JPH03108224A - Contact material vacuum valve - Google Patents

Contact material vacuum valve

Info

Publication number
JPH03108224A
JPH03108224A JP24335189A JP24335189A JPH03108224A JP H03108224 A JPH03108224 A JP H03108224A JP 24335189 A JP24335189 A JP 24335189A JP 24335189 A JP24335189 A JP 24335189A JP H03108224 A JPH03108224 A JP H03108224A
Authority
JP
Japan
Prior art keywords
arc
highly conductive
contact material
less
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24335189A
Other languages
Japanese (ja)
Inventor
Isao Okutomi
功 奥富
Atsushi Yamamoto
敦史 山本
Keisei Seki
経世 関
Seiji Chiba
千葉 誠司
Shigeaki Sekiguchi
関口 薫旦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP24335189A priority Critical patent/JPH03108224A/en
Publication of JPH03108224A publication Critical patent/JPH03108224A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To concurrently obtain the excellent low current cutting characteristic and the high-frequency arc extinguishing characteristic by optimizing the content, ratio and existing state of Ag and Cu, and further atomizing the organization of a contact material. CONSTITUTION:A contact material for a vacuum valve is the Ag-Cu-Cr3C2 contact material for a vacuum valve containing a high conducting component of Ag and Cr and an arc-resistant component of Cr3C2, the content of the high conducting component is set as follows: the total quantity of Ag and Cr 40-80wt.%, the ratio of Ag in the total quantity of Ag and Cu 40-80wt.%, and the content of the arc-resistant component 20-60wt.%. The organization of the contact material is constituted of the matrix of the high conducting component, the discontinuous phase with the thickness or width 5mum or below, and discontinuous grains of Cr3C2 10mum. or below, and the discontinuous phase of the high conducting component is finely and uniformly distributed in the matrix at the interval 5mum or below.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) この発明は、真空バルブの接点材料に用いられる焼結合
金に関し、より詳細には、電流さい断時性および高周波
消弧特性を改良した真空バルブ用接点材料に関する。
DETAILED DESCRIPTION OF THE INVENTION [Purpose of the Invention (Industrial Application Field) This invention relates to a sintered alloy used as a contact material for a vacuum valve, and more particularly, to a sintered alloy that is used as a contact material for a vacuum valve. This invention relates to a contact material for vacuum valves with improved characteristics.

(従来の技術) 真空中でのアーク拡散性を利用して高真空中で電流しゃ
断を行なわせる真空バルブの接点は、対向する固定、可
動の2つの接点から構成されている。この真空バルブを
用いて、電動機負荷などの誘導性回路の電流をしゃ断す
るとき、過度の異常サージ電圧が発生し、負荷機器を破
壊させる恐れがある。
(Prior Art) The contacts of a vacuum valve, which cuts off current in a high vacuum by utilizing arc diffusivity in a vacuum, are composed of two opposing fixed and movable contacts. When this vacuum valve is used to cut off the current in an inductive circuit such as a motor load, an excessive abnormal surge voltage may be generated, which may destroy the load equipment.

この異常サージ電圧の発生原因は、例えば、真空中にお
ける小電流しゃ断時に発生するさい新現象(交流電流波
形の自然ゼロ点を待たずに強制的に電流しゃ断が行われ
ること)、或いは高周波消弧現象などによるものである
The cause of this abnormal surge voltage is, for example, a new phenomenon that occurs when a small current is cut off in a vacuum (current cutoff is forcibly performed without waiting for the natural zero point of the AC current waveform), or high-frequency arc extinction. This is due to phenomena etc.

さい新現象による異常サージ電圧の値Vsは、回路のサ
ージインピーダンスZoと、電流さい断値1cの積、即
ちVs−ZO・Icで表される。
The value Vs of the abnormal surge voltage due to the new phenomenon is expressed as the product of the surge impedance Zo of the circuit and the current cutoff value 1c, that is, Vs-ZO·Ic.

従って、異常サージ電圧Vsを低くするためには電流さ
い断値1cを小さくしなくてはならない。
Therefore, in order to lower the abnormal surge voltage Vs, the current cutoff value 1c must be lowered.

上記の要求に対して、炭化タングステン(WC)と銀(
Ag)とを複合化した合金の接点を用いた真空開閉器が
開発され(特願昭42−68447号、米国特許第36
83138号)、これが実用化されている。
In response to the above requirements, tungsten carbide (WC) and silver (
A vacuum switch using composite alloy contacts (Ag) was developed (Japanese Patent Application No. 42-68447, U.S. Patent No. 36
No. 83138), which has been put into practical use.

このA g−WC系合金の接点は、 (+)WCの介在が電子放射を容易にさせ、(2)電界
放射電子の衝突による電極面の加熱に基づく接点材料の
蒸発を促進させ、さらに、(3)接点材料の炭化物がア
ークにより分解し、荷電体を生成してアークを接続する
等の点で優れた低さい断電流特性を発揮する。
In this A g-WC alloy contact, the presence of (+) WC facilitates electron emission, (2) promotes evaporation of the contact material due to heating of the electrode surface due to collision of field emission electrons, and further, (3) The carbide of the contact material is decomposed by the arc, producing a charged body and exhibiting excellent low breaking current characteristics in connection with the arc.

また、低さい断電流特性(低チョッピング特性)を発揮
する他の接点材料として、ビスマス(Bi)と銅(Cu
)とを複合化した合金が製造され、この材料が真空バル
ブに実用化されている(特公昭35−14974号公報
、米国特許第2975256号、特公昭41−1213
1号公報、米国特許第3246979号)。この合金の
うち、BEを10重量%(以下wt%)としたもの(特
公昭35−14974号公報)は、その適度な蒸気圧特
性を有するので、低いさい断電流特性を発揮し、また、
BiをQ、5wt%としたもの(特公昭41−1213
1号公報)は、結晶粒界に偏析して存在する結果、合金
自体を脆化し、低い溶着引外力を実現し大電流しゃ断性
に優れている。
In addition, other contact materials that exhibit low cutting current characteristics (low chopping characteristics) include bismuth (Bi) and copper (Cu).
), and this material has been put to practical use in vacuum valves (Japanese Patent Publication No. 35-14974, U.S. Patent No. 2975256, Japanese Patent Publication No. 41-1213).
No. 1, U.S. Pat. No. 3,246,979). Among these alloys, the one with BE of 10% by weight (hereinafter referred to as wt%) (Japanese Patent Publication No. 14974/1983) has appropriate vapor pressure characteristics, so it exhibits low cutting current characteristics, and
Bi containing Q, 5wt% (Special Publication Publication No. 41-1213
As a result of being segregated at grain boundaries, the alloy itself becomes brittle, achieves a low welding pull force, and is excellent in large current interrupting properties.

低さい断電流特性を得る他の接点材料として、AgとC
uとの比率をほぼ7:3としたAg−Cu−WC合金が
提案されている(特開昭58−157015号公報)。
Other contact materials that obtain low breaking current characteristics include Ag and C.
An Ag-Cu-WC alloy in which the ratio with u is approximately 7:3 has been proposed (Japanese Unexamined Patent Publication No. 157015/1983).

この合金においては、従来にない限定をしたAgとCu
との比率を選択するので、安定したさい断電流特性を発
揮すると記載されている。
In this alloy, Ag and Cu have unprecedented limitations.
It is stated that stable cutting current characteristics can be achieved by selecting the ratio of .

さら1こ、特公昭62−077439号公報には、耐弧
性材料の粒径(例えば、WCの粒径)を0.2〜1μm
とすることにより、低さい断電流特性の改善に有効であ
ることが示唆されている。
Furthermore, in Japanese Patent Publication No. 62-077439, the particle size of the arc-resistant material (for example, the particle size of WC) is 0.2 to 1 μm.
It has been suggested that this is effective in improving low breaking current characteristics.

(発明が解決しようとする課題) 真空しゃ断器には、低サージ性が要求され、そのために
、従来では、上述のように低さい断電流特性が要求され
ていた。
(Problems to be Solved by the Invention) Vacuum circuit breakers are required to have low surge characteristics, and for this reason, conventionally, low breaking current characteristics have been required as described above.

しかしながら、真空バルブは、近年、電動機等の誘導性
回路に適用されることが一層増えると共に、高サージイ
ンピーダンス負荷も出現したため、真空バルブは一層安
定した低さい断電流特性を持つことが望まれるのは勿論
のこと、高周波消弧特性(高周波電流しゃ断能力)につ
いても兼備し満足しなくてはならない。これは、電流さ
い断によるサージ以外に繰返し高周波再発弧によるサー
ジが負荷の絶縁にとって脅威となることが判明したから
である。
However, in recent years, vacuum valves have been increasingly applied to inductive circuits such as electric motors, and high surge impedance loads have also appeared, so it is desired that vacuum valves have even more stable and low disconnection current characteristics. Of course, high-frequency arc-extinguishing characteristics (high-frequency current interrupting ability) must also be satisfied. This is because it has been found that in addition to surges caused by current interruption, surges caused by repeated high-frequency re-ignition pose a threat to load insulation.

従来、これらの両特性を同時に満足させる接点材料はな
かった。
Conventionally, there has been no contact material that satisfies both of these properties at the same time.

