JPS61227331A - Contact alloy for vacuum valve - Google Patents

Contact alloy for vacuum valve

Info

Publication number
JPS61227331A
JPS61227331A JP60066918A JP6691885A JPS61227331A JP S61227331 A JPS61227331 A JP S61227331A JP 60066918 A JP60066918 A JP 60066918A JP 6691885 A JP6691885 A JP 6691885A JP S61227331 A JPS61227331 A JP S61227331A
Authority
JP
Japan
Prior art keywords
copper
vacuum valve
contact
weight percentage
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60066918A
Other languages
Japanese (ja)
Other versions
JPH0736306B2 (en
Inventor
功 奥富
千葉 誠司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60066918A priority Critical patent/JPH0736306B2/en
Publication of JPS61227331A publication Critical patent/JPS61227331A/en
Publication of JPH0736306B2 publication Critical patent/JPH0736306B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は真空バルブ(開閉器)に係り、特に電流さい所
持性を改良した真空バルブの接点合金に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a vacuum valve (switch), and more particularly to a contact alloy for a vacuum valve with improved current carrying properties.

〔発明の技術的背景〕[Technical background of the invention]

真空中でのアーク拡散性を利用して高真空中で ・電流
しゃ断を行なわせる真空バルブの接点は、対向する固定
、可動の2つの接点から構成されている。特に電動機負
荷等の誘導回路で電流をしゃ断する時、過度のサージ電
圧を発生させ負荷機器を破壊させる恐れがある。この異
常サージ電圧の発生原因は真空中に於けるしゃ断時に低
電流側に発生する電流さい新現象(交流電流波形の自然
ゼロ点を待たず強制的に電流しゃ断が行なわれること)
によるものである。異常サージ電圧の値ysは回路のサ
ージインピーダンスZ(+と、電流さい断値■Cの積、
すなわちVS −220ICで表わされる。従って、異
常サージ電圧vSを低くするためには電流さい断値IC
を小さくしなければならない。
The contacts of the vacuum valve, which cut off the current in a high vacuum by utilizing arc dispersion in a vacuum, are composed of two opposing fixed and movable contacts. In particular, when cutting off current in an inductive circuit such as a motor load, excessive surge voltage may be generated and the load equipment may be destroyed. The cause of this abnormal surge voltage is a new phenomenon in the current that occurs on the low current side when shutting off in a vacuum (current shutoff is forcibly performed without waiting for the natural zero point of the AC current waveform).
This is due to The abnormal surge voltage value ys is the product of the circuit surge impedance Z (+) and the current cutoff value ■C,
That is, it is represented by VS-220IC. Therefore, in order to lower the abnormal surge voltage vS, the current cutoff value IC
must be made smaller.

上記要求に対して接点をWCとAQとを複合化した合金
で構成した真空開閉器が実用化されている(特願昭42
−68447号)。この合金接点は、 (1)WCの介在が電子放射を容易にさせる、(2)電
界放射電子の衝突による電極面の加熱にもとづく接点材
料の蒸発を促進させる、(3)接点材料中の炭化物がア
ークにより分解し、荷電体を生成してアークを接続する
等々の点ですぐれた電流さい所持性を発揮している。
In order to meet the above requirements, a vacuum switch whose contacts are made of a composite alloy of WC and AQ has been put into practical use (patent application No. 42).
-68447). This alloy contact has the following characteristics: (1) The presence of WC facilitates electron emission, (2) The contact material accelerates evaporation due to heating of the electrode surface due to the collision of field emission electrons, and (3) Carbide in the contact material It exhibits excellent current carrying properties in that it decomposes due to the arc, generates a charged body, and connects the arc.

また、上記電流さい所持性を有する他の接点としてBi
とQuとを複合化した合金が製造され、この材料が真空
バルブに実用化されている(特公昭35−14974号
公報、特公昭41−12131丹公報)。この合金は (1)重量割合10%程度の3iは、その適度な蒸気圧
特性を有するので、低いさい断電流特性を発揮する(特
公昭35−1494号公報)。
In addition, as another contact having the above current carrying property, Bi
A composite alloy of Cu and Qu has been produced, and this material has been put to practical use in vacuum valves (Japanese Patent Publication No. 35-14974, Japanese Patent Publication No. 12131-1972). This alloy exhibits (1) low cutting current characteristics because 3i with a weight percentage of about 10% has appropriate vapor pressure characteristics (Japanese Patent Publication No. 1494/1983).

