JPH0736306B2 - Vacuum valve contact alloy - Google Patents

Vacuum valve contact alloy

Info

Publication number
JPH0736306B2
JPH0736306B2 JP60066918A JP6691885A JPH0736306B2 JP H0736306 B2 JPH0736306 B2 JP H0736306B2 JP 60066918 A JP60066918 A JP 60066918A JP 6691885 A JP6691885 A JP 6691885A JP H0736306 B2 JPH0736306 B2 JP H0736306B2
Authority
JP
Japan
Prior art keywords
contact
copper
vacuum valve
alloy
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60066918A
Other languages
Japanese (ja)
Other versions
JPS61227331A (en
Inventor
功 奥富
誠司 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60066918A priority Critical patent/JPH0736306B2/en
Publication of JPS61227331A publication Critical patent/JPS61227331A/en
Publication of JPH0736306B2 publication Critical patent/JPH0736306B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は真空バルブ(開閉器)に係り、特に電流さい断
特性を改良した真空バルブの接点合金に関する。
Description: TECHNICAL FIELD OF THE INVENTION The present invention relates to a vacuum valve (switch), and more particularly to a contact alloy for a vacuum valve having improved current interruption characteristics.

〔発明の技術的背景〕[Technical background of the invention]

真空中でのアーク拡散性を利用して高真空中で電流しゃ
断を行なわせる真空バルブの接点は、対向する固定、可
動の2つの接点から構成されている。特に電動機負荷等
の誘導回路で電流をしゃ断する時、過度のサージ電圧を
発生させ負荷機器を破壊させる恐れがある。この異常サ
ージ電圧の発生原因は真空中に於けるしゃ断時に低電流
側に発生する電流さい断現象(交流電流波形の自然ゼロ
点を待たず強制的に電流しゃ断が行なわれること)によ
るものである。異常サージ電圧の値Vsは回路のサージイ
ンピーダンスZoと、電流さい断値Icの積、すなわちVs=
2Zo Icで表わされる。従って、異常サージ電圧Vsを低く
するためには電流さい断値Icを小さくしなければならな
い。
The contact point of a vacuum valve that cuts off a current in a high vacuum by utilizing arc diffusivity in a vacuum is composed of two opposing fixed and movable contacts. In particular, when the current is cut off by an induction circuit such as a motor load, excessive surge voltage may be generated, which may damage the load equipment. The cause of this abnormal surge voltage is due to the current interruption phenomenon that occurs on the low current side during interruption in vacuum (forced current interruption without waiting for the natural zero point of the AC current waveform). . The value Vs of the abnormal surge voltage is the product of the circuit surge impedance Zo and the current interruption value Ic, that is, Vs =
Represented by 2Zo Ic. Therefore, in order to reduce the abnormal surge voltage Vs, the current interruption value Ic must be reduced.

上記要求に対して接点をWCとAgとを複合化した合金で構
成した真空開閉器が実用化されている(特願昭42−6844
7号)。この合金接点は、 (1)WCの介在が電子放射を容易にさせる、 (2)電界放射電子の衝突による電極面の加熱にもとづ
く接点材料の蒸発を促進させる、 (3)接点材料中の炭化物がアークにより分解し、荷電
体を生成してアークを接続する等々の点ですぐれた電流
さい断特性を発揮している。
In response to the above requirements, a vacuum switch whose contacts are made of an alloy of WC and Ag has been put into practical use (Japanese Patent Application No. 42-6844).
No. 7). In this alloy contact, (1) intervening WC facilitates electron emission, (2) promotes evaporation of contact material due to heating of the electrode surface due to collision of field emission electrons, (3) carbide in contact material Shows an excellent current interruption characteristic in that it is decomposed by an arc to generate a charged body and connect the arc.

また、上記電流さい断特性を有する他の接点としてBiと
Cuとを複合化した合金が製造され、この材料が真空バル
ブに実用化されている(特公昭35−14974号公報、特公
昭41−12131号公報)。この合金は (1)重量割合10%程度のBiは、その適度な蒸気圧特性
を有するので、低いさい断電流特性を発揮する(特公昭
35−1494号公報)。
Also, as another contact having the above current interruption characteristics, Bi and
An alloy compounded with Cu has been produced, and this material has been put to practical use in a vacuum valve (Japanese Patent Publication Nos. 35-14974 and 41-12131). This alloy has the following characteristics: (1) Bi with a weight ratio of about 10% has an appropriate vapor pressure characteristic, so it exhibits low breaking current characteristics (Japanese Patent Publication No.
35-1494).

