JPH0574284A - Contact material for vacuum valve - Google Patents

Contact material for vacuum valve

Info

Publication number
JPH0574284A
JPH0574284A JP3233613A JP23361391A JPH0574284A JP H0574284 A JPH0574284 A JP H0574284A JP 3233613 A JP3233613 A JP 3233613A JP 23361391 A JP23361391 A JP 23361391A JP H0574284 A JPH0574284 A JP H0574284A
Authority
JP
Japan
Prior art keywords
cutting
conductive component
arc
region
contact material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3233613A
Other languages
Japanese (ja)
Other versions
JP2904452B2 (en
Inventor
Atsushi Yamamoto
敦史 山本
Isao Okutomi
功 奥冨
Keisei Seki
経世 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP23361391A priority Critical patent/JP2904452B2/en
Publication of JPH0574284A publication Critical patent/JPH0574284A/en
Application granted granted Critical
Publication of JP2904452B2 publication Critical patent/JP2904452B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

PURPOSE:To improve the current-chopping characteristics by constructing a structure containing respective specified percentages of a high-conduction component, an arc resisting material, and a sintering-promoter agent, which high- conduction component, arc resisting material and sintering-promoter agent have their respective specified proportions. CONSTITUTION:A vacuum bulb contact material is constructed of a high- conduction component consisting of one or more of Ag and Cu, an arc resisting material consisting of at least one selected from the group consisting of WC, MO2C, TaC, Cr2C3, and Ti, and a sintering-promoter agent consisting of at least one selected from the group consisting of Fe, Co, and Ni. In this contact material, the high-conduction component is 20 to 65vol.%, the Ag therein being set at 30wt% or more, while the sintering-promoter agent is set at 1wt% or more. The structure of this contact material is composed of a first region where the arc resisting material having a particle size of 3mum or less is finely and uniformly dispersed in the high-conduction component, and a second region consisting mainly of the high-conduction component having a width or particle size of 10mum or more, and the rate of the first region with respect to the total structure is set at 80vol.% or more.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電流裁断特性に優れた
真空バルブ用接点材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a contact material for a vacuum valve which has excellent current cutting characteristics.

【0002】[0002]

【従来の技術】真空中でのアーク拡散性を利用して、高
真空中で電流遮断を行わせる真空バルブの接点は、対向
する固定、可動の2つの接点から構成されている。この
真空バルブを用いて電動機負荷などの誘導性回路の電流
を遮断する時、過度の異常サージ電圧が発生して負荷機
器を破壊させる恐れがある。この異常サージ電圧の発生
原因は、例えば、真空中における小電流遮断時に発生す
る裁断現象(交流電流波形の自然ゼロ点を待たずに強制
的に電流遮断が行われる事)、あるいは高周波消弧現象
などによるものである。裁断現象による異常サージ電圧
の値Vs は、回路のサージインピースダンスZo・Ic
で表される。従って、異常サージ電圧Vsを低くするた
めには電流裁断値Icを小さくしなくてはならない。
2. Description of the Related Art The contact point of a vacuum valve for interrupting a current in a high vacuum by utilizing arc diffusivity in a vacuum is composed of two opposed and fixed contacts. When this vacuum valve is used to cut off the current in an inductive circuit such as a motor load, an excessive abnormal surge voltage may occur and destroy load equipment. The cause of this abnormal surge voltage is, for example, a cutting phenomenon that occurs when a small current is cut off in a vacuum (the current is forcibly cut off without waiting for the natural zero point of the AC current waveform), or a high-frequency arc extinction phenomenon. Etc. The value Vs of the abnormal surge voltage due to the cutting phenomenon is determined by the surge in peace dance Zo · Ic of the circuit.
It is represented by. Therefore, in order to reduce the abnormal surge voltage Vs, the current cut value Ic must be reduced.