(2)重量割合0.5%程度の81は、結晶粒界に偏析
して存在する結果、合金自体を脆化し、低い溶着用外力
を実現し大電流しや断性に優れている(特公昭41−1
2131号公報)。
(2) 81, which has a weight percentage of about 0.5%, segregates at grain boundaries and embrittles the alloy itself, achieving low external welding force and excellent resistance to large currents (especially Kosho 41-1
Publication No. 2131).

〔背景技術の問題点〕[Problems with background technology]

しかし、近年真空バルブを誘導性回路へ適用する例が従
来より増えると共に、高インピーダンス負荷も出現した
ため真空バルブには一層の安定した電流さい所持性を持
つことが望まれてくるとともに、低コスト化が望まれて
いる。
However, in recent years, the number of applications for vacuum valves in inductive circuits has increased, and high impedance loads have also appeared, so vacuum valves are desired to have even more stable current carrying properties, and to reduce costs. is desired.

このような要求に対して、前記接点合金のAQ−wc、
cu−s+は、さい断電流値が高いレベルにあり、又は
安定性に欠けるものであった。すなわち、AQ−WC接
点合金にはAQとWCとの蒸気圧差が甚しく大きいため
アーク熱などによるAQの著しい選択蒸発を招き、この
結果電流古い所持性の不安定性及び接触抵抗の変動を招
く。
In response to such demands, the contact alloy AQ-wc,
Cu-s+ had a high level of cutting current value or lacked stability. That is, in the AQ-WC contact alloy, the vapor pressure difference between AQ and WC is extremely large, leading to significant selective evaporation of AQ due to arc heat, etc., resulting in instability in current retention and fluctuations in contact resistance.

一方のCu−B1接点合金には、3iの溶融点が271
℃と低いことに起因する本質的問題として真空バルブの
ベーキング、或いは銀ろう付けの加熱時に3iが凝集し
接合不良を招く問題がある。
One Cu-B1 contact alloy has a 3i melting point of 271
An essential problem caused by the low temperature is that 3i aggregates during baking of vacuum valves or heating of silver soldering, leading to poor bonding.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に基づいてなされたもので、その目的
とするところは、電流さい所持性の安定性をより一層向
上した真空バルブの接点合金を提供することにある。
The present invention has been made based on the above circumstances, and an object thereof is to provide a contact alloy for a vacuum valve that further improves the stability of current carrying property.

〔発明の概要〕[Summary of the invention]

本発明は、銅または銅に亜鉛または炭化物、ホウ化物等
の耐火材料や銀などを含有した導電材料と、この導電材
料中に拡散する熱処理に対して安定しかつ真空バルブ接
点間の蒸気圧および熱伝導の供給の簡単な補助材料、例
えば亜鉛チルライトとから成る真空バルブの接点合金で
ある。
The present invention uses a conductive material containing copper or a refractory material such as zinc, carbide, or boride, silver, etc. in copper, and a material that is stable against heat treatment and has a vapor pressure between vacuum valve contacts that is diffused into the conductive material. Vacuum valve contact alloys consisting of simple auxiliary materials for the provision of heat conduction, such as zinc and chillite.

(発明の実施例〕 本発明の一実施例を図面を参照して詳細に説明する。第
1図は本発明の接点合金を適用する真空しゃ断器の構成
例を示すもので、同図に於いて1はしゃ断交を示し、こ
のしゃ断交1は絶縁材料によりほぼ円筒状に形成された
絶縁容器2と、この両端に封止金具3a、3bを介して
設けた金属性の蓋体4a、4bとで真空密に構成されて
いる。
(Embodiment of the Invention) An embodiment of the present invention will be described in detail with reference to the drawings. Fig. 1 shows an example of the configuration of a vacuum breaker to which the contact alloy of the present invention is applied; Reference numeral 1 indicates a break-off intersection, and this break-off intersection 1 includes an insulating container 2 formed of an insulating material into a substantially cylindrical shape, and metallic lids 4a and 4b provided at both ends of the container via sealing fittings 3a and 3b. It is constructed in a vacuum-tight manner.

しかして前記しゃ新卒1内には、導電棒5,6の対向す
る端部に取付けられた1対の電極7,8が配設され、上
部の電極7を固定電極、下部の電極8を可動電極として
いる。またこの可動電極8の電極棒6には、ベローズ9
が取付けられしゃ新卒1内を真空密に保持しながら電極
8の軸方向の移動を可能にしている。またこのベローズ
9上部には金属性のアークシールド10が設けられ、ベ
ローズ9がアーク蒸気で覆われることを防止している。
A pair of electrodes 7 and 8 attached to opposite ends of conductive rods 5 and 6 are arranged in the above-mentioned shank 1, with the upper electrode 7 being a fixed electrode and the lower electrode 8 being movable. It is used as an electrode. Moreover, a bellows 9 is attached to the electrode rod 6 of this movable electrode 8.
When installed, the electrode 8 can be moved in the axial direction while maintaining the inside of the new graduate 1 vacuum-tight. Further, a metal arc shield 10 is provided above the bellows 9 to prevent the bellows 9 from being covered with arc vapor.