(2)重量割合0.5%程度のBiは、結晶粒界に偏折して
存在する結果、合金自体を脆化し、低い溶着引外力を実
現し大電流しゃ断性に優れている(特公昭41−12131号
公報)。
(2) Bi having a weight ratio of about 0.5% is unevenly present in the grain boundaries, and as a result, the alloy itself becomes brittle, a low welding external force is realized, and it is excellent in large current interruption (Japanese Patent Publication No. 41- No. 12131).

〔背景技術の問題点〕[Problems of background technology]

しかし、近年真空バルブを誘導性回路へ適用する例が従
来より増えると共に、高インピーダンス負荷も出現した
ため真空バルブには一層の安定した電流さい断特性を持
つことが望まれてくるとともに、低コスト化が望まれて
いる。
However, in recent years, the number of cases where a vacuum valve is applied to an inductive circuit has increased more than before, and a high impedance load has also appeared. Therefore, it is desired for the vacuum valve to have more stable current interruption characteristics, and cost reduction. Is desired.

このような要求に対して、前記接点合金のAg−WC,Cu−B
iは、さい断電流値が高いレベルにあり、又は安定性に
欠けるものであった。すなわち、Ag−WC接点合金にはAg
とWCとの蒸気圧差が甚しく大きいためアーク熱などによ
るAgの著しい選択蒸発を招き、この結果電流さい断特性
を不安定性及び接触抵抗の変動を招く。
For such requirements, the contact alloys Ag-WC, Cu-B
For i, the breaking current value was at a high level or lacked in stability. That is, Ag-WC contact alloy has Ag
Since the difference in vapor pressure between WC and WC is extremely large, it causes remarkable selective evaporation of Ag due to arc heat and the like, resulting in instability of current cutting characteristics and fluctuation of contact resistance.

一方のCu−Bi接点合金には、Biの溶融点が271℃と低い
ことに起因する本質的問題として真空バルブのベーキン
グ、或いは銀ろう付けの加熱時にBiが凝集し接合不良を
招く問題がある。
On the other hand, Cu-Bi contact alloy has a problem that the melting point of Bi is as low as 271 ° C, which is an essential problem, and causes Bi to agglomerate during vacuum valve baking or silver brazing heating, leading to poor bonding. .

〔発明の目的〕[Object of the Invention]

本発明は上記事情に基づいてなされたもので、その目的
とするところは、電流さい断特性の安定性をより一層向
上した真空バルブの接点合金を提供することにある。
The present invention has been made based on the above circumstances, and an object of the present invention is to provide a contact alloy for a vacuum valve, in which the stability of the current cutting characteristic is further improved.

〔発明の概要〕[Outline of Invention]

本発明は、銀または銅のうちのいずれか1種を少なくと
も含有する導電材料と、0.5〜20重量%の亜鉛テルライ
ドよりなる補助材料とで構成されたことを特徴とする真
空バルブの接点合金である。
The present invention is a contact alloy for a vacuum valve, which is characterized by comprising a conductive material containing at least one of silver and copper and an auxiliary material consisting of 0.5 to 20% by weight of zinc telluride. is there.