即ち、前記電流さい断によるサージ(過電圧)は、電流
さい断値を小さくすることにより改善できるが、一方の
繰返し高周波再発弧によるサージは、電流さい断器、電
極間で絶縁破壊が発生した時に回路条件により流れる高
周波電流をしゃ断することで、回復電圧値が増大し、さ
らに、電極間での絶縁破壊が発生する過程の繰返しによ
って回復電圧値が増大し、過大なサージ電圧を発生させ
るものである。この場合では、高周波電流を消弧するた
めに発生するものであり、高周波消弧特性をサージ電圧
が小さくなるように改善させることにより、発生サージ
を低減させることができるため、高周波電流放電の続弧
特性の改良・安定化を計る必要がある。
That is, the surge (overvoltage) caused by the current breaker can be improved by reducing the current breaker value, but the surge caused by repeated high-frequency re-ignition can be improved when dielectric breakdown occurs between the current breaker and the electrodes. The recovery voltage value increases by cutting off the high-frequency current that flows depending on the circuit conditions, and the recovery voltage value increases due to the repetition of the process of dielectric breakdown between the electrodes, which generates an excessive surge voltage. be. In this case, the surge is generated to extinguish the high-frequency current, and by improving the high-frequency arc-extinguishing characteristics to reduce the surge voltage, the generated surge can be reduced. It is necessary to improve and stabilize arc characteristics.

WCとAgとを複合化した合金の接点(特願昭42−6
8447号、米国特許第3683138号)では、さい
断電流値自体が不十分であるのみならず、高周波消弧特
性の改善に対しては何等の配慮もなされていない。
Alloy contact made of composite of WC and Ag (Patent application 1976-6)
No. 8447, U.S. Pat. No. 3,683,138), not only is the cutting current value itself insufficient, but no consideration is given to improving the high frequency arc extinguishing characteristics.

l Q w t%のBiとCuとを複合化した合金(特
公昭35−14974号公報、米国特許第297525
6号)では、開閉回数の増大と共に電極間空間への金属
供給量が減少し、低さい断電流特性の劣化が現れ、高蒸
気圧元素量に依存して耐電圧特性の劣化も指摘されてい
る。しかも、高周波消弧特性を十分に満足していない。
l Q w t% Bi and Cu composite alloy (Japanese Patent Publication No. 35-14974, U.S. Patent No. 297525
No. 6), the amount of metal supplied to the space between the electrodes decreased as the number of openings and closings increased, deterioration of the low breaking current characteristics appeared, and deterioration of the withstand voltage characteristics was also pointed out depending on the amount of high vapor pressure elements. There is. Furthermore, the high-frequency arc-extinguishing characteristics are not fully satisfied.

0.5wt%のBiとCuとを複合化した合金(特公昭
41−12131号公報、米国特許第3246979号
)では、低さい断電流特性が不十分である。
An alloy containing 0.5 wt% of Bi and Cu (Japanese Patent Publication No. 12131/1983, US Pat. No. 3,246,979) has insufficient low breaking current characteristics.

また、AgとCuとの重量比率をほぼ7:3としたAg
−Cu−WC合金(特開昭58−157015号公報)
及び耐弧性材料の粒径を0.2〜1μmとする合金(特
開昭62−077439号公報)では、高周波消弧特性
を十分に満足していない。
In addition, Ag with a weight ratio of Ag and Cu of approximately 7:3
-Cu-WC alloy (Japanese Unexamined Patent Publication No. 157015/1983)
Also, an alloy in which the particle size of the arc-resistant material is 0.2 to 1 μm (Japanese Patent Application Laid-Open No. 62-077439) does not sufficiently satisfy high frequency arc extinguishing properties.

この発明は上述の背景に基づきなされたものであり、そ
の目的とするところは、優れた低さい断電流特性と高周
波消弧特性を兼備し、苛酷化する真空しゃ断器への要求
に応え得る真空バルブ用接点材料を提供することにある
This invention was made based on the above-mentioned background, and its purpose is to provide a vacuum breaker that has both excellent low breaking current characteristics and high frequency arc extinguishing characteristics, and that can meet the increasingly severe demands for vacuum circuit breakers. The purpose of the present invention is to provide contact materials for valves.

[発明の構成] (課題を解決するための手段) この発明者は、上記の課題解決のために研究開発を進め
た結果、Ag−Cu−Cr3 C2系接点材料において
、AgとCuとの含有量、その比率および存在状態を最
適化すると共に、当該接点材料の組織を一層微細化すれ
ば、この発明の目的達成に有効であるとの知見を得て、
この発明を完成するに至った。
[Structure of the Invention] (Means for Solving the Problems) As a result of research and development to solve the above problems, the inventor discovered that Ag-Cu-Cr3 C2-based contact materials contain Ag and Cu. Having obtained the knowledge that it is effective to achieve the object of the present invention by optimizing the amount, ratio, and state of existence, and further refining the structure of the contact material,
This invention was completed.

即ち、この発明の真空バルブ用接点材料は、Ag及びC
uの高導電性成分と、Cr3C2の耐弧性成分とを含む
Ag−Cu−Cr3 C2系真空バルブ用接点材料であ
って、 (イ)高導電性成分の含有量は、AgとCuとの総計量
(Ag+Cu)が40〜80 w t%であり、且つ当
該AgとCuとの総計量中に占めるAgの比率(Ag/
 (Ag十Cu)〕は40〜80 w t%であり、 (ロ)耐弧性成分の含有量は、20〜60wt%であり
、 (ハ)この接点材料の組織は、高導電性成分のマトリッ
クス及び厚さ又は幅5μm以下の不連続相と、10μm
以下のCr5C2(耐弧性成分)の不連続粒とからなり
、高導電性成分の不連続相が、マトリックス中で5μm
以下の間隔で微細にかつ均一に分散されていることを要
旨とするものである。
That is, the contact material for a vacuum valve of the present invention contains Ag and C.
A contact material for an Ag-Cu-Cr3C2 vacuum valve containing a highly conductive component of u and an arc-resistant component of Cr3C2, wherein (a) the content of the highly conductive component is the same as that of Ag and Cu. The total weight (Ag+Cu) is 40 to 80 wt%, and the ratio of Ag to the total weight of Ag and Cu (Ag/
(Ag+Cu)] is 40 to 80 wt%, (b) the content of the arc-resistant component is 20 to 60 wt%, and (c) the structure of this contact material is that of the highly conductive component. a matrix and a discontinuous phase with a thickness or width of 5 μm or less, and a 10 μm
It consists of the following discontinuous grains of Cr5C2 (arc-resistant component), and the discontinuous phase of highly conductive component is 5 μm thick in the matrix.
The gist is that the particles are finely and uniformly dispersed at the following intervals.

また、この発明の好ましい態様において、耐弧性成分は
、Cr3C2以外に、TicSZrC。
In a preferred embodiment of the present invention, the arc-resistant component is TicSZrC in addition to Cr3C2.

VCSNbC,TaCの群から選ばれた金属炭化物1つ
を使用することができる。
One metal carbide selected from the group VCSNbC, TaC can be used.

Cr3C2以外の耐弧性成分を選択した時の高導電性成
分の含有量(Ag+Cu)は、耐弧性成分が、TiCに
あっては50〜85 w t%、ZrCにあっては40
〜80wt%、VCにあっては50〜85wt%、Nb
Cにあっては40〜80wt%、TaCにあっては25
〜65 w t%の範囲である。
When an arc-resistant component other than Cr3C2 is selected, the content of the highly conductive component (Ag+Cu) is 50 to 85 wt% for TiC and 40 wt% for ZrC.
~80wt%, 50-85wt% for VC, Nb
40-80wt% for C, 25wt% for TaC
~65 wt%.

この発明の一態様では、高導電性成分の厚さ又は幅5μ
m以下の不連続相がマトリックス中で5μm以下の間隔
で微細に且つ均一に分散されている存在状態を示す部分
において、高導電性成分のマトリックス及び不連続相が
、各々、Agを溶解したCu固溶体及びCuを溶解した
Ag固溶体、もしくはCuを溶解したAg固溶体及びA
gを溶解したCu固溶体である。
In one aspect of the invention, the thickness or width of the highly conductive component is 5 μm.
In the part where the discontinuous phase of 5 μm or less is finely and uniformly dispersed in the matrix at intervals of 5 μm or less, the matrix of the highly conductive component and the discontinuous phase are each Cu in which Ag is dissolved. Solid solution and Ag solid solution in which Cu is dissolved, or Ag solid solution in which Cu is dissolved and A
It is a Cu solid solution in which g is dissolved.

この発明の望ましい更に別の態様において、高導電性成
分について、厚さ又は幅5μm以下の不連続相がマトリ
・ツクス中で5μm以下の間隔で微細にかつ均一に分散
されている存在状態を示す部分は、高導電性成分総計量
のうちの少なくとも40面積%占める。
In yet another preferred embodiment of the present invention, the highly conductive component exhibits a state in which discontinuous phases with a thickness or width of 5 μm or less are finely and uniformly dispersed in the matrix at intervals of 5 μm or less. The portion occupies at least 40 area percent of the total amount of highly conductive component.

(作用) 電流さい断時性の改善には、電流さい断自体をより低い
値に維持すること以外に、そのばらつき幅を縮めること
も極めて重要である。前述の電流さい新現象は、接点間
の蒸気量(材料物性としては蒸気圧、熱伝導)、接点材
料からの放出電子などと関係が深いとされ、発明者らの
実験によれば、前者の方が寄与が大きいことが判明した
。従って、蒸気を供給し易くするか、あるいは供給し易
い材料で接点を作成すれば電流さい新現象が緩和できる
ことが判明した。前述のCu−BL系合金はこうした観
点に立つもので、低いさい断値を有する。しかしながら
、致命的な欠点として、Biが持つ低融点(271℃)
のために通常真空バルブで行われる600℃近傍のベー
キング或いは800℃の銀ろう付は作業時に、Biの溶
融による移動・凝集の結果、電流さい断時性を維持すべ
きBiの存在が不均一になってしまう。このため、電流
さい断値のばらつき幅が増大する現象が見られる。
(Function) In order to improve the current cutting property, it is extremely important to not only maintain the current cutting itself at a lower value, but also to reduce the width of its variation. The above-mentioned new current phenomenon is said to be closely related to the amount of vapor between the contacts (material properties include vapor pressure and heat conduction), electrons emitted from the contact material, etc. According to the inventors' experiments, the former It turned out that the contribution was larger. Therefore, it has been found that the current leakage phenomenon can be alleviated by making it easier to supply steam or by making contacts from materials that are easier to supply. The above-mentioned Cu-BL alloy is based on this point of view and has a low shear value. However, a fatal drawback is the low melting point (271°C) of Bi.
Baking at around 600°C or silver brazing at 800°C, which is usually performed in a vacuum valve, causes the movement and agglomeration of Bi due to melting, resulting in non-uniform presence of Bi, which is required to maintain current cutting properties. Become. For this reason, a phenomenon is observed in which the width of variation in the current cutoff value increases.