【0003】上記の要求に対して、炭化タングステン
(WC)と銀(Ag)とを複合化した合金の接点を用い
た真空開閉器が開発され(米国特許第3683138
号)実用化されている。このAg−WC系合金の接点に
は、次のような特徴がある。 (1)WCの介在が電子放射を容易にさせる。 (2)電界放射電子の衝突による電極面の加熱に基づく
接点材料の蒸発を促進させる。 (3)接点材料の炭化物がアークにより分解し、荷電体
を生成してアークを接続する。
In response to the above requirements, a vacuum switch using a contact made of an alloy of tungsten carbide (WC) and silver (Ag) has been developed (US Pat. No. 3,683,138).
No.) It has been put to practical use. This Ag-WC alloy contact has the following features. (1) The presence of WC facilitates electron emission. (2) To promote evaporation of the contact material due to heating of the electrode surface due to collision of field emission electrons. (3) The carbide of the contact material is decomposed by the arc to generate a charged body and connect the arc.

【0004】また、低裁断電流特性を発揮する他の接点
材料として、ビスマス(Bi)と銅(Cu)とを複合化
した合金が製造され、この材料が真空バルブに実用化さ
れている(特公昭35−14974号、米国特許第29
75256号、特公昭41−12131号、米国特許第
3246979号)。この合金のうちBiを10重量%
(以下wt%)としたもの(特公昭35−14974
号)はその適度な蒸気圧特性を有するので、低い裁断電
流特性を発揮し、またBiを0.5wt%とした(特公
昭41−12131号)ものは、結晶粒界に偏析して存
在する結果、合金自体を脆化し低い溶着引き外し力を実
現し大電流遮断性に優れている。
As another contact material exhibiting a low cutting current characteristic, an alloy composed of bismuth (Bi) and copper (Cu) is manufactured, and this material is put to practical use in a vacuum valve (special feature). Japanese Patent Publication 35-14974, U.S. Patent No. 29
75256, Japanese Patent Publication No. 41-12131, and U.S. Pat. No. 3,246,979). 10% by weight of Bi in this alloy
(Hereinafter, wt%) (Japanese Patent Publication No. 35-14974)
No. 4) has an appropriate vapor pressure characteristic, and thus exhibits a low cutting current characteristic, and a Bi content of 0.5 wt% (Japanese Patent Publication No. 41-12131) is segregated at the grain boundaries. As a result, the alloy itself becomes brittle and a low welding pull-off force is realized, which is excellent in blocking large currents.

【0005】低裁断電流特性を得る他の接点材料とし
て、AgとCuとの比率をほぼ7:3とした、Ag−C
u−WC合金がある。この合金において従来にない限定
をしたAgとCuとの比率を選択するので、安定した裁
断電流特性を発揮する。また、耐弧性材料の粒界(例え
ば、WCの粒界)を0.2〜1μmとすることにより、
低裁断電流特性の改善に有効であることもわかってい
る。
As another contact material for obtaining a low cutting current characteristic, Ag-C in which the ratio of Ag and Cu is approximately 7: 3.
There is a u-WC alloy. In this alloy, since the ratio of Ag and Cu which is not limited to the conventional one is selected, stable cutting current characteristics are exhibited. Further, by setting the grain boundary of the arc resistant material (for example, the grain boundary of WC) to 0.2 to 1 μm,
It is also known to be effective in improving the low cutting current characteristic.

【0006】[0006]

【発明が解決しようとする課題】真空遮断器には低サー
ジ性が要求され、そのためには、低裁断電流特性が要求
されていた。
A vacuum circuit breaker is required to have a low surge characteristic, and for that purpose, a low cutting current characteristic is required.

【0007】しかしながら、真空バルブは、近年、大容
量電動機等の誘導性回路に適用されることが一層増える
と共に、高サージ・インピーダンス負荷も出現したた
め、真空バルブは、一層安定した低裁断特性を持つこと
が望まれるようになってきた。WCとAgを複合化した
合金の接点(米国特許第3683138号)では、裁断
電流が十分に低いとはいえない。
However, in recent years, the vacuum valve has been more and more applied to inductive circuits such as large-capacity electric motors, and a high surge / impedance load has appeared. Therefore, the vacuum valve has a more stable low cutting characteristic. Is becoming desired. The contact of the alloy in which WC and Ag are compounded (US Pat. No. 3,683,138) cannot be said to have a sufficiently low cutting current.