又11は、前記電極7,8を覆うようにしゃ断交1内に
設けられた金属性のアークシールドで絶縁容器2がアー
ク蒸気で覆われることを防止している。更に電極8は、
第2図に拡大して示す如く導電棒6にろう件部12によ
って固定されるか、又はかしめによって圧着接続されて
いる。接点13aは電極8にろう付14によってろう付
で取付けられる。なお、13bは固定側接点であり、固
定側電極8と同様にろう付により取付けられる。
Further, reference numeral 11 is a metallic arc shield provided in the shield 1 so as to cover the electrodes 7 and 8 to prevent the insulating container 2 from being covered with arc vapor. Furthermore, the electrode 8 is
As shown in an enlarged view in FIG. 2, the conductive rod 6 is fixed to the conductive rod 6 by means of a brazing part 12, or is crimped and connected by caulking. The contact 13a is attached to the electrode 8 by brazing 14. Note that 13b is a fixed side contact, which is attached by brazing similarly to the fixed side electrode 8.

ここで、本発明の接点合金を得るまでの考察について説
明する。電流さい所持性の改善には、電流さい断値自体
をより低い値に維持すること以外に、そのばらつき幅を
縮めることも極めて重要である。上記電流さい新現象は
、接点間の蒸気量(蒸気圧、熱伝導)、接点材からの放
出熱電子などと関係が深いとされ、発明者らの実験によ
れば前者の方が寄与が大であることが判明した。したか
って、蒸気を供給し易くするか、あるいは供給し易い材
料で接点を作成すれば電流さい新現象が緩和できること
が判明した。Cu−B1合金はこうした観点に立つもの
で低いさい断値を有するが、致命的な欠点として、Bi
が持つ低溶融点(271℃)のため通常真空バルブで行
なわれる600℃近傍のベーキング或いは800℃の銀
ろう付は作業時に、3iの溶融による移動、凝集の結果
、電流さい所持性を維持すべきB1の存在が不均一にな
ってしまう。このため、電流さい断値のばらつき幅が増
大する現象を確認した。
Here, considerations for obtaining the contact alloy of the present invention will be explained. In order to improve current susceptibility, it is extremely important not only to maintain the current rupture value itself at a lower value, but also to reduce the width of its dispersion. The above-mentioned current phenomenon is said to be closely related to the amount of vapor between the contacts (vapor pressure, heat conduction), thermionic emissions from the contact material, etc., and according to the inventors' experiments, the former contributes more. It turned out to be. Therefore, it has been found that the current leakage phenomenon can be alleviated by making it easier to supply steam or by making contacts from materials that are easier to supply. Cu-B1 alloy is based on this point of view and has a low shear value, but a fatal drawback is that the Bi
Because of its low melting point (271°C), baking at around 600°C or silver brazing at 800°C, which is normally carried out with a vacuum valve, is difficult to maintain current resistance as a result of movement and aggregation due to the melting of 3i. The existence of power B1 becomes uneven. For this reason, we confirmed a phenomenon in which the width of variation in the current cutoff value increases.