〔発明の実施例〕Example of Invention

本発明の一実施例を図面を参照して詳細に説明する。第
1図は本発明の接点合金を適用する真空しゃ断器の構成
例を示すもので、同図に於いて1はしゃ断室を示し、こ
のしゃ断室1は絶縁材料によりほぼ円筒状に形成された
絶縁容器2と、この両端に封止金具3a,3bを介して設け
た金属性の蓋体4a,4bとで真空密に構成されている。し
かして前記しゃ断室1内には、導電棒5,6の対向する端
部に取付けられた1対の電極7,8が配設され、上部の電
極7を固定電極、下部の電極8を可動電極としている。
またこの可動電極8の電極棒6には、ベローズ9が取付
けられしゃ断室1内を真空密に保持しながら電極8の軸
方向の移動を可能にしている。またこのベローズ9上部
には金属性のアークシールド10が設けられ、ベローズ9
がアーク蒸気で覆われることを防止している。又11は、
前記電極7,8を覆うようにしゃ断室1内に設けられた金
属性のアークシールドで絶縁容器2がアーク蒸気で覆わ
れることを防止している。更に電極8は、第2図に拡大
して示す如く導電棒6にろう付部12によって固定される
か、又はかしめによって圧着接続されている。接点13a
は電極8にろう付14によってろう付で取付けられる。な
お、13bは固定側接点であり、固定側電極8と同様にろ
う付により取付けられる。
An embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 shows an example of the structure of a vacuum breaker to which the contact alloy of the present invention is applied. In FIG. 1, reference numeral 1 denotes a breaking chamber, and this breaking chamber 1 is formed of an insulating material into a substantially cylindrical shape. The insulating container 2 and the metallic lids 4a and 4b provided on both ends of the insulating container 2 via the sealing metal fittings 3a and 3b are vacuum-tight. Then, a pair of electrodes 7 and 8 attached to opposite ends of the conductive rods 5 and 6 are arranged in the shut-off chamber 1, and the upper electrode 7 is a fixed electrode and the lower electrode 8 is movable. It is used as an electrode.
Further, a bellows 9 is attached to the electrode rod 6 of the movable electrode 8 to enable the electrode 8 to move in the axial direction while keeping the blocking chamber 1 vacuum-tight. Further, a metallic arc shield 10 is provided above the bellows 9,
Are protected from being covered with arc vapor. Also 11 is
A metallic arc shield provided in the interrupting chamber 1 so as to cover the electrodes 7 and 8 prevents the insulating container 2 from being covered with arc vapor. Further, the electrode 8 is fixed to the conductive rod 6 by a brazing portion 12 as shown in an enlarged view in FIG. 2, or is crimped by caulking. Contact 13a
Are brazed to the electrode 8 by brazing 14. Reference numeral 13b is a fixed side contact, which is attached by brazing similarly to the fixed side electrode 8.

ここで、本発明の接点合金を得るまでの考察について説
明する。電流さい断特性の改善には、電流さい断値自体
をより低い値に維持すること以外に、そのばらつき幅を
縮めることも極めて重要である。上記電流さい断現象
は、接点間の蒸気量(蒸気圧、熱伝導)、接点材からの
放出熱電子などと関係が深いとされ、発明者らの実験に
よれば前者の方が寄与が大であることが判明した。した
がって、蒸気を供給し易くするか、あるいは供給し易い
材料で接点を作成すれば電流さい断現象が緩和できるこ
とが判明した。Cu−Bi合金はこうした観点に立つもので
低いさい断値を有するが、致命的な欠点として、Biが持
つ低溶融点(271℃)のため通常真空バルブで行なわれ
る600℃近傍のベーキング或いは800℃の銀ろう付け作業
時に、Biの溶融による移動、凝集の結果、電流さい断特
性を維持すべきBiの存在が不均一になってしまう。この
ため、電流さい断値のばらつき幅が増大する現象を確認
した。
Here, the consideration for obtaining the contact alloy of the present invention will be described. In order to improve the current cutoff characteristic, it is extremely important to reduce the variation width in addition to maintaining the current cutoff value itself at a lower value. It is said that the current interruption phenomenon is closely related to the amount of vapor between contacts (vapor pressure, heat conduction), thermoelectrons emitted from the contact material, etc. According to the experiments conducted by the inventors, the former contributes more. It turned out to be Therefore, it has been found that the current interruption phenomenon can be alleviated by making the supply of steam easy or by making the contact with a material which is easy to supply. The Cu-Bi alloy has a low threshold value from this viewpoint, but the fatal drawback is that the low melting point (271 ° C) of Bi normally causes baking at a temperature of around 600 ° C or 800 ° C, which is usually performed by a vacuum valve. During the silver brazing operation at ℃, as a result of the movement and agglomeration of Bi due to melting, the existence of Bi that should maintain the current cutoff characteristic becomes non-uniform. Therefore, it was confirmed that the variation range of the current cutoff value increases.

一方、Ag−WCで代表されるAg−耐火材料系合金では、耐
火材料(この場合WC)の沸点におけるAg(あるいはCu)
の蒸気量に存在されるものの他方、前記Cu−Bi系におけ
るBiの蒸気圧よりAgのそれは著しく低いため接触点のど
の位置(耐火材料がAgか)にアークの足が固着するかに
よって、時折は温度不足即ち蒸気不足を招いてしまう。
結果的には電流さい断値のばらつき幅が現われることが
確認された。このように電流しゃ断終期の接点面の急激
な温度低下を耐火材料とAg(又はCu)との組合せのみに
よる合金によって阻止しアークを接続させることはすで
に限界と考えられ、更に高性能化するためには、補助材
料の存在が必要である結論に至った。
On the other hand, in Ag-refractory alloys represented by Ag-WC, Ag (or Cu) at the boiling point of the refractory material (WC in this case)
However, depending on which position of the contact point (whether the refractory material is Ag) the arc foot sticks, it is sometimes lower than the vapor pressure of Bi in the Cu-Bi system. Causes insufficient temperature, that is, insufficient steam.
As a result, it was confirmed that the variation range of the current threshold value appears. In this way, it is already considered to be the limit to prevent the sudden temperature drop of the contact surface at the end of the current interruption with the alloy consisting only of the combination of the refractory material and Ag (or Cu), and to connect the arc. Has led to the conclusion that the presence of auxiliary materials is necessary.