【0008】10wt%のBiとCuとを複合化した合
金(特公昭35−14974号、米国特許第29752
56号)では、開閉回路の増大と共に電極空間への金属
蒸気の供給量が減少し低裁断電流特性の劣化が現れ、高
蒸気圧元素量に依存して耐電圧特性の劣化も指摘されて
いる。0.5wt%のBiとCuとを複合化した合金
(特公昭41−12131号、米国特許第324697
9号)も、低裁断電流特性が不十分である。
An alloy composed of 10 wt% of Bi and Cu (Japanese Patent Publication No. 35-14974, US Pat. No. 2,975,2).
No. 56), the amount of metal vapor supplied to the electrode space decreases as the number of switching circuits increases, and the low chopping current characteristic deteriorates. It is also pointed out that the withstand voltage characteristic deteriorates depending on the high vapor pressure element amount. .. Alloy in which 0.5 wt% of Bi and Cu are compounded (Japanese Patent Publication No. Sho 41-12131, US Pat. No. 3,246,97).
No. 9) also has insufficient low cutting current characteristics.

【0009】また、AgとCuとの重量比率はほぼ7:
3としたAg−Cu−WC合金および耐弧性材料の粒径
が0.2〜1μmとする合金では、その平均的な電流裁
断特性については、ある程度改善されているものの、多
数回開閉した場合の裁断電流値の最大値についての配慮
は不十分である。
The weight ratio of Ag to Cu is about 7:
In the Ag-Cu-WC alloy described in No. 3 and the arc-resistant material having a particle size of 0.2 to 1 μm, the average current cutting characteristics are improved to some extent, but when opened and closed many times. The consideration of the maximum value of the cutting current value is insufficient.

【0010】本発明は、上述の背景に基づきなされたも
のであり、その目的とするところは、極めて低い電流裁
断特性を有する真空遮断器用接点材料を提供し、苛酷化
する真空遮断器への要求に応えることである。
The present invention has been made based on the above-mentioned background, and an object of the present invention is to provide a contact material for a vacuum circuit breaker having an extremely low current cutting characteristic, and a demand for a vacuum circuit breaker which becomes severe. Is to respond to.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に本発明は、Agまたは/およびCuよりなる高導電成
分と、WC、Mo2 C、TaC、Cr2 3 、TiCの
うちの少なくとも1つ以上よりなる耐弧材と、Fe、C
o、Niのうち少なくとも1つ以上よりなる焼結助材に
より構成され、その組成は、高導電成分が20〜65v
ol%であり、高導電成分のうちのAgの割合が30w
t%以上であり、かつ、焼結助材が1wt%以下であ
り、その組識は、粒径が3μm以下の耐弧材が高導電成
分中に微細かつ均一に分散している第1の領域と、幅あ
るいは粒径が10μm以上の導電成分が主体の第2の領
域よりなり、第1の領域が全組識中に占める割合が80
vol%以上であるようにした真空バルブ用接点材料で
ある。
In order to achieve the above object, the present invention provides a highly conductive component composed of Ag and / or Cu and at least one of WC, Mo 2 C, TaC, Cr 2 C 3 and TiC. Arc resistant material consisting of one or more and Fe, C
o, Ni is composed of at least one or more sintering aids, and its composition is such that the highly conductive component is 20 to 65 v.
ol%, and the ratio of Ag in the high conductivity component is 30w
t% or more and the sintering aid is 1 wt% or less, and the structure is that the arc resistant material having a particle diameter of 3 μm or less is finely and uniformly dispersed in the highly conductive component. The second region is mainly composed of a region and a conductive component having a width or particle size of 10 μm or more, and the first region accounts for 80% of the whole tissue.
It is a contact material for a vacuum valve, which has a vol% or more.