一方、A Q−WCで代表されるAg−耐火材料系合金
では、耐火材料(この場合WC)の沸点におけるAlあ
るいはCu)の蒸気量に存在されるものの他方、前記C
u−3i系におけるBiの蒸気圧よりAgのそれは著し
く低いため接触点のどの位置(耐火材料がAgか)にア
ークの足が固着するかによって、時折は温度不足即ち蒸
気不足を招いてしまう。結果的には電流さい断値のばら
つき幅が現われることが確認された。このように電流し
ゃ断終期の接点面の急激な温度低下を耐火材料とAQ(
又はCu)との組合せのみによる合金によって素子しア
ークを持続させることはすでに限界と考えられ、更に高
性能化するためには、補助材料の存在が必要である結論
に至った6゛ このように上記Cu−3i合金及びA 
Q −WC合金(AQ−耐火材料系)の2つの考察結果
は、電流さい所持性の安定した接点として、新規の補助
材料が必要で、その条件は、蒸気の供給能力を持った上
で、なおかつベーキングなどの熱処理に於ける安定性を
有することが不可欠であることを示唆している。
On the other hand, in the Ag-refractory material alloy represented by AQ-WC, although the vapor amount of Al or Cu) is present at the boiling point of the refractory material (WC in this case), the C
Since the vapor pressure of Ag is significantly lower than the vapor pressure of Bi in the u-3i system, depending on where in the contact point (whether the refractory material is Ag or not) the arc leg is fixed, insufficient temperature, ie, insufficient steam, may occur. As a result, it was confirmed that a variation width of the current cutoff value appeared. In this way, the rapid temperature drop on the contact surface at the end of current cutoff can be prevented by using fireproof material and AQ (
It is considered that it is already possible to sustain an arc in an element using an alloy made only in combination with copper or Cu), and it has been concluded that the presence of auxiliary materials is necessary in order to further improve the performance6゛Thus, The above Cu-3i alloy and A
The results of the two considerations for the Q-WC alloy (AQ-refractory material system) indicate that a new auxiliary material is required as a stable contact point with current carrying properties, and the conditions for this are as follows: Furthermore, it is suggested that it is essential to have stability in heat treatment such as baking.

したがって本発明では、上述のように一定の条件を持つ
補助材料を積極的に含有させ電流さい所持性の向上を図
っている。そこで、本発明は低いさい断電流特性を得る
ために、CU、CLJ−耐火材料、Qu−CoまたはF
eのいずれか一方(なおCLIの一部又は全部をAQで
置換)の合金に0゜5〜20%のznTeを補助材料と
して添加する。
Therefore, in the present invention, as mentioned above, an auxiliary material meeting certain conditions is actively included to improve the current carrying property. Therefore, in order to obtain low shredding current characteristics, the present invention provides CU, CLJ-refractory material, Qu-Co or F
0.5 to 20% znTe is added as an auxiliary material to one of the alloys of e (in which part or all of CLI is replaced with AQ).

このZnTe中のTeはほぼ66wt%であるが、Te
又はznの若干のずれはZnを含有したCLJ−2n固
溶体、cu−Te化合物を含有したCu合金としての共
存が許される。このような状態のとき比較的小さなエネ
ルギで加熱蒸発し適度の金属蒸気がアーク空間に入るの
で−これが電流さい新現象の軽減として作用してその結
果、実用上の満足のいく真空バルブの接点合金となるこ
とを確認した。
Te in this ZnTe is approximately 66 wt%, but Te
Alternatively, a slight deviation in zn is allowed to coexist as a CLJ-2n solid solution containing Zn and a Cu alloy containing a cu-Te compound. Under these conditions, a moderate amount of metal vapor enters the arc space by heating and vaporizing with a relatively small amount of energy - this acts to reduce the current phenomenon, and as a result, a vacuum valve contact alloy that is satisfactory for practical use is obtained. It was confirmed that

次に、この接点合金の製造方法の一例について説明する
。製造に先立って、約100メツシユのTe及び7−n
粉末を、アルゴンガスを充填したポットに入れて約12
時間混合した混合粉を4トン/r:tAで成型し、次に
、水素気流中900℃で24時間焼結しZnTeの塊を
得る。このZnTeを100〜200メツシユに粉砕し
原料とする。
Next, an example of a method for manufacturing this contact alloy will be described. Prior to manufacturing, about 100 meshes of Te and 7-n
Pour the powder into a pot filled with argon gas for about 12 minutes.
The mixed powder mixed for a time is molded at 4 tons/r:tA, and then sintered at 900° C. for 24 hours in a hydrogen stream to obtain a ZnTe lump. This ZnTe is ground into 100 to 200 meshes and used as a raw material.

次に製造工程を説明する。Next, the manufacturing process will be explained.

第1にcu−znTe接点材料の製造;必要とするCL
I量の一部を粉末で用意し、これと共に準備したZnT
e粉とをポット中で約12時間混合し2トン/c/lで
成型後、水素中900°Cで4時間焼結する。とじて得
られたスケルトンの残存空孔中に、必要とするCu量の
残量を水素中1120℃で溶浸して接点素材を得る。又
は必要とするCu量の全量に相当するCu粉末とZr1
Te粉末とを約12時間混合して4トン/cdで成型後
950℃の水素中で焼結して接点素材を得る。
First, the production of cu-znTe contact material; the required CL
A part of the amount of I was prepared as a powder, and ZnT prepared together with this.
After mixing with E powder in a pot for about 12 hours and molding at 2 tons/c/l, the mixture is sintered in hydrogen at 900°C for 4 hours. A required amount of Cu is infiltrated into the remaining pores of the skeleton in hydrogen at 1120° C. to obtain a contact material. Or Cu powder and Zr1 corresponding to the entire amount of Cu required
The mixture is mixed with Te powder for about 12 hours, molded at 4 tons/cd, and then sintered in hydrogen at 950°C to obtain a contact material.