このように上記Cu−Bi合金及びAg−WC合金(Ag−耐火材
料系)の2つの考察結果は、電流さい断特性の安定した
接点として、新規の補助材料が必要で、その条件は、蒸
気の供給能力を持った上で、なおかつベーキングなどの
熱処理に於ける安定性を有することが不可欠であること
を示唆している。
As described above, the two consideration results of the Cu-Bi alloy and the Ag-WC alloy (Ag-refractory material system) indicate that a new auxiliary material is required as a contact with stable current cutting characteristics, and the condition is steam It is suggested that it is indispensable to have stability in heat treatment such as baking, in addition to having the ability to supply.

したがって本発明では、上述のように一定の条件を持つ
補助材料を積極的に含有させ電流さい断特性の向上を図
っている。そこで、本発明は低いさい断電流特性を得る
ために、Cu,Cu−耐火材料,Cu−CoまたはFeのいずれか一
方(なおCuの一部又は全部をAgで置換)の合金に0.5〜2
0%のZnTeを補助材料として添加する。このZnTe中のTe
はほぼ66Wt%であるが、Te又はZnの若干のずれはZnを含
有したCu−Zn固溶体、Cu−Te化合物を含有したCu合金と
しての共存が許される。このような状態のとき比較的小
さなエネルギで加熱蒸発し適度の金属蒸気がアーク空間
に入るので、これが電流さい断現象の軽減として作用し
てその結果、実用上の満足のいく真空バルブの接点合金
となることを確認した。
Therefore, in the present invention, as described above, the auxiliary material having a certain condition is positively contained to improve the current cutting characteristic. Therefore, in order to obtain a low breaking current characteristic, the present invention provides an alloy of Cu, Cu-refractory material, Cu-Co or Fe (wherein Cu is partially or entirely replaced with Ag) 0.5 to 2
0% ZnTe is added as an auxiliary material. Te in this ZnTe
Is about 66 Wt%, but a slight deviation of Te or Zn can coexist as a Cu-Zn solid solution containing Zn and a Cu alloy containing a Cu-Te compound. In such a state, the metal alloy vaporizes by heating with a relatively small amount of energy and a suitable amount of metal vapor enters the arc space. This acts as a reduction of the current interruption phenomenon, and as a result, practically satisfactory contact alloys for vacuum valves. It was confirmed that

次に、この接点合金の製造方法の一例について説明す
る。製造に先立って、約100メッシュのTe及びZn粉末
を、アルゴンガスを充填したポットに入れて約12時間混
合した混合粉を4トン/cm2で成型し、次に、水素気流
中900℃で24時間焼結しZnTeの塊を得る。このZnTeを100
〜200メッシュに粉砕し原料とする。
Next, an example of a method for manufacturing this contact alloy will be described. Prior to production, about 100 mesh Te and Zn powder was put into a pot filled with argon gas and mixed for about 12 hours to form a mixed powder at 4 ton / cm 2 , and then at 900 ° C. in a hydrogen stream. Sinter for 24 hours to obtain ZnTe lumps. This ZnTe is 100
Grind to ~ 200 mesh and use as raw material.

次に製造工程を説明する。Next, the manufacturing process will be described.

第1にCu−ZnTe接点材料の製造;必要とするCu量の一部
を粉末で用意し、これと共に準備したZnTe粉とをポット
中で約12時間混合し2トン/cm2で成型後、水素中900℃
で4時間焼結する。として得られたスケルトンの残存空
孔中に、必要とするCu量の残量を水素中1120℃で溶浸し
て接点素材を得る。又は必要とするCu量の全量に相当す
るCu粉末とZnTe粉末とを約12時間混合して4トン/cm2
で成型後95℃の水素中で焼結して接点素材を得る。
First, manufacture of Cu-ZnTe contact material; a part of the required amount of Cu was prepared as powder, and ZnTe powder prepared with this was mixed in a pot for about 12 hours and molded at 2 ton / cm 2 , 900 ℃ in hydrogen
Sinter for 4 hours. The residual material of the required amount of Cu is infiltrated in hydrogen at 1120 ° C into the residual holes of the skeleton obtained as above to obtain a contact material. Alternatively, the Cu powder corresponding to the total amount of the required Cu and the ZnTe powder are mixed for about 12 hours to obtain 4 ton / cm 2
After molding at, sinter in hydrogen at 95 ℃ to obtain contact material.