【0012】[0012]

【作用】焼結系接点材料のような複合材料接点では、そ
の電流裁断特性が材料組成のみならず、その組識に大き
く影響される。それは、電流裁断現象が陰極点と呼ばれ
る極めて小さな領域のエネルギーおよび物質のバランス
の崩壊によって発生する現象であるためと考えられる。
この陰極点の大きさは、例えば、Ag−WC−Coとい
った接点材料に代表される本発明に示されるような接点
材料の場合、電流裁断瞬時には、その直径が10μm程
度まで小さくなる。このため、材料組識がこのオーダー
まで完全に均質でない場合には、電流裁断時に陰極点が
存在していた場所の組成により裁断特性が異なってしま
い、その裁断電流値の統計的分布形態は、図3に示すご
とく、いくつかの分布の複合分布となってしまう。従っ
て十分に低くかつ安定した裁断電流値を発生させるため
には、接点材料の組識も少なくともこのオーダーまで微
細化することが必要である。すなわち、接点材料表面の
ほとんどの部分において、直径10μmの内部の組成が
特許請求の範囲で示されている組成範囲となるように、
その組識をコントロールする必要がある。
In a composite material contact such as a sintered contact material, its current cutting characteristic is greatly influenced not only by the material composition but also by its structure. It is considered that the current cutting phenomenon is a phenomenon caused by the collapse of the balance of energy and matter in an extremely small area called a cathode spot.
In the case of a contact material represented by the present invention, which is represented by a contact material such as Ag-WC-Co, the diameter of the cathode spot is reduced to about 10 μm at the instant of current cutting. Therefore, if the material structure is not completely homogeneous up to this order, the cutting characteristics will vary depending on the composition of the place where the cathode point was present during current cutting, and the statistical distribution form of the cutting current value is As shown in FIG. 3, a composite distribution of several distributions results. Therefore, in order to generate a sufficiently low and stable cutting current value, it is necessary to miniaturize the structure of the contact material to at least this order. That is, in most of the surface of the contact material, the internal composition with a diameter of 10 μm falls within the composition range shown in the claims.
It is necessary to control the organization.

【0013】本発明に示されている組成の接点材料は、
高融点の耐弧材を導電成分中に適量添加することにより
裁断電流値を平均的に低減している。したがって導電成
分が偏在し、耐弧材料が相対的に低くなっている部分
は、裁断特性において不利である。すなわち、本発明に
示すごとく、このような導電成分の偏在領域が低減され
るように組識をコントロールすることが重要である。
The contact material having the composition shown in the present invention is
The cutting current value is reduced on average by adding an appropriate amount of a high melting point arc resistant material to the conductive component. Therefore, the portion where the conductive component is unevenly distributed and the arc-resistant material is relatively low is disadvantageous in cutting characteristics. That is, as shown in the present invention, it is important to control the organization so that such unevenly distributed region of the conductive component is reduced.

【0014】[0014]

【実施例】以下、本発明の実施例を図面を参照して説明
する。図1は、真空バルブの断面図、図2は、真空バル
ブの電極部の拡大断面図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view of a vacuum valve, and FIG. 2 is an enlarged sectional view of an electrode portion of the vacuum valve.

【0015】図1において、遮断室1は、絶縁材料によ
りほぼ円筒状に形成された絶縁容器2と、この両端に封
止金具3a、3bを介して設けた金属製の蓋体4a、4
bとで真空気密に構成されている。前記遮断室1内に
は、導電棒5、6の対向する端部に取付けられた一対の
電極7、8が配設され、上部の電極7を固定電極、下部
の電極8を可動電極としている。またこの電極8の電極
棒6には、ベローズ9が取付けられ遮断室1内を真空密
に保持しながら電極8の軸方向の移動を可能にしてい
る。またこのベローズ9上部には金属製のアークシール
ド10が設けられ、ベローズ9がアーク蒸気で覆われるこ
とを防止している。また、前記電極7、8を覆うよう
に、遮断室1内に金属製のアークシールド11が設けら
れ、これにより絶縁容器2がアーク蒸気で覆われること
を防止している。さらに電極8は、図2に拡大して示す
如く、導電棒6にろう付け部12によって固定されるか
又は、かしめによって圧着接続されている。接点13aは
電極8にろう付け14によってろう付けで取付けられる。
なお、接点13bは、電極7にろう付けにより取付けられ
る。
In FIG. 1, a shut-off chamber 1 is composed of an insulating container 2 formed of an insulating material in a substantially cylindrical shape, and metallic lids 4a and 4 provided on both ends of the insulating container 2 with sealing metal fittings 3a and 3b interposed therebetween.
It is vacuum-tightly constructed with b. A pair of electrodes 7 and 8 attached to opposite ends of the conductive rods 5 and 6 are arranged in the shutoff chamber 1, and the upper electrode 7 is a fixed electrode and the lower electrode 8 is a movable electrode. .. A bellows 9 is attached to the electrode rod 6 of the electrode 8 so that the electrode 8 can be moved in the axial direction while keeping the inside of the blocking chamber 1 vacuum-tight. An arc shield 10 made of metal is provided above the bellows 9 to prevent the bellows 9 from being covered with arc vapor. Further, a metal arc shield 11 is provided in the shut-off chamber 1 so as to cover the electrodes 7 and 8, thereby preventing the insulating container 2 from being covered with arc vapor. Further, as shown in an enlarged view in FIG. 2, the electrode 8 is fixed to the conductive rod 6 by a brazing portion 12 or is crimp-connected by caulking. The contact 13a is brazed to the electrode 8 by brazing 14.
The contact 13b is attached to the electrode 7 by brazing.