第2にQu−ZrYTe−耐火材料(W、MO。Second, Qu-ZrYTe-refractory material (W, MO.

Ta、Nb、Zr、Ti、Cr)及びこれらの炭化物、
ホウ化物のうちいずれか1つの接点材料の製造:約10
0メツシユの単位材料粉とZnTe粉を混合して成型し
た後、焼結によってスケルトンを得る。次にスケルトン
中の残存空孔にCUを溶浸し接点素材を得る。
Ta, Nb, Zr, Ti, Cr) and their carbides,
Production of contact material of any one of borides: approx. 10
After mixing and molding the unit material powder of 0 mesh and ZnTe powder, a skeleton is obtained by sintering. Next, the remaining pores in the skeleton are infiltrated with CU to obtain a contact material.

第3にCu−ZnTe−Fe (Co)の接点材料の製
造:約100メツシユのFeまたはCOのうちいずれか
一方の粉とZnTe粉とを混合して成型した後、焼結に
よってスケルトルを得る。次に、スケルトン中の残存空
孔にCuを溶浸して接点素材を得る。
Thirdly, manufacture of Cu-ZnTe-Fe (Co) contact material: After about 100 meshes of powder of either Fe or CO and ZnTe powder are mixed and molded, a skeleton is obtained by sintering. Next, the remaining pores in the skeleton are infiltrated with Cu to obtain a contact material.

以上のようにして第1表および第2表に示すような導電
材料(Cu、Ag>に補助材料(ZnTe :W、 M
o、 Ta、 Nb、 Zr、 Ti、 Or等の耐火
材料〉を含有した各接点合金が製造される。
As described above, auxiliary materials (ZnTe: W, M
Contact alloys containing refractory materials such as O, Ta, Nb, Zr, Ti, Or, etc. are manufactured.

次に上記製造された各接点合金について考察し、その最
良の含有割合を求める。
Next, each of the contact alloys manufactured above will be considered, and the best content ratio will be determined.

現在、低電流さい所持性を持った接点合金として比較材
2,3に示すAO−70%WCおよびCu−15%3i
合金が実用されている。これは、純CLJ(比較材−1
)より電流さい所持性は向上するが特にCu−3i系(
比較材−3)では、開閉回数を重ねることにより特性(
さい断電流値の上昇)が著しく劣化する。
At present, AO-70%WC and Cu-15%3i, shown as comparative materials 2 and 3, are contact alloys with low current properties.
Alloys are in practical use. This is pure CLJ (comparative material-1
), the current carrying property is improved compared to Cu-3i series (
Comparative material-3) has characteristics (
(increase in cutting current value) deteriorates significantly.

一方、Cu−2nTe系は、ZnTe量が0゜12%(
比較材−4)では、電流さい所持性は量特性を示し、Z
nTe量は少なくとも0.5%(実施材−1)が必要で
最大20%(実施材−3)の範囲が必要でめる。この範
囲において電流さい断値の平均値及び最大値のいずれも
低くかつ安定している。ZnTe量が30%を越えたも
のでは電流さい断性には関係ないが、電圧7,2kvで
しゃ断接のしゃ所持性の低下が著しい(比較例−5)。
On the other hand, in the Cu-2nTe system, the amount of ZnTe is 0°12% (
In comparative material-4), the current property shows a quantity characteristic, and Z
The amount of nTe is required to be at least 0.5% (Example material-1) and at most 20% (Example material-3). In this range, both the average value and the maximum value of the current cutoff value are low and stable. If the amount of ZnTe exceeds 30%, it has no effect on the current breaking property, but at a voltage of 7.2 kV, the breaking property deteriorates significantly (Comparative Example 5).

したがって、ZnTe量が0.5〜20%の範囲では、
しゃ所持性の変化もAq−70WC系の特性と比較して
も、低下の程度はわずかであり充分実用的であり最良と
なる。従ってZnTeの量は0.5〜20%の範囲に設
定する。
Therefore, when the ZnTe content is in the range of 0.5 to 20%,
Even when compared with the change in the properties of the Aq-70WC system, the degree of deterioration is slight, making it sufficiently practical and the best. Therefore, the amount of ZnTe is set in the range of 0.5 to 20%.