第2にCu−ZnTe、耐火材料(W,Mo,Ta,Nb,Zr,Ti,Cr)及
びこれらの炭化物、ホウ化物のうちいずれか1つの接点
材料の製造;約100メッシュの単位材料粉とZnTe粉を混
合して成型した後、焼結によってスケルトンを得る。次
にスケルトン中の残存空孔にCuを溶浸し接点素材を得
る。
Second, manufacture of Cu-ZnTe, refractory materials (W, Mo, Ta, Nb, Zr, Ti, Cr) and contact materials of any one of these carbides and borides; unit material powder of about 100 mesh and After the ZnTe powder is mixed and molded, a skeleton is obtained by sintering. Next, Cu is infiltrated into the remaining holes in the skeleton to obtain a contact material.

第3にCu−ZnTe−Fe(Co)の接点材料の製造;約100メ
ッシュのFeまたはCoのうちいずれか一方の粉とZnTe粉と
を混合して成型した後、焼結によってスケルトルを得
る。次に、スケルトル中の残存空孔にCuを溶浸して接点
素材を得る。
Third, manufacture of Cu-ZnTe-Fe (Co) contact material; powder of either 100 Fe or Co of about 100 mesh and ZnTe powder are mixed and molded, and then skeleton is obtained by sintering. Next, Cu is infiltrated into the remaining holes in the skeletal to obtain a contact material.

以上のようにして第1表および第2表に示すような導電
材料(Cu,Ag)に補助材料(ZnTe;W,Mo,Ta,Nb,Zr,Ti,Cr
等の耐火材料)を含有した各接点合金が製造される。
As described above, the auxiliary materials (ZnTe; W, Mo, Ta, Nb, Zr, Ti, Cr) are added to the conductive materials (Cu, Ag) as shown in Tables 1 and 2.
Each contact alloy containing a refractory material) is manufactured.

次に上記製造された各接点合金について考察し、その最
良の含有割合を求める。
Next, each of the contact alloys produced above will be considered and the best content ratio will be determined.

現在、低電流さい断特性を持った接点合金として比較材
2,3に示すAg−70%WCおよびCu−15%Bi合金が実用され
ている。これは、純Cu(比較材−1)より電流さい断特
性は向上するが特にCu−Bi系(比較材−3)では、開閉
回数を重ねることにより特性(さい断電流値の上昇)が
著しく劣化する。
Currently, it is a comparative material as a contact alloy with low current cutting characteristics.
Ag-70% WC and Cu-15% Bi alloys shown in 2 and 3 are in practical use. This is because the current breaking characteristic is improved as compared with pure Cu (Comparative Material-1), but especially in the Cu-Bi system (Comparative Material-3), the characteristics (increase in the breaking current value) are significantly increased by increasing the number of switching to degrade.

一方、Cu−ZnTe系は、ZnTe量が0.12%(比較材−4)で
は、電流さい断特性は量特性を示し、ZnTe量は少なくと
も0.5%(実施材−1)が必要で最大20%(実施材−
3)の範囲が必要である。この範囲において電流さい断
値の平均値及び最大値のいずれも低くかつ安定してい
る。ZnTe量が30%を越えたものでは電流さい断性には関
係ないが、電圧7.2kvでしゃ断後のしゃ断特性の低下が
著しい(比較例−5)。したがって、ZnTe量が0.5〜20
%の範囲では、しゃ断特性の変化もAg−70WC系の特性と
比較しても、低下の程度はわずかであり充分実用的であ
り最良となる。従ってZnTeの量は0.5〜20%の範囲に設
定する。
On the other hand, in the Cu-ZnTe system, when the ZnTe content is 0.12% (comparative material-4), the current cutting characteristic shows a quantitative characteristic, and the ZnTe content is required to be at least 0.5% (implementation material-1) and a maximum of 20% ( Implementation material-
The range of 3) is necessary. In this range, both the average value and the maximum value of the current cutoff value are low and stable. When the amount of ZnTe exceeds 30%, it is not related to the current cutoff property, but the cutoff characteristics after the cutoff at a voltage of 7.2 kv are significantly deteriorated (Comparative Example-5). Therefore, the amount of ZnTe is 0.5 to 20.
In the range of%, the change in the breaking property is also slight compared with the property of the Ag-70WC system, and the degree of decrease is slight, which is practical and the best. Therefore, the amount of ZnTe is set in the range of 0.5 to 20%.