【0016】次にこの接点材料の製造方法の1例につき
説明する。製造に先立って必要粒径別に耐弧性成分およ
び補助成分を分類する。分類作業は、例えば、ふるい分
けと沈降法とを併用して行うことで容易に所定粒径の粉
末を得る。まず所定粒径のWCとCoおよび/またはC
を所定量および、所定粒径のAgを所定量の一部用意
し、これらを混合し、その後加圧成形して粉末成形体を
得る。ついで、この粉末成形体を露点が、−50℃以下
の水素雰囲気あるいは、1.3×10-1Pa以下で、所
定温度、例えば1150℃、1時間の条件にて仮焼結
し、仮焼結体を得る。
Next, an example of a method for manufacturing the contact material will be described. Prior to manufacturing, the arc resistant component and auxiliary component are classified according to the required particle size. The classification work is performed, for example, by using a sieving method and a sedimentation method together to easily obtain a powder having a predetermined particle size. First, WC and Co and / or C having a predetermined particle size
A predetermined amount of Ag and a predetermined amount of Ag having a predetermined particle size are partially prepared, and these are mixed and then pressure-molded to obtain a powder compact. Then, the powder compact is temporarily sintered in a hydrogen atmosphere having a dew point of −50 ° C. or lower or 1.3 × 10 −1 Pa or lower at a predetermined temperature, for example, 1150 ° C. for 1 hour, and then calcined. Get a union.

【0017】ついで、この仮焼結体の残存空孔中に所定
量および所定比率のAg−Cuを1150℃、1時間で
溶浸しAg−Cu−Co−WC合金を得る。溶浸は主と
して真空中で行うが、水素中でも可能である。
Then, a predetermined amount and a predetermined ratio of Ag-Cu are infiltrated into the remaining pores of the pre-sintered body at 1150 ° C. for 1 hour to obtain an Ag-Cu-Co-WC alloy. The infiltration is mainly carried out in vacuum, but it is also possible in hydrogen.

【0018】尚、合金中の導電成分量の比率Ag/(A
g+Cu)の制御は、次の様にして行った。例えばあら
かじめ所定比率のAg/(Ag+Cu)を有するインゴ
ットを、温度1200℃、真空度1.3×10-2Paで
真空溶解を行い、切断し溶浸用素材として用いた。導電
成分の比率Ag/(Ag+Cu)の制御の他の方法は、
仮焼結体を作る際、あらかじめ、所定量の一部をWC中
に混合させることでも、所望組成の接点合金を得ること
ができる。
The ratio of the amount of conductive components in the alloy Ag / (A
The control of g + Cu) was performed as follows. For example, an ingot having a predetermined ratio of Ag / (Ag + Cu) was vacuum melted at a temperature of 1200 ° C. and a vacuum degree of 1.3 × 10 −2 Pa, cut and used as a material for infiltration. Another method of controlling the ratio Ag / (Ag + Cu) of the conductive component is
A contact alloy having a desired composition can also be obtained by previously mixing a predetermined amount of a part in WC when forming the pre-sintered body.