以上のことは、Cu−ZnTe擬二元系に限ることなく
、Cuと耐火材料(W、MO,Ta。
The above applies not only to the Cu-ZnTe pseudo-binary system, but also to Cu and refractory materials (W, MO, Ta).

Nb、Zr、Ti、Cr)とからなるマトリックスにz
nTeが存在しても同様の効果が得られている。このこ
とは実施材−5〜19と比較材−6〜9との対比すれば
判明する。
Nb, Zr, Ti, Cr)
Similar effects were obtained even when nTe was present. This becomes clear when comparing Example Materials-5 to 19 and Comparative Materials-6 to 9.

更に、導電材料がCuに限定するのでな〈実施材−4,
16,17に示すようにAQであっても又、CuとAQ
との共存であっても同様の効果が得られている。
Furthermore, since the conductive material is limited to Cu (Example material-4,
As shown in 16 and 17, even if it is AQ, Cu and AQ
Similar effects can be obtained even when coexisting with

また、実施材−20に示すようにCuマトリックスにT
eが存在した場合、実施材−21に示すようにCuマト
リックスにZLIが存在した場合でも、その効果は同様
に奏されている。この場合、マトリックスZu又はTe
(実際にはCu2Te>が存在するのは、本発明材料で
あるZnTeが理想的にTeを66%含有した状態から
れずかにZuリッチ又はTeリッチにずれたとき残余の
ZLJ又はTeとCuとの合金化によって発生するもの
である。このことは経済性を加味した工業的製造におい
て通常よく認められるものであるが、接点材料としては
その範囲を2%程度以下に制御するべきであり、これ以
上の存在は接合工程において好ましくないので避けるべ
きである。
In addition, as shown in Example Material-20, T was added to the Cu matrix.
When ZLI was present in the Cu matrix as shown in Example Material-21, the same effect was obtained. In this case, the matrix Zu or Te
(Actually, Cu2Te> exists because when ZnTe, which is the material of the present invention, slightly deviates from the ideal state containing 66% Te to Zu rich or Te rich, the remaining ZLJ or Te and Cu This phenomenon is usually recognized in industrial manufacturing considering economic efficiency, but the range should be controlled to about 2% or less for contact materials. The presence of the above is undesirable in the bonding process and should be avoided.

以上水したようにznTeを含有する接点の最大の特徴
は低い電流さい断時性を示すことのみならず、所定回数
開閉後のそれの変動(さい断電流値、が上昇)が少ない
ことであり、この特性をしかもしゃ断性能をほとんど低
下させずに得られるところにある。その原因は、前述し
たように、ベーキング或いは限ろう付は工程で受ける熱
に対して分解あるいは移動、凝集などの変化が少ないこ
とに起因していると考えられる。したがって、前述した
ZnTe! (66%Te)からずれた2%程度の残り
のzn、あるいはTeは、電流開閉あるいは電流しゃ断
によって主としてアーク熱による蒸発のため消耗される
場合もある。従って、この量が多い程、電流さい断値あ
るいはしゃ断、特性の開閉回数に対する変動幅が大きく
なる方向に作用して好ましくなく前記ZLI、7eは2
%を目安に制御するのがよい。
As mentioned above, the biggest feature of contacts containing znTe is not only that they exhibit low current breaking properties, but also that there is little variation (increase in breaking current value) after opening and closing a predetermined number of times. , this characteristic can be obtained with almost no reduction in blocking performance. The reason for this is thought to be that, as mentioned above, baking or limited brazing causes little change such as decomposition, movement, or agglomeration in response to the heat received in the process. Therefore, the aforementioned ZnTe! The remaining Zn or Te, which is about 2% deviated from (66% Te), may be consumed due to evaporation mainly due to arc heat due to current switching or current interruption. Therefore, the larger this amount is, the larger the fluctuation width of the current cutoff value or cutoff characteristics with respect to the number of openings and closings becomes, which is undesirable.
It is best to control using % as a guide.

なお、評価の条件は次の通りである。さい断電流;表中
のさい断電流値は供試接点に直列に挿入した同軸型シャ
ントの電圧降下をシンクロスコープで観測したものであ
る。すなわち10回路を経て実効値44Aの交流を与え
実験回数500回でのさい断電流値の平均値その他を求
めである。その試料はベーキング、放電エージングを行
い測定に移す。エージングの不足は測定回数と共にさい
断値が上昇するので加熱と放電により充分に行う。
The evaluation conditions are as follows. Cutting current: The cutting current values in the table are the voltage drop of a coaxial shunt inserted in series with the contact under test, observed using a synchroscope. In other words, an AC current of an effective value of 44 A was applied through 10 circuits, and the average value of the cutting current value and other values were determined in 500 experiments. The sample is then subjected to baking and discharge aging before being measured. If aging is insufficient, the cutoff value increases with the number of measurements, so heat and discharge are sufficient.

