mo2 C、TaC、Cr2 3 、TiCの
うちの少なくとも1つ以上よりなる耐弧材と、Fe、C
o、Niのうち少なくとも1つ以上よりなる焼結助材に
より構成され、その組成は、高導電成分が20〜65v
ol%であり、高導電成分のうちのAgの割合が30w
t%以上であり、かつ、焼結助材が1wt%以下であ
り、その組識は、粒径が3μm以下の耐弧材が高導電成
分中に微細かつ均一に分散している第1の領域と、幅あ
るいは粒径が10μm以上の導電成分が主体の第2の領
域よりなり、第1の領域が全組識中に占める割合が80
vol%以上であるようにした真空バルブ用接点材料で
ある。
In order to achieve the above-mentioned object, the present invention provides a high-conductivity component comprising Ag and / or Cu and at least one of WC, Mo 2 C, TaC, Cr 2 C 3 and TiC. One or more arc resistant materials, Fe, C
o, a sintering aid composed of at least one of Ni, the composition of which is 20 to 65 v
ol%, and the ratio of Ag in the high conductive component is 30 w
t% or more, and the sintering aid is 1 wt% or less, and its structure is that the arc-resistant material having a particle size of 3 μm or less is finely and uniformly dispersed in the highly conductive component. The second region is mainly composed of a region and a conductive component having a width or a particle size of 10 μm or more, and the ratio of the first region to the whole tissue is 80%.
It is a contact material for a vacuum valve in which the content is at least vol.

【0012】[0012]

【作用】焼結系接点材料のような複合材料接点では、そ
の電流裁断特性が材料組成のみならず、その組識に大き
く影響される。それは、電流裁断現象が陰極点と呼ばれ
る極めて小さな領域のエネルギーおよび物質のバランス
の崩壊によって発生する現象であるためと考えられる。
この陰極点の大きさは、例えば、Ag−WC−Coとい
った接点材料に代表される本発明に示されるような接点
材料の場合、電流裁断瞬時には、その直径が10μm程
度まで小さくなる。このため、材料組識がこのオーダー
まで完全に均質でない場合には、電流裁断時に陰極点が
存在していた場所の組成により裁断特性が異なってしま
い、その裁断電流値の統計的分布形態は、図3に示すご
とく、いくつかの分布の複合分布となってしまう。従っ
て十分に低くかつ安定した裁断電流値を発生させるため
には、接点材料の組識も少なくともこのオーダーまで微
細化することが必要である。すなわち、接点材料表面の
ほとんどの部分において、直径10μmの内部の組成が
特許請求の範囲で示されている組成範囲となるように、
その組識をコントロールする必要がある。
In a composite material contact such as a sintered contact material, the current cutting characteristics are greatly affected by not only the material composition but also the organization thereof. This is considered to be because the current cutting phenomenon is a phenomenon that occurs due to the collapse of the energy and material balance in a very small area called the cathode spot.
For example, in the case of a contact material such as a contact material such as Ag-WC-Co as shown in the present invention, the diameter of the cathode spot is reduced to about 10 μm at the moment of current cutting. For this reason, if the material structure is not completely homogeneous to this order, the cutting characteristics will differ depending on the composition of the place where the cathode spot was present at the time of current cutting, and the statistical distribution form of the cutting current value is As shown in FIG. 3, a composite distribution of several distributions results. Therefore, in order to generate a sufficiently low and stable cutting current value, the structure of the contact material must be miniaturized to at least this order. That is, in most parts of the surface of the contact material, the composition inside the 10 μm diameter is in the composition range shown in the claims.
You need to control that organization.

【0013】本発明に示されている組成の接点材料は、
高融点の耐弧材を導電成分中に適量添加することにより
裁断電流値を平均的に低減している。したがって導電成
分が偏在し、耐弧材料が相対的に低くなっている部分
は、裁断特性において不利である。すなわち、本発明に
示すごとく、このような導電成分の偏在領域が低減され
るように組識をコントロールすることが重要である。
The contact material having the composition shown in the present invention is:
The cutting current value is reduced on average by adding an appropriate amount of a high melting point arc-resistant material to the conductive component. Therefore, a portion where the conductive component is unevenly distributed and the arc-resistant material is relatively low is disadvantageous in cutting characteristics. That is, as shown in the present invention, it is important to control the structure so that such an uneven distribution region of the conductive component is reduced.