以上のことは、Cu−ZnTe擬二元系に限ることなく、Cuと
耐火材料(W,Mo,Ta,Nb,Zr,Ti,Cr)とからなるマトリッ
クスにZnTeが存在しても同様の効果が得られている。こ
のこは実施材−5〜19と比較材−6〜9との対比すれば
判明する。
The above is not limited to the Cu-ZnTe pseudo-binary system, but similar effects can be obtained even if ZnTe is present in the matrix composed of Cu and the refractory material (W, Mo, Ta, Nb, Zr, Ti, Cr). Has been obtained. This is clarified by comparing the working materials-5 to 19 with the comparative materials-6 to 9.

更に、導電材料がCuに限定するものでなく実施材−4,1
6,17に示すようにAgであっても又、CuとAgとの共存であ
っても同様の効果が得られている。
Furthermore, the conductive material is not limited to Cu, but is not limited to the material used in Example-4,1.
As shown in 6,17, the same effect is obtained even when Ag is used or when Cu and Ag coexist.

また、実施材−20に示すようにCuマトリックスにTeが存
在した場合、実施材−21に示すようにCuマトリックスに
Znが存在した場合でも、その効果は同様に奏されてい
る。この場合、マトリックスZn又はTe(実際にはCu2 T
e)が存在するのは、本発明材料であるZnTeが理想的にT
eを66%含有した状態からわずかにZnリッチ又はTeリッ
チにずれたとき残余のZn又はTeとCuとの合金化によって
発生するものである。このことは経済性を加味した工業
的製造において通常よく認められるものであるが、接点
材料としてはその範囲を2%程度以下に制御するべきで
あり、これ以上の存在は接合工程において好ましくない
ので避けるべきである。
In addition, when Te is present in the Cu matrix as shown in Example Material-20, it is added to the Cu matrix as shown in Example Material-21.
Even if Zn is present, the same effect is obtained. In this case, the matrix Zn or Te (actually Cu 2 T
e) exists because ZnTe, which is the material of the present invention, has an ideal T
This occurs due to the alloying of the remaining Zn or Te with Cu when the content of 66% e deviates slightly to Zn rich or Te rich. This is usually well recognized in industrial production considering economy, but as the contact material, the range should be controlled to about 2% or less, and the presence of more than this is not preferable in the bonding process. It should be avoided.

以上示したようにZnTeを含有する接点の最大の特徴は低
い電流さい断特性を示すことのみならず、所定回数開閉
後のそれの変動(さい断電流値が上昇)が少ないことで
あり、この特性をしかもしゃ断性能をほとんど低下させ
ずに得られるところにある。その原因は、前述したよう
に、ベーキング或いは銀ろう付け工程で受ける熱に対し
て分解あるいは移動、凝集などの変化が少ないことに起
因していると考えられる。したがって、前述したZnTe
(66%Te)からずれた2%程度の残りのZn,あるいはTe
は、電流開閉あるいは電流しゃ断によって主としてアー
ク熱による蒸発のため消耗される場合もある。従って、
この量が多い程、電流さい断値あるいはしゃ断特性の開
閉回数に対する変動幅が大きくなる方向に作用して好ま
しくなく前記Zn、Teは2%を目安に制御するのがよい。
As shown above, the greatest feature of the contact containing ZnTe is not only that it shows a low current breaking characteristic, but also that there is little fluctuation (the breaking current value increases) after opening and closing a predetermined number of times. It is in the place where the characteristics can be obtained with almost no reduction in the cutting performance. It is considered that the cause is that, as described above, there are few changes such as decomposition, migration, and aggregation with respect to heat received in the baking or silver brazing process. Therefore, the above-mentioned ZnTe
2% remaining Zn or Te deviated from (66% Te)
May be consumed mainly by evaporation due to arc heat due to current switching or current interruption. Therefore,
The larger this amount is, the larger the fluctuation range of the current breaking value or the breaking characteristic with respect to the number of times of switching increases and decreases, which is not preferable, and Zn and Te are preferably controlled with 2% as a guide.