一方、Ag−Cr3C2で代表されるAg−耐弧性材料
系合金では、耐弧性材料(この場合Cr5C2)の沸点
におけるAgの蒸気量に左右されるものの他方、前記C
u−B1系におけるBiの蒸気圧よりAgの蒸気圧は著
しく低いために接点のどの位置に(Agか耐弧性材料か
)アークの足が固着するかによって、温度不足すなわち
蒸気不足を招くことがある。結果的には、電流さい断値
のばらつき幅が現れることが確認された。
On the other hand, in the Ag-arc-resistant material alloy represented by Ag-Cr3C2, although it depends on the amount of Ag vapor at the boiling point of the arc-resistant material (Cr5C2 in this case), the C
The vapor pressure of Ag is significantly lower than the vapor pressure of Bi in the u-B1 system, so depending on where on the contact point (Ag or arc-resistant material) the arc leg is stuck, it can lead to insufficient temperature, or lack of steam. There is. As a result, it was confirmed that a variation width of the current cutoff value appeared.

このように電流さい断終期の接点面の急激な温度低下を
Agと耐弧性材料との組合わせのみによる合金によって
阻止しアークを維持させることは既に限界であると考え
られた。更に、高性能化するためには、何等かの補助技
術を付与する必要があるとの結論に至った。この改良の
1つの考えとして前記特開昭58−157015号公報
では、高導電性成分をAgとCuとの合金にすることに
よって結晶粒を細かく分布させる技術を示唆している。
It was thought that it was already possible to prevent the rapid temperature drop of the contact surface at the end of the current rupture using an alloy made only of a combination of Ag and an arc-resistant material and to maintain the arc. Furthermore, in order to improve the performance, we came to the conclusion that it is necessary to add some kind of auxiliary technology. As one idea for this improvement, the above-mentioned Japanese Patent Application Laid-Open No. 58-157015 suggests a technique of finely distributing crystal grains by forming a highly conductive component into an alloy of Ag and Cu.

この技術により特性の安定化が図られた。アークが主と
して固着する位置が、耐弧性成分の場合とAg−Cu系
合金との場合があり、何れの場合もAg−Cu蒸気の供
給による電流さい新現象の緩和(改良)が行われるが、
耐弧性成分に固着した場合には、若干のばらつきが発生
した。
This technology has stabilized the characteristics. The location where the arc is mainly fixed may be in the arc-resistant component or in the Ag-Cu alloy, and in both cases, the current phenomenon is alleviated (improved) by supplying Ag-Cu vapor. ,
When adhering to the arc-resistant component, some variation occurred.

一方、耐弧性成分をより微細化することで、ばらつき幅
の改善が見られる。従って、耐弧性成分の粒径が電流さ
い新現象に重要な役割を果たすことを示唆すると共に、
耐弧性成分が初期粒径のほぼ10〜20倍程度の大きさ
に偏析が見られた接点材料では著しいばらつきを示した
観察結果を併せて考慮すると、粒径に特定の範囲がある
ことを示唆している。
On the other hand, by making the arc-resistant component more fine, the variation width can be improved. Therefore, it is suggested that the particle size of the arc-resistant component plays an important role in the current phenomenon, and
Considering the observation results that showed significant variation in contact materials where the arc-resistant component was found to be segregated to a size approximately 10 to 20 times the initial particle size, it was concluded that there is a specific range of particle size. Suggests.

しかしながら、特開昭58−1.5701.5号公報の
ように、AgとCuとの量及びWCの粒径を所定の値に
制御して、さい断電流特性の改善に対しては、重要な技
術的進展が見られたものの、これらの技術から、より一
層の低さい断電流特性の向上及び高周波消弧特性の確保
、特に高周波消弧特性の改善は得られなかった。
However, as disclosed in JP-A-58-1.5701.5, it is important to control the amounts of Ag and Cu and the grain size of WC to predetermined values to improve the cutting current characteristics. Although significant technological progress has been made, these technologies have not been able to further improve low-breakage current characteristics, ensure high-frequency arc-extinguishing characteristics, and in particular have not been able to improve high-frequency arc-extinguishing characteristics.

前述の様に、繰返し高周波再発弧によるサージは、電流
さい断器、電極間で絶縁破壊が発生した時に回路条件に
より流れる高周波電流をしゃ断することで、回復電圧値
が増大し、更に、電極間での絶縁破壊が発生する過程の
繰返しによって回復電圧値が増大し、過大なサージ電圧
を発生させるものである。過大なサージ電圧を抑制する
ためには、微小電極間ギャップでの絶縁破壊時に流れる
高周波電流放電を消弧させることなく、商用周波数の負
荷電流が立ち上ってくるまで、続弧させるのが望ましい
As mentioned above, surges caused by repeated high-frequency re-ignitions are caused by current interrupters, which cut off the high-frequency current that flows depending on the circuit conditions when dielectric breakdown occurs between the electrodes, increasing the recovery voltage value, and further increasing the recovery voltage value between the electrodes. As the process of dielectric breakdown occurs is repeated, the recovery voltage value increases and an excessive surge voltage is generated. In order to suppress excessive surge voltage, it is desirable to allow the high-frequency current discharge that flows during dielectric breakdown in the microelectrode gap to continue arcing until the commercial frequency load current rises, without extinguishing the high-frequency current discharge.

この商用周波数の負荷電流が立ち上がれば、次の電流ゼ
ロ点を向える時までには、しゃ断器は充分な電極間ギャ
ップ長に開離しているため、この電流ゼロ点後に電極間
で絶縁破壊を生じることなくまた繰返すことなくしゃ断
が完了する。このために前述したような過大なサージ電
圧の発生はない。
When this commercial frequency load current rises, the breaker has opened to a sufficient gap length between the electrodes by the time it reaches the next current zero point, so dielectric breakdown between the electrodes will occur after this current zero point. The shutoff is completed without any occurrence or repetition. Therefore, no excessive surge voltage is generated as described above.

また、続弧には至らなくとも、高周波消弧能力を小さく
すれば、高周波再発弧によるサージが小さくなる。即ち
、微小電極間ギャップでの高周波電流放電の続弧特性を
改善すればよい。
Furthermore, even if a subsequent arc does not occur, by reducing the high frequency arc extinguishing ability, the surge due to high frequency re-ignition will be reduced. That is, it is only necessary to improve the continuation characteristics of high-frequency current discharge in a small gap between electrodes.

この続弧特性の改善の為に、この発明では、まず第1に
、高導電性成分のAgとCuとを共存させる。しかも、
■Cuを溶解したAg固溶体及び■Agを溶解したCu
固溶体の、マトリックス及び不連続相(層状組織、又は
棒状組織)を形成し、この不連続相の幅又は厚みを5μ
m以下とし、かつこの不連続相をマトリックス中で5μ
m以下の間隔で微細にかつ均一に分散させることによっ
て、アークスポット径の大きさに比べて同等若しくは好
ましくはその以下となるように設計される。その結果、
アークを維持・接続させる機能を主として分担している
AgとCu成分(以下、アーク維持材という)の融点を
低下させると同時に蒸気圧を上昇させる。
In order to improve this continuous arc characteristic, in the present invention, first of all, Ag and Cu, which are highly conductive components, are made to coexist. Moreover,
■Ag solid solution with dissolved Cu and ■Cu with dissolved Ag
Form a matrix and a discontinuous phase (lamellar structure or rod-like structure) of the solid solution, and set the width or thickness of this discontinuous phase to 5 μm.
m or less, and this discontinuous phase is 5μ in the matrix.
By finely and uniformly dispersing the particles at intervals of m or less, the arc spot diameter is designed to be equal to or preferably smaller than the arc spot diameter. the result,
The melting point of Ag and Cu components (hereinafter referred to as arc maintenance material), which mainly share the function of maintaining and connecting the arc, is lowered and at the same time the vapor pressure is increased.

次いで、第2に、Cr3C2粒の平均粒径を10μm以
下、好ましくは3.0μm1より好ましくは1.0μm
以下に設定される。この要件により、アーク維持材の分
散を、より一層高度微細分散状態にするのを促進する。
Then, secondly, the average particle size of the Cr3C2 grains is set to 10 μm or less, preferably 3.0 μm, more preferably 1.0 μm.
It is set as below. This requirement promotes dispersion of the arc sustaining material to a more highly finely dispersed state.

即ち、ただ、アーク維持材(AgとCu)の含有量及び
その比率を所定の範囲に選択しても、後述する実施例・
比較例に示すように、低さい断時性と高周波消弧特性と
の両立が得られない。この発明により、Cr3C2粒の
平均粒径を所定の値と組合わせて初めてアーク維持材(
AgとCu)の組織を高度に微細化した効果を一層引出
し、かつ安定化させることが可能となる。
In other words, even if the content and ratio of the arc maintenance materials (Ag and Cu) are selected within a predetermined range, the following embodiments and
As shown in the comparative example, it is not possible to achieve both low cut-off performance and high-frequency arc-extinguishing characteristics. According to this invention, the arc maintenance material (
This makes it possible to further bring out the effects of highly refined structures of Ag and Cu, and to stabilize them.