【0014】[0014]

【実施例】以下、本発明の実施例を図面を参照して説明
する。図1は、真空バルブの断面図、図2は、真空バル
ブの電極部の拡大断面図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view of a vacuum valve, and FIG. 2 is an enlarged sectional view of an electrode portion of the vacuum valve.

【0015】図1において、遮断室1は、絶縁材料によ
りほぼ円筒状に形成された絶縁容器2と、この両端に封
止金具3a、3bを介して設けた金属製の蓋体4a、4
bとで真空気密に構成されている。前記遮断室1内に
は、導電棒5、6の対向する端部に取付けられた一対の
電極7、8が配設され、上部の電極7を固定電極、下部
の電極8を可動電極としている。またこの電極8の電極
棒6には、ベローズ9が取付けられ遮断室1内を真空密
に保持しながら電極8の軸方向の移動を可能にしてい
る。またこのベローズ9上部には金属製のアークシール
ド10が設けられ、ベローズ9がアーク蒸気で覆われるこ
とを防止している。また、前記電極7、8を覆うよう
に、遮断室1内に金属製のアークシールド11が設けら
れ、これにより絶縁容器2がアーク蒸気で覆われること
を防止している。さらに電極8は、図2に拡大して示す
如く、導電棒6にろう付け部12によって固定されるか
又は、かしめによって圧着接続されている。接点13aは
電極8にろう付け14によってろう付けで取付けられる。
なお、接点13bは、電極7にろう付けにより取付けられ
る。
In FIG. 1, a shut-off chamber 1 comprises an insulating container 2 formed of an insulating material in a substantially cylindrical shape, and metal lids 4a, 4a provided at both ends thereof through sealing fittings 3a, 3b.
and b. A pair of electrodes 7 and 8 attached to the opposite ends of the conductive rods 5 and 6 are provided in the shut-off chamber 1, and the upper electrode 7 is a fixed electrode and the lower electrode 8 is a movable electrode. . A bellows 9 is attached to the electrode rod 6 of the electrode 8 to enable the electrode 8 to move in the axial direction while keeping the inside of the shut-off chamber 1 vacuum-tight. A metal arc shield 10 is provided above the bellows 9 to prevent the bellows 9 from being covered with arc vapor. Further, a metal arc shield 11 is provided in the shut-off chamber 1 so as to cover the electrodes 7 and 8, thereby preventing the insulating container 2 from being covered with the arc vapor. Further, as shown in an enlarged manner in FIG. 2, the electrode 8 is fixed to the conductive rod 6 by a brazing portion 12 or is connected by crimping by crimping. The contact 13a is attached to the electrode 8 by brazing.
The contact 13b is attached to the electrode 7 by brazing.

【0016】次にこの接点材料の製造方法の1例につき
説明する。製造に先立って必要粒径別に耐弧性成分およ
び補助成分を分類する。分類作業は、例えば、ふるい分
けと沈降法とを併用して行うことで容易に所定粒径の粉
末を得る。まず所定粒径のWCとCoおよび/またはC
を所定量および、所定粒径のAgを所定量の一部用意
し、これらを混合し、その後加圧成形して粉末成形体を
得る。ついで、この粉末成形体を露点が、−50℃以下
の水素雰囲気あるいは、1.3×10-1Pa以下で、所
定温度、例えば1150℃、1時間の条件にて仮焼結
し、仮焼結体を得る。
Next, an example of a method for manufacturing the contact material will be described. Prior to production, the arc resistant components and auxiliary components are classified according to the required particle size. The classification operation is performed by using, for example, a sieving method and a sedimentation method in combination to easily obtain a powder having a predetermined particle size. First, WC of a predetermined particle size and Co and / or C
A predetermined amount of Ag and a predetermined amount of Ag having a predetermined particle size are prepared, mixed, and then pressed to obtain a powder compact. Then, the powder compact is temporarily sintered under a hydrogen atmosphere having a dew point of −50 ° C. or less or 1.3 × 10 −1 Pa or less at a predetermined temperature, for example, 1150 ° C. for 1 hour. Get the unity.