【0019】また、WCの平均粒子間距離は、導電成分
の全体量、仮焼結時にWCに予備配合される導電成分量
(以下、予備配合量とする)、WC粒径、およびCo含
有量を調整することにより制御される。
The average inter-particle distance of WC is determined by the total amount of conductive components, the amount of conductive components preliminarily blended with WC during pre-sintering (hereinafter referred to as "preliminary blending amount"), WC particle size, and Co content. It is controlled by adjusting.

【0020】次に、本発明実施例データを得た電流裁断
特性の評価方法、および評価条件につき述べる。各接点
を取付けて10-3Pa以下に排気した組立て式バルブを
製作し、この装置を0.8m/秒の開極速度で開極させ
遅れ小電流を遮断した時の裁断電流を測定した。遮断電
流は、20A(実効値)、50Hzとした。開極位相は
ランダムに行い、500回遮断されたときの裁断電流を
接点数3個につき測定し、その平均値および最大値を表
1乃至表4に示した。尚、数値は、実施例3の裁断電流
値の平均値を1.0とした場合の相対値で示し、裁断電
流値の最大値が3.5以下の場合、良好であると判断し
た。まず、組成条件を一定とし、組識条件をパラメータ
として検討する。 実施例1〜3、比較例1〜2
Next, the method for evaluating the current cutting characteristics and the evaluation conditions for obtaining the data of the embodiment of the present invention will be described. A prefabricated valve in which each contact was attached and which was evacuated to 10 -3 Pa or less was manufactured, and this device was opened at an opening speed of 0.8 m / sec to measure the cutting current when a delayed small current was cut off. The breaking current was 20 A (effective value) and 50 Hz. The opening phase was performed randomly, and the cutting current when interrupted 500 times was measured for three contact points, and the average value and maximum value thereof are shown in Tables 1 to 4. The numerical values are shown as relative values when the average cutting current value of Example 3 was set to 1.0, and when the maximum cutting current value was 3.5 or less, it was judged to be good. First, the composition conditions are fixed, and the tissue conditions are considered as parameters. Examples 1-3, Comparative Examples 1-2

【0021】導電成分の全量を約50vol%、導電成
分中のAgの占める割合を約72wt%、焼結助材はC
oで約0.7wt%、耐弧材はWCとして、これらの組
成条件を一定とした上で、粒径が0.8μmの耐弧材が
高導電成分中に微細かつ均一に分散している第1の領域
が組識全体に占める割合を変化させ、裁断特性を調べ
た。
The total amount of the conductive component is about 50 vol%, the ratio of Ag in the conductive component is about 72 wt%, and the sintering aid is C.
o is about 0.7 wt%, the arc resistant material is WC, and the composition conditions are constant, and the arc resistant material having a particle size of 0.8 μm is finely and uniformly dispersed in the high conductive component. The cutting property was examined by changing the ratio of the first region to the entire tissue.

【0022】その結果、表1乃至表2のごとく第1の領
域の割合が80vol%以上である実施例1〜3では、
裁断電流値の最大値がいずれも2.5以下で良好である
のに対して、これが80vol%以下の比較例1〜2で
は、平均値は比較的低いにもかかわず、最大値が著しく
高くなっている。これは、粗大でかつ導電成分主体であ
るため局所的な裁断特性の悪い第2の領域において電流
裁断が発生する確率が高いためと推定される。 実施例4〜6、比較例3
As a result, as shown in Tables 1 and 2, in Examples 1 to 3 in which the ratio of the first region is 80 vol% or more,
While the maximum cutting current value is 2.5 or less, which is good, in Comparative Examples 1 and 2 in which the cutting current value is 80 vol% or less, the maximum value is extremely high although the average value is relatively low. Is becoming It is presumed that this is because the current cutting is highly likely to occur in the second region, which is coarse and mainly contains the conductive component and has poor local cutting characteristics. Examples 4 to 6 and Comparative Example 3