なお、評価の条件は次の通りである。さい断電流;表中
のさい断電流値は供試接点に直列に挿入した同軸型シャ
ントの電圧降下をシンクロスコープで観測したものであ
る。すなわちLC回路を経て実効値44Aの交流を与え実験
回数500回でのさい断電流値の平均値その他を求めてあ
る。その試料はベーキング、放電エージングを行い測定
に移す。エージングの不足は測定回数と共にさい断値が
上昇するので加熱と放電により充分に行う。試料形態は
径20mm、厚さ4mmで一方は平面、他方は20mmRで接触圧力
は10kgである。
The evaluation conditions are as follows. Breaking current: The breaking current value in the table is the voltage drop of the coaxial shunt inserted in series with the contact under test, observed with a synchroscope. In other words, the average value of the breaking current values after 500 experiments were given by applying an alternating current with an effective value of 44 A through the LC circuit. The sample is baked and discharged aged for measurement. If the aging is insufficient, the threshold value increases with the number of measurements, so heating and discharging should be performed sufficiently. The sample morphology has a diameter of 20 mm, a thickness of 4 mm, one is flat, the other is 20 mmR and the contact pressure is 10 kg.

しゃ断評価;直径20mm、キャップ2.5mmに対向させたし
ゃ断テスト用実験バルブに組込み、ベーキング、電圧エ
ージング等を与えた後7.2kv50Hzで1KAずつ電流を増加し
ながらしゃ断限界を比較評価した。
Cut-off evaluation: The cut-off limit was comparatively evaluated by increasing the current by 1 KA at 7.2 kv 50 Hz after incorporating it into an experimental valve for a cut-off test facing a diameter of 20 mm and a cap of 2.5 mm and applying baking and voltage aging.

このように上記一実施例においては、銅または銅に亜鉛
または耐火材料や銀などを含有した導電材料と、この導
電材料中に熱処理に対して安定しかつ真空バルブ接点間
の蒸気圧および熱伝導の供給が簡単な補助材料亜鉛テル
ライドを含有させた接点材料なので、次のような効果を
奏する。すなわち接点合金の製造時あるいはベーキン
グ、銀ろう付けなど真空バルブ製造時などで受ける熱に
よる変質も少なく安定した電流さい断特性が得られる。
さらにしゃ断特性も従来の接点材料特性を十分維持する
ことができる。したがって、本発明の接点材料を真空バ
ルブ接点に用いれば、電流さい断特性およびしゃ断特性
の良い真空バルブが得られる。
As described above, in the above-described one embodiment, copper or a conductive material containing zinc or a refractory material, silver, or the like in copper, and a vapor pressure and a thermal conduction between the vacuum valve contacts which are stable to heat treatment in the conductive material. Since it is a contact material containing zinc telluride as an auxiliary material that can be easily supplied, the following effects can be obtained. In other words, stable current interruption characteristics can be obtained with little deterioration due to heat received during manufacturing of contact alloys or during manufacture of vacuum valves such as baking and silver brazing.
Further, the breaking property can sufficiently maintain the conventional contact material property. Therefore, when the contact material of the present invention is used for a vacuum valve contact, a vacuum valve having excellent current interruption characteristics and interruption characteristics can be obtained.