【0017】ついで、この仮焼結体の残存空孔中に所定
量および所定比率のAg−Cuを1150℃、1時間で
溶浸しAg−Cu−Co−WC合金を得る。溶浸は主と
して真空中で行うが、水素中でも可能である。
Then, a predetermined amount and a predetermined ratio of Ag-Cu are infiltrated into the remaining pores of the temporary sintered body at 1150 ° C. for 1 hour to obtain an Ag-Cu-Co-WC alloy. The infiltration is performed mainly in a vacuum, but is also possible in hydrogen.

【0018】尚、合金中の導電成分量の比率Ag/(A
g+Cu)の制御は、次の様にして行った。例えばあら
かじめ所定比率のAg/(Ag+Cu)を有するインゴ
ットを、温度1200℃、真空度1.3×10-2Paで
真空溶解を行い、切断し溶浸用素材として用いた。導電
成分の比率Ag/(Ag+Cu)の制御の他の方法は、
仮焼結体を作る際、あらかじめ、所定量の一部をWC中
に混合させることでも、所望組成の接点合金を得ること
ができる。
The ratio Ag / (A) of the amount of the conductive component in the alloy is
g + Cu) was controlled as follows. For example, an ingot having a predetermined ratio of Ag / (Ag + Cu) was vacuum melted at a temperature of 1200 ° C. and a degree of vacuum of 1.3 × 10 −2 Pa, cut, and used as a material for infiltration. Another method of controlling the ratio Ag / (Ag + Cu) of the conductive component is as follows.
When preparing a pre-sintered body, a contact alloy having a desired composition can be obtained by previously mixing a predetermined amount of a part in WC.

【0019】また、WCの平均粒子間距離は、導電成分
の全体量、仮焼結時にWCに予備配合される導電成分量
(以下、予備配合量とする)、WC粒径、およびCo含
有量を調整することにより制御される。
The average distance between WC particles is defined as the total amount of the conductive component, the amount of the conductive component preliminarily blended into the WC at the time of preliminary sintering (hereinafter referred to as the preblended amount), the WC particle size, and the Co content. Is controlled by adjusting.

【0020】次に、本発明実施例データを得た電流裁断
特性の評価方法、および評価条件につき述べる。各接点
を取付けて10-3Pa以下に排気した組立て式バルブを
製作し、この装置を0.8m/秒の開極速度で開極させ
遅れ小電流を遮断した時の裁断電流を測定した。遮断電
流は、20A(実効値)、50Hzとした。開極位相は
ランダムに行い、500回遮断されたときの裁断電流を
接点数3個につき測定し、その平均値および最大値を表
1乃至表4に示した。尚、数値は、実施例3の裁断電流
値の平均値を1.0とした場合の相対値で示し、裁断電
流値の最大値が3.5以下の場合、良好であると判断し
た。まず、組成条件を一定とし、組識条件をパラメータ
として検討する。 実施例1〜3、比較例1〜2
Next, a description will be given of an evaluation method and evaluation conditions of the current cutting characteristics obtained from the data of the embodiment of the present invention. An assembling valve evacuated to 10 −3 Pa or less with each contact attached was manufactured, and this device was opened at an opening speed of 0.8 m / sec, and the cutting current when the delay small current was cut off was measured. The breaking current was 20 A (effective value) and 50 Hz. The opening phase was performed randomly, and the cutting current when the circuit was cut off 500 times was measured for three contacts, and the average and maximum values are shown in Tables 1 to 4. The numerical values are shown as relative values when the average value of the cutting current values in Example 3 was set to 1.0, and when the maximum value of the cutting current values was 3.5 or less, it was judged to be good. First, the composition condition is fixed, and the organization condition is considered as a parameter. Examples 1-3, Comparative Examples 1-2