【0023】導電成分の全量を約50vol%、導電成
分中のAgの占める割合を約72wt%、焼結助材はC
oで約0.7wt%とし、耐弧材はWCとし、耐弧材が
高導電成分中に微細かつ均一に分散している第1の領域
が組識全体に占める割合を82〜87面積%の範囲と
し、耐弧材の粒径をパラメータとして裁断特性を評価し
た。
The total amount of the conductive component is about 50 vol%, the ratio of Ag in the conductive component is about 72 wt%, and the sintering aid is C.
o is about 0.7 wt%, the arc resistant material is WC, and the first region in which the arc resistant material is finely and uniformly dispersed in the highly conductive component occupies 82 to 87 area% of the entire tissue. And the cutting characteristics were evaluated using the particle size of the arc resistant material as a parameter.

【0024】その結果、表1乃至表2のごとくWC粒径
が3μm以下である実施例3〜6では、裁断電流値の最
大値がいずれも3.0以下で良好であるのに対して、こ
れが9μmの比較例3では、平均値1.2と比較的低い
にもかかわず、最大値6.0と著しく高くなっている。
このような極めて高い裁断電流値は、裁断特性の悪い粗
大な耐弧材上において発生するものと推定される。
As a result, as shown in Tables 1 and 2, in Examples 3 to 6 in which the WC particle size is 3 μm or less, the maximum cutting current value is 3.0 or less, which is good. In Comparative Example 3 of 9 μm, although the average value is 1.2, which is relatively low, the maximum value is 6.0, which is significantly high.
Such an extremely high cutting current value is presumed to occur on a coarse arc resistant material having poor cutting characteristics.

【0025】次に、組識条件を一定とし、組成を変えた
場合の、裁断特性について検討した。まず焼結助材をC
o、耐弧材をWCとした、Ag/Cu−WC−Co接点
材料系について検討した。一定とする組成条件は、WC
粒径については0.8μmとし、また、耐弧材が微細か
つ均一に導電成分中に分散している第1の領域が80面
積%となるようにした。 実施例7〜9、比較例4〜5
Next, the cutting characteristics when the composition conditions were fixed and the composition was changed were examined. First, the sintering aid is C
o, the Ag / Cu-WC-Co contact material system in which the arc resistant material was WC was examined. The composition condition to keep constant is WC
The particle size was 0.8 μm, and the first region in which the arc resistant material was finely and uniformly dispersed in the conductive component was 80% by area. Examples 7-9, Comparative Examples 4-5

【0026】導電成分中のAgの占める割合を72wt
%とし、Co含有量を0.7wt%として、導電成分の
全量のみを変化させた場合の、裁断特性について示す。
表1乃至表2のごとく、導電成分量が20〜65vol
%の範囲にある実施例7〜9は、裁断電流値が2.9以
下で良好であるが、導電成分量が約71vol%の比較
例4では、裁断電流値は平均値、最大値ともに高い値と
なっている。これは、耐弧材の量が少ないためその添加
による効果が十分に得られないためである。一方、導電
成分量が約17vol%の比較例5では、裁断電流値の
平均値はそれほど高くないにもかかわらず、その最大値
は極めて高い値となっている。これは、耐弧材同士の間
隔が非常に接近してしまったため、繰り返し放電により
導電成分が蒸発消耗してしまった部分が、粗大がWC粒
子と同様な特性となってしまったためである。 実施例10〜12、比較例6〜7
The ratio of Ag in the conductive component is 72 wt.
%, The Co content is 0.7 wt%, and only the total amount of the conductive component is changed.
As shown in Table 1 and Table 2, the conductive component amount is 20 to 65 vol.
%, The cutting current value is good at 2.9 or less, but in Comparative Example 4 in which the amount of the conductive component is about 71 vol%, the cutting current value is high in both the average value and the maximum value. It is a value. This is because the amount of the arc resistant material is small and the effect of the addition thereof cannot be sufficiently obtained. On the other hand, in Comparative Example 5 in which the amount of the conductive component is about 17 vol%, the maximum value of the cutting current value is extremely high although the average value of the cutting current value is not so high. This is because the arc-resistant materials are so close to each other that the conductive component evaporates and is consumed due to repeated discharge, and the coarseness thereof has the same characteristics as the WC particles. Examples 10-12, Comparative Examples 6-7