試料形態は径20 m 、厚さ4mで一方は平面、他方
は20JIIRで接触圧力は10Kgである。
The sample shape is 20 m in diameter and 4 m in thickness, one side is flat, the other side is 20JIIR, and the contact pressure is 10 kg.

しゃ新評価;直径20ai、キャップ2.54111に
対向させたしゃ断テスト用実験バルブに組込み、ベーキ
ング、電圧エージング等を与えた後7.2kv50Hz
でIKAずつ電流を増加しながらしゃ断限界を比較評価
した。
Shutdown evaluation: 7.2kv50Hz after being assembled into an experimental valve for shutoff testing with a diameter of 20ai and facing a cap of 2.54111, and subjected to baking, voltage aging, etc.
The cutoff limit was comparatively evaluated while increasing the current by IKA.

このように上記一実施例においては、銅または銅に亜鉛
または耐火材料や銀などを含有した導電材料と、この導
電材料中に熱処理に対して安定しかつ真空バルブ接点間
の蒸気圧および熱伝導の供給が簡単な補助材料亜鉛チル
ライトを含有させた接点材料なので、次のような効果を
奏する。すなわち接点合金の製造時あるいはベーキング
、銀ろう付けなど真空バルブ製造時などで受ける熱によ
る変質も少なく安定した電流さい断時性が得られる。さ
らにしゃ断時性も従来の接点材料特性を十分維持するこ
とができる。したがって、本発明の接点材料を真空バル
ブ接点に用いれば、電流さい断時性およびしゃ断時性の
良い真空バルブが得られる。
As described above, in the above embodiment, copper or a conductive material containing zinc or a refractory material, silver, etc. in copper, and a conductive material that is stable against heat treatment and that improves vapor pressure and heat conduction between the contacts of the vacuum valve are used. Since the contact material contains the auxiliary material zinc chillite, which is easy to supply, it has the following effects. In other words, there is little deterioration due to heat received during the manufacture of contact alloys, baking, silver brazing, etc. of vacuum valves, and stable current cutting performance can be obtained. Furthermore, the characteristics of conventional contact materials can be sufficiently maintained in terms of cut-off performance. Therefore, if the contact material of the present invention is used for a vacuum valve contact, a vacuum valve with good current cut-off properties and good cut-off properties can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上詳記したように本発明によれば、電流古い断時性の
安定性をより一層向上した真空バルブの接点合金を提供
できる。
As described in detail above, according to the present invention, it is possible to provide a contact alloy for a vacuum valve that further improves the stability of current cutoff.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の真空バルブの接点合金の一実施例を適
用した真空バルブの構成図、第2図は第1図に示す真空
バルブの電極部分の拡大構成図である。 1・・・しヤ断交、2・・・絶縁容器、5,6・・・導
電棒、13a、13b−・・接点。
FIG. 1 is a block diagram of a vacuum valve to which an embodiment of the vacuum valve contact alloy of the present invention is applied, and FIG. 2 is an enlarged block diagram of the electrode portion of the vacuum valve shown in FIG. DESCRIPTION OF SYMBOLS 1... Yarn disconnection, 2... Insulating container, 5, 6... Conductive rod, 13a, 13b... Contact.

Claims (6)