【0021】導電成分の全量を約50vol%、導電成
分中のAgの占める割合を約72wt%、焼結助材はC
oで約0.7wt%、耐弧材はWCとして、これらの組
成条件を一定とした上で、粒径が0.8μmの耐弧材が
高導電成分中に微細かつ均一に分散している第1の領域
が組識全体に占める割合を変化させ、裁断特性を調べ
た。
The total amount of the conductive component is about 50 vol%, the ratio of Ag in the conductive component is about 72 wt%, and the sintering aid is C
The arc-resistant material having a particle size of 0.8 μm is finely and uniformly dispersed in the high-conductivity component under the conditions that the composition conditions are constant, with about 0.7 wt% in o and the arc-resistant material being WC. The ratio of the first region to the whole tissue was changed, and the cutting characteristics were examined.

【0022】その結果、表1乃至表2のごとく第1の領
域の割合が80vol%以上である実施例1〜3では、
裁断電流値の最大値がいずれも2.5以下で良好である
のに対して、これが80vol%以下の比較例1〜2で
は、平均値は比較的低いにもかかわず、最大値が著しく
高くなっている。これは、粗大でかつ導電成分主体であ
るため局所的な裁断特性の悪い第2の領域において電流
裁断が発生する確率が高いためと推定される。 実施例4〜6、比較例3
As a result, in Examples 1 to 3 in which the ratio of the first region is 80 vol% or more as shown in Tables 1 and 2,
The maximum value of the cutting current value is 2.5 or less, which is good. On the other hand, in Comparative Examples 1 and 2 in which the maximum value is 80 vol% or less, the maximum value is extremely high although the average value is relatively low. Has become. This is presumed to be due to the high probability of current cutting occurring in the second region, which is coarse and mainly composed of conductive components, and has poor local cutting characteristics. Examples 4 to 6, Comparative Example 3

【0023】導電成分の全量を約50vol%、導電成
分中のAgの占める割合を約72wt%、焼結助材はC
oで約0.7wt%とし、耐弧材はWCとし、耐弧材が
高導電成分中に微細かつ均一に分散している第1の領域
が組識全体に占める割合を82〜87面積%の範囲と
し、耐弧材の粒径をパラメータとして裁断特性を評価し
た。
The total amount of the conductive component is about 50 vol%, the proportion of Ag in the conductive component is about 72 wt%, and the sintering aid is C
o is about 0.7 wt%, the arc-resistant material is WC, and the ratio of the first region where the arc-resistant material is finely and uniformly dispersed in the highly conductive component to the entire tissue is 82 to 87 area%. And the cutting characteristics were evaluated using the particle size of the arc-resistant material as a parameter.

【0024】その結果、表1乃至表2のごとくWC粒径
が3μm以下である実施例3〜6では、裁断電流値の最
大値がいずれも3.0以下で良好であるのに対して、こ
れが9μmの比較例3では、平均値1.2と比較的低い
にもかかわず、最大値6.0と著しく高くなっている。
このような極めて高い裁断電流値は、裁断特性の悪い粗
大な耐弧材上において発生するものと推定される。
As a result, as shown in Tables 1 and 2, in Examples 3 to 6 in which the WC particle size is 3 μm or less, the maximum value of the cutting current value is 3.0 or less, which is good. In Comparative Example 3 where this is 9 μm, although the average value is relatively low at 1.2, the maximum value is significantly high at 6.0.
It is estimated that such an extremely high cutting current value is generated on a coarse arc-resistant material having poor cutting characteristics.

【0025】次に、組識条件を一定とし、組成を変えた
場合の、裁断特性について検討した。まず焼結助材をC
o、耐弧材をWCとした、Ag/Cu−WC−Co接点
材料系について検討した。一定とする組成条件は、WC
粒径については0.8μmとし、また、耐弧材が微細か
つ均一に導電成分中に分散している第1の領域が80面
積%となるようにした。 実施例7〜9、比較例4〜5
Next, cutting characteristics when the composition conditions were changed and the composition was changed were examined. First, the sintering aid is C
o, Ag / Cu-WC-Co contact material system using WC as the arc resistant material was studied. The constant composition condition is WC
The particle size was 0.8 μm, and the first region where the arc-resistant material was finely and uniformly dispersed in the conductive component was 80% by area. Examples 7 to 9, Comparative Examples 4 to 5