〔発明の効果〕〔The invention's effect〕

以上詳記したように本発明によれば、電流さい断特性の
安定性をより一層向上した真空バルブの接点合金を提供
できる。
As described in detail above, according to the present invention, it is possible to provide a contact alloy for a vacuum valve in which the stability of the current cutting characteristic is further improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の真空バルブの接点合金の一実施例を適
用した真空バルブの構成図、第2図は第1図に示す真空
バルブの電極部分の拡大構成図である。 1……しゃ断室、2……絶縁容器、5,6……導電棒、13
a,13b……接点。
FIG. 1 is a configuration diagram of a vacuum valve to which an embodiment of a contact alloy for a vacuum valve of the present invention is applied, and FIG. 2 is an enlarged configuration diagram of an electrode portion of the vacuum valve shown in FIG. 1 ... Shut-off room, 2 ... Insulation container, 5,6 ... Conductive rod, 13
a, 13b …… Contact point.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】銀または銅のうちのいずれか1種を少なく
とも含有する導電材料と、0.5〜20重量%の亜鉛テルラ
イドよりなる補助材料とで構成されたことを特徴とする
真空バルブの接点合金。
1. A vacuum valve contact alloy comprising a conductive material containing at least one of silver and copper and an auxiliary material composed of 0.5 to 20% by weight of zinc telluride. .
【請求項2】補助材料は、亜鉛テルライド中のTeはほぼ
66重量%で、導電材料が銅または2重量%未満の亜鉛を
含有した銅固溶体または2重量%未満の銅−テレル化合
物を含有した銅合金のうちいずれか1つである特許請求
の範囲第(1)項記載の真空バルブの接点合金。
2. The auxiliary material is Te in zinc telluride.
At 66% by weight, the conductive material is any one of copper or a copper solid solution containing less than 2% by weight of zinc or a copper alloy containing less than 2% by weight of a copper-terel compound. A contact alloy for a vacuum valve according to the item 1).
【請求項3】補助材料は、亜鉛テルライド中のテレルは
ほぼ66重量%で、導電材料がタングステン、モリブデ
ン、タンタラム、ニウビラム、ジルコニウム、チタニウ
ム、クロム、クロムの炭化物、ホウ化物のうちいずれか
1つの耐火材料と銅とからなる特許請求の範囲第(1)
項記載の真空バルブの接点合金。
3. The auxiliary material is about 66% by weight of terer in zinc telluride, and the conductive material is any one of tungsten, molybdenum, tantalum, niubilam, zirconium, titanium, chromium, chromium carbide, and boride. Claim (1) consisting of refractory material and copper
The contact alloy of the vacuum valve according to the item.
【請求項4】補助材料は、亜鉛テルライド中のテレルは
ほぼ66重量%で、導電材料が鉄またはコバルトのいずれ
か一方からなる耐火材料と銅または2重量%未満の亜鉛
を含有した銅固溶体または2重量%未満の銅−テレル化
合物を含有した銅合金のうちいずれか1つとからなる特
許請求の範囲第(1)項記載の真空バルブの接点合金。
4. The auxiliary material is a refractory material in which the tellurium content in zinc telluride is approximately 66% by weight, the conductive material is either iron or cobalt, and copper or a copper solid solution containing less than 2% by weight zinc. The contact alloy for a vacuum valve according to claim (1), which comprises any one of copper alloys containing less than 2% by weight of a copper-tellur compound.
JP60066918A 1985-03-30 1985-03-30 Vacuum valve contact alloy Expired - Lifetime JPH0736306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60066918A JPH0736306B2 (en) 1985-03-30 1985-03-30 Vacuum valve contact alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60066918A JPH0736306B2 (en) 1985-03-30 1985-03-30 Vacuum valve contact alloy

Publications (2)

Publication Number Publication Date
JPS61227331A JPS61227331A (en) 1986-10-09
JPH0736306B2 true JPH0736306B2 (en) 1995-04-19

Family

ID=13329834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60066918A Expired - Lifetime JPH0736306B2 (en) 1985-03-30 1985-03-30 Vacuum valve contact alloy

Country Status (1)

Country Link
JP (1) JPH0736306B2 (en)

Also Published As

Publication number Publication date
JPS61227331A (en) 1986-10-09

Similar Documents

Publication Publication Date Title
EP0488083B1 (en) Contact material for a vacuum interrupter
US5149362A (en) Contact forming material for a vacuum interrupter
JP2768721B2 (en) Contact material for vacuum valve
JPH0561338B2 (en)
JP2766441B2 (en) Contact material for vacuum valve
JP3441331B2 (en) Manufacturing method of contact material for vacuum valve
JPH0736306B2 (en) Vacuum valve contact alloy
JP2006228684A (en) Contact point material for vacuum valve, the vacuum valve, and manufacturing method thereof
US3843856A (en) Contact for a vacuum switch of single phase alloy
JP2911594B2 (en) Vacuum valve
JP2006032036A (en) Contact material for vacuum valve
JP2889344B2 (en) Contact for vacuum valve
JPH036211B2 (en)
JPH1150177A (en) Contact material for vacuum circuit breaker, its production and vacuum circuit breaker
JP3810955B2 (en) Manufacturing method of contact material for vacuum valve
JPH0653907B2 (en) Contact material for vacuum valve
JP2692945B2 (en) Contact material for vacuum valve
JP2904452B2 (en) Contact material for vacuum valve
JP4515695B2 (en) Contact materials for vacuum circuit breakers
JPS6260781B2 (en)
JP3443516B2 (en) Manufacturing method of contact material for vacuum valve
JP2904448B2 (en) Contact material for vacuum valve
JPH0347931A (en) Contact material for vacuum valve
JPH0877856A (en) Contact material for vacuum valve
JPS6359212B2 (en)