一般に蒸気圧の高い材料の真空アーク中でのイオンの電
荷は低くなる傾向にある(参照、C,W。
In general, the charge of ions of materials with high vapor pressure in a vacuum arc tends to be low (see C, W).

K 1sblln著r E rroslon and 
 I onlzatlon in theCathod
e   S pot   Reglons  of’ 
  V acuui+  Arcs  J  、 J 
ournal  or  Applied   Phy
sics、Vol。
Written by K 1sbllnr E rroslon and
I onlzatlon in the cathod
e S pot Reglons of'
Vacuui+ Arcs J, J
Internal or Applied Phy
sics, Vol.

44、烏、7、p3074,1973)。即ち、蒸発量
が増加するだけではなく、イオン価数の低いイオンがア
ーク中に多く存在することとなる。従って、微小電極間
ギャップでの高周波電流放電の際、電流ゼロ点を迎える
とき、微小電極間ギャップ中に存在する残量プラズマ量
は、アーク維持材がAgのみ、或いはCuのみの場合よ
りも、AgとCuとが所定の条件で存在する場合の方が
多いことになる。これは、この発明の目的である低さい
断時性と高周波消弧特性との同時確保に好ましい。
44, Karasu, 7, p3074, 1973). That is, not only does the amount of evaporation increase, but also a large number of ions with low valences exist in the arc. Therefore, during high-frequency current discharge in the microelectrode gap, when the current reaches zero point, the amount of residual plasma existing in the microelectrode gap is smaller than when the arc sustaining material is only Ag or only Cu. In many cases, Ag and Cu exist under predetermined conditions. This is preferable in order to simultaneously ensure low timing and high-frequency arc-extinguishing characteristics, which are the objects of the present invention.

更に、AgよりもCuのイオンの方が質量が軽いが電流
ゼロ点時のイオンドリフト速度(Cuでは930m/s
eeSAgでは630m/5ee)が大きいために(前
記文献)、電極に衝突する時のエネルギーでは、Cuの
エネルギーの方が大きい。このイオンインパクトにより
電極が局部的に加熱され、先に述べた残留プラズマ量の
効果と相乗して高周波小電流放電時に、電流ゼロ点時を
迎えても、新たにカソードとなる電極表面では、新たな
カソードスポットを生成し易くなり、高周波小電流放電
時での続弧特性を改善する。
Furthermore, although the mass of Cu ions is lighter than that of Ag, the ion drift velocity at zero current point (930 m/s for Cu)
eeSAg (630 m/5ee) is large (see the above-mentioned document), the energy of Cu when colliding with the electrode is larger. This ion impact heats the electrode locally, and in combination with the effect of the amount of residual plasma mentioned above, even when the current reaches zero point during high-frequency small current discharge, a new cathode is generated on the electrode surface. This makes it easier to generate a cathode spot and improves the follow-on arc characteristics during high-frequency, small-current discharge.

このような改善された続弧特性を有するために、微小電
極間ギャップ時、絶縁破壊が発生しても商用周波数の負
荷電流が立ち上がり易くなり、結果的に0.5サイクル
ア一ク時間を延長することになり、電極が充分に開極し
た後に電流ゼロ点時を迎えるために、過大なサージ電圧
の発生を迎えることができる。このように、この発明の
AgとCuとの含有量、その比率および存在状態、更に
、耐弧性成分のCr3C2の粒径を一層微細化すること
により、低さい所持性と高周波消弧特性とを同時に改良
することができる。
Due to this improved follow-on characteristic, even if dielectric breakdown occurs when there is a small gap between the electrodes, the load current at the commercial frequency will rise more easily, resulting in a 0.5-cycle extension of the start-up time. As a result, the current reaches zero point after the electrodes are sufficiently opened, and an excessive surge voltage can be generated. In this way, by further refining the content of Ag and Cu, their ratio and existence state, and the particle size of Cr3C2, which is an arc-resistant component, in the present invention, low possession property and high-frequency arc-extinguishing properties can be achieved. can be improved at the same time.

(実施例) 図面を参照しつつ、この発明の詳細な説明する。(Example) The present invention will be described in detail with reference to the drawings.

第1図は真空バルブの断面図、第2図は真空バルブの電
極部の拡大断面図である。
FIG. 1 is a sectional view of the vacuum valve, and FIG. 2 is an enlarged sectional view of the electrode portion of the vacuum valve.

第1図において、しゃ断室1は、絶縁材料によりほぼ円
筒状に形成された絶縁容器2と、この両端に封止金具3
 a s 3 bを介して設けた金属性の蓋体4 a 
s 4 bとで真空密に構成されている。
In FIG. 1, a shutoff chamber 1 includes an insulating container 2 formed of an insulating material into a substantially cylindrical shape, and sealing fittings 3 at both ends of the insulating container 2.
Metal lid body 4 a provided via a s 3 b
It is constructed in a vacuum-tight manner with s 4 b.

しゃ断室1内には、導電棒5.6の対向する端部に取付
けられた1対の電極7.8が配設され、上部の電極7を
固定電極、下部の電極8を可動電極としている。またこ
の電極8の電極棒6には、ベローズ9が取付けられしゃ
断室1内を真空密に保持しながら電極8の軸方向の移動
を可能にしてている。またこのイーローズ9上部には金
属性のアークシールド10が設けられ、ベローズ9がア
ーク蒸気で覆われることを防止している。また、前記電
極7.8を覆うようにしゃ断室1内に金属性のアークシ
ールド11が設けられ、これにより絶縁容器2がアーク
蒸気で覆われることを防止している。更に電極8は、第
2図に拡大して示す如く導電棒6にろう材部12によっ
て固定されるか、又はかしめによって圧着接続されてい
る。接点13aは電極8にろう付14によって取付けら
れる。なお、接点13bは電極7にろう付により取付け
られる。
A pair of electrodes 7.8 attached to opposite ends of a conductive rod 5.6 are arranged in the breaker chamber 1, with the upper electrode 7 serving as a fixed electrode and the lower electrode 8 serving as a movable electrode. . Further, a bellows 9 is attached to the electrode rod 6 of the electrode 8 to allow the electrode 8 to move in the axial direction while keeping the interior of the breaker chamber 1 vacuum-tight. Further, a metal arc shield 10 is provided above the bellows 9 to prevent the bellows 9 from being covered with arc vapor. Further, a metallic arc shield 11 is provided in the cutoff chamber 1 so as to cover the electrodes 7.8, thereby preventing the insulating container 2 from being covered with arc vapor. Further, the electrode 8 is fixed to the conductive rod 6 by a brazing material 12, as shown in an enlarged view in FIG. 2, or is crimped and connected by caulking. Contact 13a is attached to electrode 8 by brazing 14. Note that the contact 13b is attached to the electrode 7 by brazing.

次に、この接点材料の製造方法の一例につき説明する。Next, an example of a method for manufacturing this contact material will be described.

製造に先立って、必要粒径別に耐弧性成分及び補助成分
を分類する。分類作業は例えば篩分けと沈降法とを併用
して行うことで容易に所定粒径の粉末を得る。まず所定
粒径のCr3C2を所定量及び、所定粒径のAg又はA
gCuを所定量の一部用意し、これらを混合し、その後
加圧成型して粉末成形体を得る。
Prior to manufacturing, arc-resistant components and auxiliary components are classified by required particle size. The classification operation can be carried out using a combination of sieving and sedimentation, for example, to easily obtain powder of a predetermined particle size. First, a predetermined amount of Cr3C2 with a predetermined particle size and Ag or A with a predetermined particle size.
A predetermined amount of gCu is prepared, mixed, and then pressure-molded to obtain a powder compact.

次いで、この粉末成形体を露点が一50℃以下の水素雰
囲気或いは真空度が1.3X10°’Pa以下で、所定
温度、例えば1150℃×1時間にて仮焼結し、仮焼結
体を得る。
Next, this powder compact is pre-sintered at a predetermined temperature, for example, 1150°C for 1 hour, in a hydrogen atmosphere with a dew point of 150°C or less or a degree of vacuum of 1.3 x 10°'Pa or less, to form a pre-sintered body. obtain.

次に、この仮焼結体の残存空孔中に所定量及び所定比率
のAg−Cuを1150℃×1時間で溶浸しAg−Cu
−Cr3 C2合金を得る。溶浸は主として真空中で行
うが、水素中でも可能である。
Next, a predetermined amount and predetermined ratio of Ag-Cu is infiltrated into the remaining pores of this pre-sintered body at 1150°C for 1 hour.
- Obtain a Cr3 C2 alloy. Infiltration is primarily carried out in vacuum, but is also possible in hydrogen.

なお、合金中の導電性成分の比率(Ag/(Ag+Cu
)〕の制御は、次のようにして行った。例えば予め所定
比率(Ag/ (Ag+Cu)〕を有するインゴットを
、温度1200℃、真空度1.3X10°2Paで真空
溶解°を行い、切断し溶浸用素材として用いた。導電性
成分の比率(Ag/(Ag+Cu)〕の制御の他の方法
は仮焼結体を作る際、予め、所定量の一部をCr3C2
中に混合させておき後から残余のAg又は(Ag+Cu
)を溶浸させることでも、所望組成の接点合金を得るこ
とができる。
Note that the ratio of conductive components in the alloy (Ag/(Ag+Cu
)] was controlled as follows. For example, an ingot having a predetermined ratio (Ag/(Ag+Cu)) was vacuum melted at a temperature of 1200°C and a degree of vacuum of 1.3 x 10° 2 Pa, cut, and used as a material for infiltration.Ratio of conductive components ( Another method for controlling Ag/(Ag+Cu) is that when making a temporary sintered body, a predetermined amount of part of the Cr3C2
The remaining Ag or (Ag+Cu
) can also provide a contact alloy with a desired composition.