【0026】導電成分中のAgの占める割合を72wt
%とし、Co含有量を0.7wt%として、導電成分の
全量のみを変化させた場合の、裁断特性について示す。
表1乃至表2のごとく、導電成分量が20〜65vol
%の範囲にある実施例7〜9は、裁断電流値が2.9以
下で良好であるが、導電成分量が約71vol%の比較
例4では、裁断電流値は平均値、最大値ともに高い値と
なっている。これは、耐弧材の量が少ないためその添加
による効果が十分に得られないためである。一方、導電
成分量が約17vol%の比較例5では、裁断電流値の
平均値はそれほど高くないにもかかわらず、その最大値
は極めて高い値となっている。これは、耐弧材同士の間
隔が非常に接近してしまったため、繰り返し放電により
導電成分が蒸発消耗してしまった部分が、粗大がWC粒
子と同様な特性となってしまったためである。 実施例10〜12、比較例6〜7
The proportion of Ag in the conductive component is 72 wt.
% And the Co content is 0.7 wt%, and the cutting characteristics are shown when only the total amount of the conductive components is changed.
As shown in Tables 1 and 2, the amount of the conductive component is 20 to 65 vol.
%, The cutting current value is good at 2.9 or less, but in Comparative Example 4 in which the amount of the conductive component is about 71 vol%, the cutting current value is high both in the average value and the maximum value. Value. This is because the effect of the addition cannot be sufficiently obtained because the amount of the arc-resistant material is small. On the other hand, in Comparative Example 5 in which the amount of the conductive component is about 17 vol%, the maximum value is extremely high even though the average value of the cutting current value is not so high. This is because the distance between the arc-resistant materials became very close, and the portion where the conductive component was evaporated and consumed by the repeated discharge had coarseness similar to that of the WC particles. Examples 10 to 12, Comparative Examples 6 and 7

【0027】導電成分量を約50vol%とし、Co含
有量を0.7wt%として、導電成分中にAgの占める
割合のみを変化させた場合の、裁断特性について示す。
表1乃至表2のごとく、Agの割合が30wt%以上で
ある実施例10〜12は、裁断電流値の最大値が3.4
以下で良好であるが、これが30wt%以下の比較例6
〜7では、裁断電流値は平均値、最大値ともに高い値と
なっている。 実施例13〜15、比較例8
The cutting characteristics when the amount of the conductive component is about 50 vol%, the Co content is 0.7 wt%, and only the ratio of Ag in the conductive component is changed are shown.
As shown in Tables 1 and 2, in Examples 10 to 12 in which the ratio of Ag was 30 wt% or more, the maximum value of the cutting current value was 3.4.
Comparative Example 6 where the content is 30 wt% or less.
In Nos. To 7, the cutting current value is a high value for both the average value and the maximum value. Examples 13 to 15 and Comparative Example 8

【0028】導電成分量を約50vol%とし、導電成
分中にAgの占める割合を約72wt%として、Co含
有量のみを変化させた場合の、裁断特性について示す。
表1乃至表2のごとく、Co含有量が1wt%以下であ
る実施例13〜15は、裁断電流値の最大値が3.4以
下で良好であるが、これが1.9wt%の比較例8で
は、裁断電流値は平均値、最大値ともに高い値となって
いる。次に、耐弧材としてMo2 C、TaCを用いた場
合および焼結助材としてNi、Feを用いた時の裁断特
性について表3乃至表4に示す。 実施例16〜17
The cutting characteristics when the amount of the conductive component is about 50 vol%, the ratio of Ag in the conductive component is about 72 wt%, and only the Co content is changed are shown.
As shown in Tables 1 and 2, in Examples 13 to 15 in which the Co content is 1 wt% or less, the maximum value of the cutting current value is 3.4 or less, which is good. However, Comparative Example 8 in which this is 1.9 wt%. In the figure, the cutting current value is a high value for both the average value and the maximum value. Next, Tables 3 and 4 show cutting characteristics when Mo 2 C and TaC are used as arc-resistant materials and when Ni and Fe are used as sintering aids. Examples 16 to 17