【特許請求の範囲】[Claims] (1)導電材料と、この導電材料中に所定の割合でもっ
て拡散し、熱処理に対して安定でかつ真空バルブの接点
間の蒸気圧および熱伝導の供給の簡単な補助材料とから
成り、さい断電流特性を向上することを特徴とする真空
バルブの接点合金。
(1) consisting of an electrically conductive material and an auxiliary material that is diffused in this electrically conductive material in a predetermined proportion, is stable to heat treatment, and is simple for supplying vapor pressure and heat conduction between the contacts of the vacuum valve; A vacuum valve contact alloy characterized by improved breaking current characteristics.
(2)補助材料は、重量割合0.5〜20%の亜鉛テル
ライドとする特許請求の範囲第(1)項記載の真空バル
ブの接点合金。
(2) The contact alloy for a vacuum valve according to claim (1), wherein the auxiliary material is zinc telluride in a weight proportion of 0.5 to 20%.
(3)補助材料が重量割合66%程度の亜鉛テルライド
で、導電材料が銅または重量割合2%未満の亜鉛を含有
した銅固溶体または重量割合2%未満の銅−テレル化合
物を含有した銅合金のうちいずれか1つである特許請求
の範囲第(1)項記載の真空バルブの接点合金。
(3) The auxiliary material is zinc telluride with a weight percentage of about 66%, and the conductive material is copper, a copper solid solution containing zinc with a weight percentage of less than 2%, or a copper alloy containing a copper-telluride compound with a weight percentage of less than 2%. A contact alloy for a vacuum valve according to claim (1), which is any one of these.
(4)補助材料が重量割合66%程度の亜鉛テルライド
で、導電材料がタングステン、モリブデン、タンタラム
、ニウビラム、ジルコニウム、チタニウム、クロムの炭
化物、ホウ化物のうちいずれか1つの耐火材料と銅とか
ら成る特許請求の範囲第(1)項記載の真空バルブの接
点合金。
(4) The auxiliary material is zinc telluride with a weight percentage of about 66%, and the conductive material is made of copper and one of the refractory materials selected from tungsten, molybdenum, tantalum, niubilam, zirconium, titanium, chromium carbides and borides. A contact alloy for a vacuum valve according to claim (1).
(5)補助材料が重量割合66%程度の亜鉛テルライド
で、導電材料が鉄またはコバルトのいずれか一方からな
る耐火材料と銅または重量割合2%未満の亜鉛を含有し
た銅固溶体または重量割合2%未満の銅−テレル化合物
を含有した銅合金のうちいずれか1つとから成る特許請
求の範囲第(1)項記載の真空バルブの接点合金。
(5) The auxiliary material is zinc telluride with a weight percentage of about 66%, and the conductive material is a fireproof material consisting of either iron or cobalt and copper or a copper solid solution containing zinc with a weight percentage of less than 2% or a weight percentage of 2%. A contact alloy for a vacuum valve according to claim 1, comprising any one of copper alloys containing less than or equal to 10% of a copper-terrell compound.
(6)導電材料は銅に銀を所定の割合で含有するか、ま
たは銀とする特許請求の範囲第(1)項記載の真空バル
ブの接点合金。
(6) A contact alloy for a vacuum valve according to claim (1), wherein the conductive material contains copper and silver in a predetermined ratio, or is silver.
JP60066918A 1985-03-30 1985-03-30 Vacuum valve contact alloy Expired - Lifetime JPH0736306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60066918A JPH0736306B2 (en) 1985-03-30 1985-03-30 Vacuum valve contact alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60066918A JPH0736306B2 (en) 1985-03-30 1985-03-30 Vacuum valve contact alloy

Publications (2)

Publication Number Publication Date
JPS61227331A true JPS61227331A (en) 1986-10-09
JPH0736306B2 JPH0736306B2 (en) 1995-04-19

Family

ID=13329834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60066918A Expired - Lifetime JPH0736306B2 (en) 1985-03-30 1985-03-30 Vacuum valve contact alloy

Country Status (1)

Country Link
JP (1) JPH0736306B2 (en)

Also Published As

Publication number Publication date
JPH0736306B2 (en) 1995-04-19

Similar Documents

Publication Publication Date Title
EP0488083B1 (en) Contact material for a vacuum interrupter
JPS6277439A (en) Contact point material for vacuum valve
JP2766441B2 (en) Contact material for vacuum valve
JP3441331B2 (en) Manufacturing method of contact material for vacuum valve
JPS61227331A (en) Contact alloy for vacuum valve
JPH1150177A (en) Contact material for vacuum circuit breaker, its production and vacuum circuit breaker
JP2911594B2 (en) Vacuum valve
JP2006032036A (en) Contact material for vacuum valve
JPH036211B2 (en)
JPS6396243A (en) Contact material for vacuum bulb
JP3833519B2 (en) Vacuum circuit breaker
JP3810955B2 (en) Manufacturing method of contact material for vacuum valve
JP2904448B2 (en) Contact material for vacuum valve
JP3150516B2 (en) Contact material for vacuum valve
JP4421173B2 (en) Vacuum circuit breaker
KR0171607B1 (en) Vacuum circuit breaker and contact
JP2904452B2 (en) Contact material for vacuum valve
JP4515695B2 (en) Contact materials for vacuum circuit breakers
JP4357131B2 (en) Vacuum circuit breaker
JPH04132127A (en) Contact point for vacuum bulb
JP4156867B2 (en) Contact and vacuum circuit breaker equipped with the same
JPS6359212B2 (en)
JPH05314869A (en) Contact material for vacuum valve
JPH0347931A (en) Contact material for vacuum valve
JP2006236847A (en) Contact material and vacuum valve