次に、後述する具体的な実施例データを得た評価方法、
及び評価条件につき述べる。
Next, we will discuss the evaluation method used to obtain specific example data, which will be described later.
and evaluation conditions.

(1)電流さい所持性 各接点を取付けて1O−3Pa以下に排気した組立て式
真空バルブを製作し、この装置を068m/秒の開極速
度で開極させ遅れ小電流をしゃ断した時のさい断電流を
測定した。しゃ断電流は20A(実効値)、50H’z
とした。開極位相はランダムに行い500回しゃ断され
たときのさい断電流を接点数3個につき測定しその平均
値及び最大値を第3図〜第5図の表に示した。なお、数
値は、同表中の実施例2のさい断電流値の平均値を1.
0とした場合の相対値で示した。
(1) Current resistance When a prefabricated vacuum valve with each contact attached and evacuated to 1O-3Pa or less was manufactured, and this device was opened at an opening speed of 0.68m/sec to cut off a small current with a delay. The disconnection current was measured. Breaking current is 20A (effective value), 50Hz
And so. The opening phase was randomly determined and the severing current was measured for three contacts when the contact was interrupted 500 times, and the average and maximum values are shown in the tables of FIGS. 3 to 5. In addition, the numerical value is the average value of the cutting current value of Example 2 in the same table.
It is shown as a relative value when it is set to 0.

(2)高周波消弧特性 遅れ力率の小電流を開閉したとき、電流さい断によって
負荷側に過電圧が発生すると、真空バルブの極間にはそ
の過電圧と電源電圧の差が加わる。
(2) High-frequency arc-extinguishing characteristic When switching on and off a small current with a delayed power factor, if an overvoltage is generated on the load side due to current interruption, the difference between the overvoltage and the power supply voltage is applied between the poles of the vacuum valve.

もし極間の電圧が接点間隔の耐電圧値を超えると絶縁破
壊して放電し、接点には過渡的な高周波電流が流れる。
If the voltage between the electrodes exceeds the withstand voltage value of the contact spacing, dielectric breakdown occurs and a discharge occurs, causing a transient high-frequency current to flow through the contacts.

この高周波電流がしゃ断されると再び最初の段階に戻っ
て過電圧が現われ、それがまた接点間隙の放電を起こさ
せるという繰返しになる。このような繰返しの現象は多
重再発弧現象としてよく知られている。真空しゃ断器の
ように高周波消弧能力の高いしゃ断器では、回路条件に
よっては多重再発弧により大きなサージ電圧が発生し、
負荷機器(電動機や変圧器)の絶縁をおびやかすことが
ある。一般に高周波消弧能力が小さいほど、再発弧をく
り返し難く、発生するサージは小さくなると言われてい
る。
When this high-frequency current is cut off, the process returns to the initial stage and an overvoltage appears, which again causes a discharge in the contact gap, and the process repeats. Such a repeated phenomenon is well known as a multiple re-ignition phenomenon. In circuit breakers with high high-frequency arc extinguishing ability, such as vacuum circuit breakers, large surge voltages may be generated due to multiple re-ignitions depending on the circuit conditions.
May threaten the insulation of load equipment (motors and transformers). Generally, it is said that the smaller the high frequency arc extinguishing ability, the more difficult it is to repeat the re-ignition and the smaller the generated surge.

この高周波消弧特性を各接点について調べるために、各
接点を取付けて10’Pa以下に排気した真空バルブを
製作し、この真空バルブを組込んだしゃ断器で6.6k
V、150kVA(7)単+[HI圧器の負荷電流しゃ
断試験を行った。しゃ断器と変圧器間は長さ100mの
6.6kV単心CVケーブル(導体断面積200mm2
)で接続した。
In order to investigate this high frequency arc extinguishing characteristic for each contact, we manufactured a vacuum valve to which each contact was attached and evacuated to below 10'Pa.
V, 150 kVA (7) A load current cut-off test was conducted on a single + HI pressure vessel. A 6.6kV single-core CV cable with a length of 100m (conductor cross-sectional area 200mm2) is used between the breaker and the transformer.
).

負荷電流は10A(実効値)、シゃ断器の開極速度は0
.8m/秒(平均)とし、しゃ断器の開極位相を制御し
、多重再発弧が発生する位相でしゃ断させた。多重再発
弧時に接点に流れる過渡的な高周波電流は、しゃ断器廻
りのインダクタンスと電源側、負荷側の浮遊キャパシタ
ンスにより決まる周波数をもち、今回の試験では過渡的
な高周波電流の周波数は約100kHzであった。高周
波消弧能力の測定は各接点につき20回のしゃ断試験を
行い、開極後1ms経過時の高周波消弧能力の平均値を
求めた。
The load current is 10A (effective value), and the opening speed of the breaker is 0.
.. 8 m/sec (average), the opening phase of the circuit breaker was controlled, and the circuit breaker was disconnected at the phase where multiple re-ignition occurred. The transient high-frequency current that flows through the contacts during multiple re-ignitions has a frequency determined by the inductance around the breaker and the stray capacitance on the power supply and load sides, and in this test, the frequency of the transient high-frequency current was approximately 100kHz. Ta. To measure the high-frequency arc-extinguishing ability, 20 breaking tests were performed for each contact, and the average value of the high-frequency arc-extinguishing ability after 1 ms had passed after contact opening was determined.

表中の値は、実施例2の高周波消弧能力(上記条件で電
流しゃ断した電流零点時の電流減少率di/dt[A/
μ秒])を100とした場合の相対値を示す。
The values in the table are the high frequency arc extinguishing ability of Example 2 (current reduction rate di/dt [A/
The relative value is shown when 100 is 100 μ seconds].

(3)供試接点の内容 第3図〜第5図の各表に、供試接点の材料内容と、その
対応する特性データを比較例と共に示す。
(3) Contents of the test contacts The tables in FIGS. 3 to 5 show the material contents of the test contacts and their corresponding characteristic data together with comparative examples.

表中に示すように、Ag−Cu−Cr3 C2合金中の
(Ag+Cu)量を17.7wt%〜92.2wt%、
AgとCuとの比率(Ag/(Ag+Cu)〕をO〜1
00 w t%の範囲に変化させ、且つAgとCuとの
存在状態、即ち、高導電性成分の厚さ又は幅5μm以下
の不連続相(層状又は/及び棒状組織)がマトリックス
中で5μm以下の間隔で微細に且つ均一に分散されてい
る存在状態の領域の占める割合を、例えば75〜100
面積%1.50面積%、25面積%、10面積%以下に
区分けした。これらは各接点の冷却過程に於ける冷却速
度、すなわち1000℃又はそれより高い温度より77
0℃までの間の温度区域のうちの、任意の温度での温度
差100℃間の平均冷却速度を上記面積%になるよう調
整しながら得る。例えば好ましくは6℃/分より早い速
度で冷却しながら凝固させることによって得る。
As shown in the table, the amount of (Ag+Cu) in the Ag-Cu-Cr3 C2 alloy is 17.7wt% to 92.2wt%,
The ratio of Ag and Cu (Ag/(Ag+Cu)) is O~1
00 wt%, and the state of existence of Ag and Cu, that is, the discontinuous phase (layered or/and rod-like structure) with a thickness or width of 5 μm or less of the highly conductive component is 5 μm or less in the matrix. For example, the ratio of the area occupied by the state of existence that is finely and uniformly dispersed at intervals of 75 to 100
Area % 1. Classified into 50 area %, 25 area %, and 10 area % or less. These are the cooling rates in the cooling process of each contact, i.e. 77°C below 1000°C or higher.
The average cooling rate for a temperature difference of 100° C. at any temperature in the temperature range up to 0° C. is obtained by adjusting it to the above area %. For example, it is obtained by solidifying while cooling, preferably at a rate faster than 6°C/min.

0.6℃/分より遅い速度ではAgとCuの分散に不利
となる。
A speed slower than 0.6° C./min is disadvantageous to the dispersion of Ag and Cu.

さらに、使用する耐弧性成分(例えば Cr3C2で代表)の粒径を0.1μm 〜80μmと
した接点につき評価し、その結果を検討した。
Furthermore, we evaluated the contacts in which the particle size of the arc-resistant component (typically represented by Cr3C2) used was 0.1 .mu.m to 80 .mu.m, and the results were studied.

同表には、これらの条件と対応する結果を示す。The table shows these conditions and the corresponding results.

実施例1〜3、比較例1〜2 平均粒径3.1μmのCr3C2粉末を用意する。焼結
後の残存空隙量を調整するように成形圧をゼロ−8トン
/cm2の範囲で適宜選択しながら成形する。この場合
、合金中の(Ag+Cu)量の多い実施例3 (Ag+
Cu−80wt%)、比較例2 (Ag+Cu−92,
2wt%)では、成形圧を特に、低くするか、若しくは
予め(Ag+Cu−)の一部をCr3C2と共に混合し
た混合粉を得て、これを成形する方法を採る。これらの
混合粉を成形後、実施例1、比較例1では、例えば11
00〜1300℃で焼結し、Cr3C2又はCr3 C
2−Ag−Cu焼結体を得る。実施例2〜3、比較例2
ではこれより低い焼結温度で焼結し焼結体を得る。この
ようにして空隙量の異なる焼結体の空隙中に、(Ag+
Cu)を溶浸しく又は必要によりAgのみを溶浸するこ
ともある)最終的にAg−Cu−Cr3 C2合金中の
(Ag+Cu)量が、17.7〜92.2wt%(比較
例1〜2、実施例1〜3)の合金を得る。これらの接点
素材を所定の形状に加工後、前述した評価方法、条件に
て、さい断時性及び高周波消弧特性を評価した。
Examples 1 to 3, Comparative Examples 1 to 2 Cr3C2 powder having an average particle size of 3.1 μm is prepared. Molding is performed while appropriately selecting a molding pressure in the range of zero to 8 tons/cm2 so as to adjust the amount of voids remaining after sintering. In this case, Example 3 with a large amount of (Ag+Cu) in the alloy (Ag+
Cu-80wt%), Comparative Example 2 (Ag+Cu-92,
2 wt%), either the molding pressure is particularly low, or a method is adopted in which a mixed powder is obtained by previously mixing a part of (Ag+Cu-) with Cr3C2 and then molded. After molding these mixed powders, in Example 1 and Comparative Example 1, for example, 11
Sintered at 00~1300℃, Cr3C2 or Cr3C
A 2-Ag-Cu sintered body is obtained. Examples 2-3, Comparative Example 2
Then, a sintered body is obtained by sintering at a lower sintering temperature. In this way, (Ag+
In the end, the amount of (Ag+Cu) in the Ag-Cu-Cr3 C2 alloy was 17.7 to 92.2 wt% (Comparative Examples 1 to 1). 2. Obtain the alloys of Examples 1 to 3). After processing these contact materials into a predetermined shape, the rupture performance and high frequency arc extinguishing characteristics were evaluated using the evaluation method and conditions described above.