【0029】実施例3とほぼ等しい、導電成分量、導電
成分中のAgの割合、Co含有量、および耐弧材粒径
で、耐弧材成分がMo2 C、TaC、Cr2 3 および
TiCの実施例16、17、18および19は、裁断電
流値の最大値がそれぞれ2.6、2.3、2.5および
2.8で、いずれも良好な電流裁断特性を示した。 実施例18〜19
The amounts of the conductive components, the proportion of Ag in the conductive components, the Co content, and the particle size of the arc-resistant material were almost the same as those in Example 3, and the components of the arc-resistant material were Mo 2 C, TaC, Cr 2 C 3 and In Examples 16, 17, 18 and 19 of TiC, the maximum values of the cutting current values were 2.6, 2.3, 2.5 and 2.8, respectively, and all showed good current cutting characteristics. Examples 18 to 19

【0030】実施例3とほぼ等しい、導電成分量、導電
成分中のAgの割合、焼結補助成分含有量、およびWC
粒径で、焼結補助成分がNiおよびFeの実施例18お
よび19は、裁断電流値の最大値がそれぞれ2.5およ
び2.6で、ともに良好な電流裁断特性を示した。
The amount of the conductive component, the ratio of Ag in the conductive component, the content of the sintering auxiliary component, and
In Examples 18 and 19 in which the sintering assisting components were Ni and Fe in terms of particle size, the maximum values of the cutting current values were 2.5 and 2.6, respectively, and both showed good current cutting characteristics.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】[0033]

【表3】 [Table 3]

【0034】[0034]

【表4】 [Table 4]

【0035】[0035]

【発明の効果】以上のように本発明は、AgまたはCu
の少なくとも1つからなる高導電成分と、WC、Mo2
C、TaC、Cr2 3 、TiCのうちの少なくとも1
つ以上よりなる耐弧材と、Fe、Co、Niのうちの少
なくとも1つ以上よりなる焼結助材とからなる真空バル
ブ用接点材料において、高導電成分が20〜65vol
%でこのうちAgの割合が30wt%以上であり、焼結
助材が1wt%以下であるとともに、その組識は、粒径
が3μm以下の耐弧材が高導電成分中に微細かつ均一に
分散している第1の領域と、幅あるいは粒径が10μm
以上の高導電成分が主体の第2の領域よりなり、第1の
領域の全組識中に占める割合が80vol%以上であるよ
うにしたので、安定して低い優れた電流裁断特性を有す
る真空バルブ用接点材料を得ることができる。
As described above, according to the present invention, Ag or Cu
A highly conductive component comprising at least one of the following: WC, Mo 2
At least one of C, TaC, Cr 2 C 3 and TiC
In a vacuum valve contact material comprising at least one arc-resistant material and at least one of Fe, Co, and Ni, a high conductive component is 20 to 65 vol.
% Of which is 30% by weight or more, the sintering aid is 1% by weight or less, and the structure is such that an arc-resistant material having a particle size of 3 μm or less is finely and uniformly dispersed in a highly conductive component. A dispersed first region and a width or particle size of 10 μm
Since the above-described high-conductivity component is mainly composed of the second region, and the ratio of the first region to all the tissues is 80 vol% or more, the vacuum having stable and excellent current cutting characteristics is obtained. A valve contact material can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す真空バルブの断面図。FIG. 1 is a sectional view of a vacuum valve showing one embodiment of the present invention.

【図2】〔図1〕の電極成分の拡大断面図。FIG. 2 is an enlarged sectional view of an electrode component shown in FIG.

【図3】代表的な真空バルブ用接点材料の電流裁断値−
頻度特性図。
FIG. 3 shows current cutting values of typical contact materials for vacuum valves.
Frequency characteristic diagram.

【符号の説明】[Explanation of symbols]

7,8…電極、 13a,13b…接点。 7, 8 ... electrodes, 13a, 13b ... contacts.

フロントページの続き (56)参考文献 特開 平2−228438(JP,A) 特開 昭62−77439(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01H 33/66 Continuation of front page (56) References JP-A-2-228438 (JP, A) JP-A-62-77439 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01H 33 / 66

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 AgまたはCuの少なくとも1つからな
る高導電成分と、WC、Mo2 C、TaC、Cr
2 3 、TiCのうちの少なくとも1つ以上よりなる耐
弧材と、Fe、Co、Niのうちの少なくとも1つ以上
よりなる焼結助材とから成る真空バルブ用接点材料にお
いて、前記高導電成分が20〜65vol%で、このう
ちAgの割合が30wt%以上であり、前記焼結助材が
1wt%以下であるとともに、その組識は、粒径が3μ
m以下の前記耐弧材が前記高導電成分中に微細かつ均一
に分散している第1の領域と、幅あるいは粒径が10μ
m以上の前記高導電成分が主体の第2の領域によりな
り、前記第1の領域の全組識中に占める割合が80vol
%以上であることを特徴とする真空バルブ用接点材料。
1. A highly conductive component comprising at least one of Ag or Cu, WC, Mo 2 C, TaC, Cr
2. A vacuum valve contact material comprising: an arc-resistant material made of at least one of 2 C 3 and TiC; and a sintering aid made of at least one of Fe, Co, and Ni. The components are 20 to 65 vol%, of which the ratio of Ag is 30 wt% or more, the sintering aid is 1 wt% or less, and the organization is as follows:
m and a first region in which the arc-resistant material of not more than m is finely and uniformly dispersed in the highly conductive component, and a width or a particle size of 10 μm.
m or more of the high-conductivity component is composed of the second region mainly composed of 80 vol.
% Of a contact material for a vacuum valve.
JP23361391A 1991-09-13 1991-09-13 Contact material for vacuum valve Expired - Fee Related JP2904452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23361391A JP2904452B2 (en) 1991-09-13 1991-09-13 Contact material for vacuum valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23361391A JP2904452B2 (en) 1991-09-13 1991-09-13 Contact material for vacuum valve

Publications (2)

Publication Number Publication Date
JPH0574284A JPH0574284A (en) 1993-03-26
JP2904452B2 true JP2904452B2 (en) 1999-06-14

Family

ID=16957794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23361391A Expired - Fee Related JP2904452B2 (en) 1991-09-13 1991-09-13 Contact material for vacuum valve

Country Status (1)

Country Link
JP (1) JP2904452B2 (en)

Also Published As

Publication number Publication date
JPH0574284A (en) 1993-03-26

Similar Documents

Publication Publication Date Title
JP2778826B2 (en) Contact material for vacuum valve
JP2653486B2 (en) Contact material for vacuum valve
JP2768721B2 (en) Contact material for vacuum valve
JPS6277439A (en) Contact point material for vacuum valve
EP0779636B1 (en) Contact material for vacuum interrupter and method for producing the same
JP2904452B2 (en) Contact material for vacuum valve
JP2889344B2 (en) Contact for vacuum valve
JP2911594B2 (en) Vacuum valve
JP2692945B2 (en) Contact material for vacuum valve
JP3150516B2 (en) Contact material for vacuum valve
JPS60197840A (en) Sintered alloy for contact point of vacuum circuit breaker
JP2904448B2 (en) Contact material for vacuum valve
JP2878718B2 (en) Contact material for vacuum valve
JP3068880B2 (en) Contact for vacuum valve
JPH0877856A (en) Contact material for vacuum valve
JP3443516B2 (en) Manufacturing method of contact material for vacuum valve
JPH08293233A (en) Contact material for vacuum valve
JPH0653907B2 (en) Contact material for vacuum valve
JPH03295118A (en) Contact material for vacuum valve
JPH05101753A (en) Vacuum valve
JPH02288033A (en) Contact material for vacuum bulb
JPH03108224A (en) Contact material vacuum valve
JPH042737A (en) Contact material for vacuum valve
JPH0791612B2 (en) Sintered alloy for vacuum contacts and breaker contacts
JPH07123015B2 (en) Vacuum circuit breaker electrode and vacuum circuit breaker

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080326

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100326

LAPS Cancellation because of no payment of annual fees