前記したように、さい断時性の評価は、500回しゃ断
させたときの特性で比較した。第3図の表の比較例1〜
2、実施例1〜3に示すように合金中の(Ag+Cu)
量でのさい断値の平均値は実施例2 (Ag+Cu=6
1.3wt%、Ag/(Ag+Cu)−74,6wt%
)を1.0とした相対値で比較した場合、実施例1〜3
、比較例1〜2はいずれも2.0倍以下の上昇(特性の
劣化)になっているが、(Ag+Cu)〜17.7wt
%(比較例1)および(Ag+Cu)−92,2wt%
(比較例2)では、最大値が、上昇しているのに対しく
Ag+Cu)が40〜80wt%(実施例1〜3)では
、最大値が2.0倍以下に安定(特性良好)している。
As mentioned above, the evaluation of the cutting resistance was compared based on the characteristics when the samples were cut off 500 times. Comparative example 1~ in the table in Figure 3
2. (Ag+Cu) in the alloy as shown in Examples 1 to 3
The average value of the cut value in terms of amount is as shown in Example 2 (Ag+Cu=6
1.3wt%, Ag/(Ag+Cu)-74.6wt%
) is 1.0, Examples 1 to 3
, Comparative Examples 1 and 2 all have an increase of 2.0 times or less (deterioration of characteristics), but (Ag + Cu) ~ 17.7wt
% (Comparative Example 1) and (Ag+Cu)-92.2wt%
In Comparative Example 2, the maximum value increased, whereas in Examples 1 to 3, the maximum value stabilized at 2.0 times or less (good characteristics). ing.

特に(Ag+Cu)−17,7w t%(比較例1)の
ように(Ag+Cu)量が少ない接点のさい断時性は、
更に多数回のしゃ断を行うと約2000回開閉前後より
、さい断時性が劣化するのが見られる。
In particular, the disconnectability of a contact with a small amount of (Ag+Cu), such as (Ag+Cu) -17.7 wt% (Comparative Example 1), is as follows:
If the circuit is shut off a large number of times, it can be seen that the disconnection performance deteriorates after about 2,000 openings and closings.

一方、高周波消弧特性の評価を行うと、同様に実施例2
の特性を標準とした相対値で検討すると、(Ag+Cu
)量が40〜80 w t%(実施例1〜3)では安定
した特性を示すが、(Ag+Cu)量が17.7wt%
(比較例1)および92.2wt%(比較例2)では、
前記相対値が増加(特性の劣化)の傾向にあり、相対値
が200を越すことが認められる。従ってAg−Cu−
Cr3C2合金中の(Ag+Cu)量は、さい断時性お
よび高周波消弧特性の両親点からは40〜80 w t
%の範囲が好ましい。なお、実施例2の特性は、従来の
A g −Cu −W Cに比べて同等以上の特性を示
した。
On the other hand, when evaluating the high-frequency arc-extinguishing characteristics, it was found that Example 2
Considering the characteristics of (Ag+Cu
) amount is 40 to 80 wt% (Examples 1 to 3), stable characteristics are shown, but when the amount of (Ag + Cu) is 17.7 wt%
(Comparative Example 1) and 92.2wt% (Comparative Example 2),
It is recognized that the relative value tends to increase (deterioration of characteristics), and the relative value exceeds 200. Therefore, Ag-Cu-
The amount of (Ag+Cu) in the Cr3C2 alloy is 40 to 80 wt from the viewpoint of the severability and high frequency arc extinguishing properties.
A range of % is preferred. Note that the properties of Example 2 were equivalent to or better than those of the conventional Ag-Cu-WC.

実施例4〜8、比較例3〜6 前述したように(Ag+Cu)量が好ましい範囲、すな
わち40〜80wt%の範囲であってもAg−Cu−C
r3 C2合金中のAgとCuとの比率が適切でないと
さい断時性、及び高周波消弧特性が劣化することが分っ
た。すなわち(Ag/(Ag+Cu)〕の値が40〜8
0wt%(実施例4〜8)では、好ましいさい断時性(
相対値が2.0以下)と高周波消弧特性(相対値が20
0以下)が得られた。
Examples 4 to 8, Comparative Examples 3 to 6 As mentioned above, even if the amount of (Ag+Cu) is in a preferable range, that is, in the range of 40 to 80 wt%, Ag-Cu-C
It has been found that if the ratio of Ag and Cu in the r3 C2 alloy is not appropriate, the severability and high frequency arc extinguishing properties deteriorate. That is, the value of (Ag/(Ag+Cu)) is 40 to 8
At 0 wt% (Examples 4 to 8), the preferred cutting time (
(relative value is 2.0 or less) and high frequency arc extinction characteristics (relative value is 2.0 or less)
0 or less) was obtained.

尚、(Ag/ (Ag+Cu)〕の値が96.8wt%
および100wt%(比較値3〜4)では高い熱伝導性
が、また(Ag/ (Ag+Cu)〕の値が20.5w
t%〜ゼロ(比較例5〜6)では、主として蒸気源とな
るAgの量的不足によってさい1特性の低下が見られて
いる。
In addition, the value of (Ag/ (Ag+Cu)) is 96.8wt%
and 100wt% (comparison values 3 to 4), high thermal conductivity was achieved, and the value of (Ag/ (Ag+Cu)) was 20.5w.
In the case of t% to zero (Comparative Examples 5 to 6), a decrease in the first characteristics is observed mainly due to a quantitative shortage of Ag serving as a vapor source.

実施例1〜8、比較例1〜6においては、さい断時性お
よび高周波消弧特性共に(Ag+Cu)量、(Ag/ 
(Ag+Cu)〕比に対し、同じ傾向を示している。
In Examples 1 to 8 and Comparative Examples 1 to 6, the amount of (Ag+Cu) and (Ag/
(Ag+Cu)] shows the same tendency.

実施例9〜10、比較例7〜8 Ag−Cu−Cr3 C2合金中のAg−Cu部分の存
在状態即ち、高導電性成分の厚さ又は幅5μm以下の不
連続相(層状又は/及び棒状組織)がマトリックス中で
5μm以下の間隔で微細にかつ均一に分散されている存
在状態の領域の占める割合を、前記通常の方法で(Ag
+Cu)を45wt%近傍、(Ag/ (Ag+Cu)
〕を70wt%近傍に作製した接点に対し、溶浸後の冷
却速度および800℃〜1000℃に約1時間、再加熱
保持の熱処理を与えることによって各面積割合(%)を
有する接点とした。この面積割合が40%以上(実施例
9.10)では、低いさい断時性の範囲にある上に、高
周波消弧特性も良好な値を示しているのに対し、この面
積割合が少ない比較例7〜8では、さい断時性の劣化特
に最大値の大幅な上昇(劣化)が見られると共に、高周
波消弧特性も上昇(劣化)した。従って、AgとCuと
の存在状態の前記面積割合は、(Ag+Cu)相中に4
0%以上となることが好ましい。
Examples 9 to 10, Comparative Examples 7 to 8 The existence state of the Ag-Cu portion in the Ag-Cu-Cr3 C2 alloy, that is, the thickness of the highly conductive component or the discontinuous phase (layered or/and rod-shaped) with a width of 5 μm or less The proportion of the region in which the structure (Ag structure) is finely and uniformly dispersed at intervals of 5 μm or less in the matrix is determined by the above-mentioned conventional method.
+Cu) around 45wt%, (Ag/ (Ag+Cu)
) was prepared at around 70 wt %, and was heat-treated at a cooling rate after infiltration and at 800° C. to 1000° C. for about 1 hour for about 1 hour to obtain contacts having various area ratios (%). When this area ratio is 40% or more (Example 9.10), it is in the range of low rupture resistance and also shows good high-frequency arc extinguishing properties, whereas compared with small area ratios. In Examples 7 and 8, there was a deterioration in the disconnection performance, particularly a significant increase (deterioration) in the maximum value, and an increase (deterioration) in the high frequency arc extinguishing property. Therefore, the area ratio of the presence state of Ag and Cu is 4 in the (Ag+Cu) phase.
It is preferable that it be 0% or more.

実施例11〜16、比較例9〜10 Ag−Cu−Cr3C2合金におけるF e s(o、
Niは、この合金製造時Cr3C2の偏析或いはボアの
存在を抑制する補助成分として使用する(Niで代表)
。しかしNiがゼロであっても偏析或いは、ボアの発生
を制御するように注意深く作製したAg−Cu−Cr3
 C2合金(実施例13)は、さい断時性、高周波消弧
特性共、性能上問題ない。
Examples 11 to 16, Comparative Examples 9 to 10 F e s(o,
Ni is used as an auxiliary component to suppress the segregation of Cr3C2 or the presence of bores during the production of this alloy (represented by Ni).
. However, even if Ni is zero, Ag-Cu-Cr3 is carefully prepared to control segregation or bore formation.
The C2 alloy (Example 13) has no performance problems in terms of cutting resistance and high frequency arc extinguishing properties.

工業的には、所定値(Ni量−1w t%、実施例11
)以下のNiの存在は、さい断値が平均値、最大値共、
低い範囲にある(実施例11〜12)。
Industrially, a predetermined value (Ni amount - 1 wt%, Example 11
) The presence of Ni below means that the cutoff value is both the average value and the maximum value,
It is in the low range (Examples 11-12).

前記Niがゼロの場合も、平均値、最大値共、相対値は
2.0以下で実用の範囲にあるが、最大値に於いてNi
量が1 w t%、0.05wt%(実施例11〜12
)に比較すると、差異があり、ばらつきがある傾向であ
る。
Even when Ni is zero, both the average and maximum relative values are 2.0 or less, which is within the practical range; however, at the maximum value, Ni
The amount was 1 wt%, 0.05 wt% (Examples 11-12
), there is a tendency for there to be differences and variations.

Niの存在は、高周波消弧特性に対しては、Niが3.
5wt%(比較例9)〜ゼロの範囲においては、相対値
は200以内であり、特性上問題ないが、さい断時性の
最大値において、高い値(倍率2.3)を示すNi−3
,5wt%は除外され、Ag−Cu−Cr3 C2−N
L合金中のNiは、さい断時性、高周波消弧特性の両親
点からNL−ゼロを含む1 w t%以下が好ましい。
The presence of Ni is important for high frequency arc extinction characteristics.
In the range of 5wt% (Comparative Example 9) to zero, the relative value is within 200, and there is no problem in terms of characteristics, but at the maximum value of the rupture resistance, Ni-3 shows a high value (multiplying factor 2.3).
,5wt% are excluded, Ag-Cu-Cr3C2-N
Ni in the L alloy is preferably 1 wt % or less including NL-zero from the viewpoint of good severability and high frequency arc extinguishing properties.

実施例14〜16、比較例10 上述した実施例1〜12、比較例1〜9は全てNiの粒
径は1.5μmを使用したが、Niの粒径は、特にさい
断時性の最大値に影響を与える。
Examples 14 to 16, Comparative Example 10 In Examples 1 to 12 and Comparative Examples 1 to 9 described above, Ni particle size of 1.5 μm was used. Affect the value.

即ち、さい断時性は、NLの粒径が0.1〜44μm(
実施例14〜16、比較例10)の総ての範囲に於いて
、相対値は200以下を維持し問題ないが、Niの粒径
が44μm(比較例10)では、平均値は好ましい範囲
にあるが、最大値において劣化している。
That is, the severability is determined when the particle size of NL is 0.1 to 44 μm (
In all the ranges of Examples 14 to 16 and Comparative Example 10), the relative value is maintained at 200 or less and there is no problem, but when the Ni particle size is 44 μm (Comparative Example 10), the average value falls into a preferable range. However, it is degraded at the maximum value.

従って、Ni量が1 w t%以下(実施例11〜13
)のAg−Cu−Cr3 C2−Ni合金におけるNL
の粒径は10μm以下(実施例14〜16)が好ましい
ことが判る。
Therefore, the amount of Ni is 1 wt% or less (Examples 11 to 13
) in the Ag-Cu-Cr3 C2-Ni alloy
It can be seen that the particle size of 10 μm or less (Examples 14 to 16) is preferable.

実施例17〜19、比較例11〜12 Cr3C2の粒径は、Ag−Cu−Cr3C2合金のさ
い断時性、高周波消弧特性に重要な関係を示す。Cr3
C2の粒径が35μm(比較例12)では、さい断値の
観点からは相対値は平均値、最大値共に2.0以下であ
り問題ないが高周波消弧特性においても劣化(相対値が
200以上)が見られ更にCr3C2の粒径が80μm
(比較例11)ではさい断値の最大値が相対値において
2.0を越し、ばらつきが大きくなる。
Examples 17 to 19, Comparative Examples 11 to 12 The grain size of Cr3C2 shows an important relationship with the shredding properties and high frequency arc extinguishing properties of the Ag-Cu-Cr3C2 alloy. Cr3
When the particle size of C2 is 35 μm (Comparative Example 12), from the viewpoint of the cutting value, the relative value is 2.0 or less for both the average value and the maximum value, so there is no problem, but the high frequency arc extinguishing property is also deteriorated (relative value is 200 μm or less). above) was observed, and the particle size of Cr3C2 was 80 μm.
In (Comparative Example 11), the maximum value of the cutoff value exceeds 2.0 in relative value, and the dispersion becomes large.

一方、Cr3C2の粒径が10μm以下(実施例17〜
19)では、さい断値の平均値、最大値とも著しく安定
しかつ高周波消弧特性も極めて好ましい相対値を示した
。従ってCr3C2の粒径は10μm〜0.1μm(実
施例17〜19)の範囲が好ましい(第5図の表)。C
r3C2の粒径が0.1μm以下では取扱いの面で工業
的でないのみならず、焼結性も過度に進行し素材特性が
安定しない。
On the other hand, the particle size of Cr3C2 was 10 μm or less (Example 17 to
In No. 19), both the average value and the maximum value of the cutoff value were extremely stable, and the high frequency arc extinguishing property also showed extremely favorable relative values. Therefore, the particle size of Cr3C2 is preferably in the range of 10 μm to 0.1 μm (Examples 17 to 19) (Table in FIG. 5). C
If the particle size of r3C2 is less than 0.1 μm, it is not only unsuitable for industrial use in terms of handling, but also causes excessive sinterability and unstable material properties.

なお、補助成分として、Niを中心に述べたが、純Co
、純Feであっても、また、Ni−Co粉末、C0−F
e粉末であっても、Niと同様の効果を得た。
Although Ni was mainly mentioned as an auxiliary component, pure Co
, even pure Fe, Ni-Co powder, C0-F
Even with e powder, the same effect as Ni was obtained.

実施例20〜24 上述した実施例1〜19、比較例1〜〕2では、総てク
ロム炭化物(Cr3C2)を金属炭化物として使用した
がチタン(Ti)、ジルコニウム(Zr)、バナジウム
(V)、ニオブ(Nb)、タンタル(Ta)の各金属炭
化物においても所定の(Ag+Cu)量、(Ag/ (
Ag+Cu)〕量及び所定の存在形態を有するAgとC
uの割合の夫々が好ましい所定範囲にあるときには前記
したCr3C2と同様の効果が得られる(第5図の表実
施例20〜24)。
Examples 20 to 24 In Examples 1 to 19 and Comparative Examples 1 to 2 described above, chromium carbide (Cr3C2) was used as the metal carbide, but titanium (Ti), zirconium (Zr), vanadium (V), Each metal carbide of niobium (Nb) and tantalum (Ta) also has a predetermined amount of (Ag+Cu), (Ag/ (
Ag+Cu)] Ag and C having the amount and predetermined existence form
When each of the ratios of u is within a preferable predetermined range, effects similar to those of Cr3C2 described above can be obtained (Examples 20 to 24 in the table of FIG. 5).

なお、Ag−Cu−各上記金属炭化物中の(Ag十Cu
)量は、金属炭化物の種類によって、その好ましい範囲
は、若干変動した。即ち、クロム炭化物Cr3C2では
、上述したように(Ag+Cu)量は40〜80 w 
t%であったが、他の金属炭化物においては、電流さい
所持性と高周波消弧特性との両者を同時に満足するには
、下記のような数値範囲とすることが必要であった。こ
れらの数値範囲の決定には、前述したCr3C2の場合
と同様な実験によって求めた。
In addition, Ag-Cu-(Ag+Cu) in each of the above metal carbides
) The preferred range of the amount varied slightly depending on the type of metal carbide. That is, in the case of chromium carbide Cr3C2, as mentioned above, the amount of (Ag+Cu) is 40 to 80 w.
t%, but in other metal carbides, in order to satisfy both current carrying properties and high frequency arc extinguishing properties at the same time, it was necessary to set the numerical value within the following range. These numerical ranges were determined through experiments similar to those for Cr3C2 described above.

(Ag+Cu)量は、耐弧性成分が、チタン炭化物(例
えばTic)にあっては50〜85 w t%、ジルコ
ニウム炭化物(例えばZrC)にあっては、40〜80
 w t%、バナジウム炭化物(例えばVC)にあって
は50〜85wt%、ニオブ炭化物(例えばNbC)に
あっては40〜80wt%、タンタル炭化物(例えばT
aC)にあっては25〜65wt%の範囲である。
The amount of (Ag+Cu) is 50 to 85 wt% for titanium carbide (e.g. Tic) and 40 to 80 wt% for zirconium carbide (e.g. ZrC).
wt%, 50 to 85 wt% for vanadium carbides (e.g. VC), 40 to 80 wt% for niobium carbides (e.g. NbC), and 40 to 80 wt% for tantalum carbides (e.g. T).
aC) is in the range of 25 to 65 wt%.

以上述べた実施例のようにAgとCuとからなる高導電
材料の総計量(Ag+Cu)と、AgとCuとの比率(
Ag/ (Ag十Cu)〕比とを所定値に制御し、かつ
Cr3C2の平均粒径を10μm以下としAgとCuと
の存在形態を、高度に均一分布させることによって、電
流さい所持性を低く維持することができ且つばらつきも
少なく管理することができ、さらに高周波消弧特性も同
時に充分低く維持することができる。
As in the examples described above, the total amount of highly conductive material consisting of Ag and Cu (Ag+Cu) and the ratio of Ag and Cu (
By controlling the Ag/ (Ag + Cu)] ratio to a predetermined value, and by setting the average particle size of Cr3C2 to 10 μm or less and highly uniformly distributing the existence form of Ag and Cu, the current resistance can be lowered. It is possible to maintain and manage the variation with a small amount, and furthermore, the high frequency arc extinguishing characteristic can also be maintained at a sufficiently low level.

[発明の効果] 以上詳記したように本発明によれば、次のような効果を
奏する。即ち、電流さい所持性を低く維持することがで
き且つばらつきも少なく管理することができる。さらに
高周波消弧特性も同時に充分低く維持することができる
。したがって、本発明の接点材料を真空バルブ接点に用
いれば、電流さい所持性およびしゃ所持性の優れた真空
バルブが得られ、苛酷化する真空しゃ断器への要求に充
分応え得る接点材料を提供することができる。
[Effects of the Invention] As detailed above, the present invention provides the following effects. That is, the current flow characteristics can be maintained low and variations can be managed to be small. Furthermore, high frequency arc extinction characteristics can also be maintained sufficiently low. Therefore, if the contact material of the present invention is used in a vacuum valve contact, a vacuum valve with excellent current carrying and blocking properties can be obtained, and a contact material that can fully meet the increasingly severe demands for vacuum circuit breakers is provided. be able to.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による真空バルブ用接点材料が適用され
る真空バルブの一例を示す断面図、第2図は第1図に示
す真空バルブの電極部分の拡大断面図−1第3図、第4
図及び第5図は本発明の実施例に係る接点材料の内容と
それに対応する特性データを比較例とともに示す表であ
る。 1:しゃ断器1 13a、13b:接点。
FIG. 1 is a sectional view showing an example of a vacuum valve to which the vacuum valve contact material according to the present invention is applied, and FIG. 2 is an enlarged sectional view of the electrode portion of the vacuum valve shown in FIG. 4
The figures and FIG. 5 are tables showing contents of contact materials according to examples of the present invention and corresponding characteristic data together with comparative examples. 1: Breaker 1 13a, 13b: Contacts.

Claims (4)

【特許請求の範囲】[Claims] (1)Ag及びCuよりなる高導電性成分と、炭化クロ
ム(以下Cr_3C_2と記載)よりなる耐弧性成分と
を含むAg−Cu−Cr_3C_2系の真空バルブ用接
点材料であって、 前記高導電性成分の含有量は、AgとCuとの総計量(
Ag+Cu)が40〜80重量%であり、且つ当該Ag
とCuとの総計量中に占めるAgの比率〔Ag/(Ag
+Cu)〕は40〜80重量%であり、 前記耐弧性成分の含有量は、20〜60重量%であり、 当該接点材料の組織は、前記高導電性成分のマトリック
ス及び厚さ又は幅5μm以下の不連続相と、10μm以
下の前記耐弧性成分の不連続粒とからなり、前記高導電
性成分の不連続相が前記マトリックス中で5μm以下の
間隔で微細に且つ均一に分散されていることを特徴とす
る真空バルブ用接点材料。
(1) An Ag-Cu-Cr_3C_2-based vacuum valve contact material containing a highly conductive component made of Ag and Cu and an arc-resistant component made of chromium carbide (hereinafter referred to as Cr_3C_2), the highly conductive The content of sexual components is determined by the total amount of Ag and Cu (
Ag+Cu) is 40 to 80% by weight, and the Ag
The ratio of Ag in the total weight of Cu and Cu [Ag/(Ag
+Cu)] is 40 to 80% by weight, the content of the arc-resistant component is 20 to 60% by weight, and the structure of the contact material is a matrix of the highly conductive component and a thickness or width of 5 μm It consists of the following discontinuous phase and discontinuous grains of the arc-resistant component of 10 μm or less, and the discontinuous phase of the highly conductive component is finely and uniformly dispersed in the matrix at intervals of 5 μm or less. A contact material for vacuum valves characterized by:
(2)前記高導電性成分の厚さ又は幅5μm以下の不連
続相が前記マトリックス中で5μm以下の間隔で微細に
且つ均一に分散されている存在状態を示す部分において
、 前記高導電性成分のマトリックス及び不連続相が、各々
、Agを溶解したCu固溶体及びCuを溶解したAg固
溶体、もしくはCuを溶解したAg固溶体及びAgを溶
解したCu固溶体であることを特徴とする請求項1記載
の真空バルブ用接点材料。
(2) In a portion exhibiting a state in which a discontinuous phase of the highly conductive component having a thickness or width of 5 μm or less is finely and uniformly dispersed in the matrix at intervals of 5 μm or less, the highly conductive component The matrix and the discontinuous phase of claim 1 are each a Cu solid solution in which Ag is dissolved and an Ag solid solution in which Cu is dissolved, or an Ag solid solution in which Cu is dissolved and a Cu solid solution in which Ag is dissolved. Contact material for vacuum valves.
(3)前記接点材料の組織において、 前記高導電性成分の厚さ又は幅5μm以下の不連続相が
マトリックス中で5μm以下の間隔で微細に且つ均一に
分散されている存在状態を示す部分が、高導電性成分総
計量のうちの少なくとも40面積%占めることを特徴と
する請求項1又は2記載の真空バルブ用接点材料。
(3) In the structure of the contact material, there is a portion in which a discontinuous phase of the highly conductive component with a thickness or width of 5 μm or less is finely and uniformly dispersed in the matrix at intervals of 5 μm or less. 3. The contact material for a vacuum valve according to claim 1, wherein the contact material for a vacuum valve according to claim 1 or 2, wherein the highly conductive components occupy at least 40% by area of the total weight of the highly conductive components.
(4)Ag及びCuよりなる高導電性成分と、Ti、Z
r、V、Nb、Taの群から選ばれた金属炭化物の1つ
よりなる耐弧性成分とを含むAg−Cu−金属炭化物系
の真空バルブ用接点材料であって、前記高導電性成分の
含有量であるAgとCuとの総計量(Ag+Cu)は、
前記耐弧性成分が、TiCにあっては50〜80重量%
、ZrCにあっては40〜80重量%、VCにあっては
50〜80重量%、NbCにあっては40〜80重量%
、及びTaCにあっては25〜65重量%の範囲にあり
、且つ当該AgとCuとの総計量中に占めるAgの比率
〔Ag/(Ag+Cu)〕は40〜80重量%であり、 当該接点材料の組織は、前記高導電性成分のマトリック
ス及び厚さ又は幅5μm以下の不連続相と、10μm以
下の前記耐弧性成分の不連続粒とからなり、前記高導電
性成分の不連続相が前記マトリックス中で5μm以下の
間隔で微細に且つ均一に分散されていることを特徴とす
る真空バルブ用接点材料。
(4) Highly conductive components consisting of Ag and Cu, Ti, and Z
An Ag-Cu-metal carbide contact material for a vacuum valve, comprising an arc-resistant component made of one of metal carbides selected from the group of r, V, Nb, and Ta, the highly conductive component being The total content of Ag and Cu (Ag+Cu) is
When the arc-resistant component is TiC, it is 50 to 80% by weight.
, 40-80% by weight for ZrC, 50-80% by weight for VC, and 40-80% by weight for NbC.
, and TaC are in the range of 25 to 65% by weight, and the ratio of Ag in the total weight of Ag and Cu [Ag/(Ag+Cu)] is 40 to 80% by weight, and the contact point The structure of the material consists of a matrix of the highly conductive component and a discontinuous phase with a thickness or width of 5 μm or less, and discontinuous grains of the arc-resistant component with a thickness of 10 μm or less, and the discontinuous phase of the highly conductive component is finely and uniformly dispersed in the matrix at intervals of 5 μm or less.
JP24335189A 1989-09-21 1989-09-21 Contact material vacuum valve Pending JPH03108224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24335189A JPH03108224A (en) 1989-09-21 1989-09-21 Contact material vacuum valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24335189A JPH03108224A (en) 1989-09-21 1989-09-21 Contact material vacuum valve

Publications (1)

Publication Number Publication Date
JPH03108224A true JPH03108224A (en) 1991-05-08

Family

ID=17102541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24335189A Pending JPH03108224A (en) 1989-09-21 1989-09-21 Contact material vacuum valve

Country Status (1)

Country Link
JP (1) JPH03108224A (en)

Similar Documents

Publication Publication Date Title
JP2653486B2 (en) Contact material for vacuum valve
JP2778826B2 (en) Contact material for vacuum valve
EP0385380B1 (en) Contact forming material for a vacuum interrupter
JP3598195B2 (en) Contact material
JPS6277439A (en) Contact point material for vacuum valve
JP3773644B2 (en) Contact material
JPH09161628A (en) Contact material for vacuum valve and manufacture thereof
JP2692945B2 (en) Contact material for vacuum valve
JPH03108224A (en) Contact material vacuum valve
JP4515696B2 (en) Contact materials for vacuum circuit breakers
JP2904448B2 (en) Contact material for vacuum valve
JPH02288033A (en) Contact material for vacuum bulb
JP3068880B2 (en) Contact for vacuum valve
JP2911594B2 (en) Vacuum valve
JPH042737A (en) Contact material for vacuum valve
JP2000226631A (en) Vacuum valve and vacuum opening/closing device
JP2904452B2 (en) Contact material for vacuum valve
JPH0653907B2 (en) Contact material for vacuum valve
JPH05101753A (en) Vacuum valve
WO2018154848A1 (en) Contact material, method for manufacturing same, and vacuum valve
JPH03295118A (en) Contact material for vacuum valve
JPH08293233A (en) Contact material for vacuum valve
JPH0736306B2 (en) Vacuum valve contact alloy
JPH0877856A (en) Contact material for vacuum valve
JPS6336091B2 (en)