【0027】導電成分量を約50vol%とし、Co含
有量を0.7wt%として、導電成分中にAgの占める
割合のみを変化させた場合の、裁断特性について示す。
表1乃至表2のごとく、Agの割合が30wt%以上で
ある実施例10〜12は、裁断電流値の最大値が3.4
以下で良好であるが、これが30wt%以下の比較例6
〜7では、裁断電流値は平均値、最大値ともに高い値と
なっている。 実施例13〜15、比較例8
The cutting characteristics when the conductive component amount is about 50 vol% and the Co content is 0.7 wt% and only the ratio of Ag in the conductive component is changed will be shown.
As shown in Tables 1 and 2, in Examples 10 to 12 in which the proportion of Ag is 30 wt% or more, the maximum cutting current value is 3.4.
The following is good, but this is 30 wt% or less of Comparative Example 6
At ~ 7, the cutting current value is high in both the average value and the maximum value. Examples 13 to 15 and Comparative Example 8

【0028】導電成分量を約50vol%とし、導電成
分中にAgの占める割合を約72wt%として、Co含
有量のみを変化させた場合の、裁断特性について示す。
表1乃至表2のごとく、Co含有量が1wt%以下であ
る実施例13〜15は、裁断電流値の最大値が3.4以
下で良好であるが、これが1.9wt%の比較例8で
は、裁断電流値は平均値、最大値ともに高い値となって
いる。次に、耐弧材としてMo2 C、TaCを用いた場
合および焼結助材としてNi、Feを用いた時の裁断特
性について表3乃至表4に示す。 実施例16〜17
The cutting characteristics when the content of the conductive component is about 50 vol% and the ratio of Ag in the conductive component is about 72 wt% and only the Co content is changed will be shown.
As shown in Tables 1 and 2, Examples 13 to 15 in which the Co content is 1 wt% or less are good in that the maximum cutting current value is 3.4 or less, and this is 1.9 wt% in Comparative Example 8. In, the cutting current value is high in both the average value and the maximum value. Next, Tables 3 to 4 show the cutting characteristics when Mo 2 C and TaC were used as the arc resistant material and when Ni and Fe were used as the sintering aids. Examples 16-17

【0029】実施例3とほぼ等しい、導電成分量、導電
成分中のAgの割合、Co含有量、および耐弧材粒径
で、耐弧材成分がMo2 C、TaC、Cr2 3 および
TiCの実施例16、17、18および19は、裁断電
流値の最大値がそれぞれ2.6、2.3、2.5および
2.8で、いずれも良好な電流裁断特性を示した。 実施例18〜19
The amount of the conductive component, the ratio of Ag in the conductive component, the Co content, and the grain size of the arc-resistant material are almost the same as those in Example 3, and the arc-resistant material components are Mo 2 C, TaC, Cr 2 C 3 and In Examples 16, 17, 18 and 19 of TiC, the maximum cutting current values were 2.6, 2.3, 2.5 and 2.8, respectively, and all showed good current cutting characteristics. Examples 18-19

【0030】実施例3とほぼ等しい、導電成分量、導電
成分中のAgの割合、焼結補助成分含有量、およびWC
粒径で、焼結補助成分がNiおよびFeの実施例18お
よび19は、裁断電流値の最大値がそれぞれ2.5およ
び2.6で、ともに良好な電流裁断特性を示した。
The amount of the conductive component, the ratio of Ag in the conductive component, the content of the sintering auxiliary component, and the WC, which are almost the same as those in Example 3,
In Examples 18 and 19 in which the sintering aids were Ni and Fe in particle size, the maximum cutting current values were 2.5 and 2.6, respectively, and both showed good current cutting characteristics.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】[0033]

【表3】 [Table 3]

【0034】[0034]

【表4】 [Table 4]

【0035】[0035]

【発明の効果】以上のように本発明は、AgまたはCu
の少なくとも1つからなる高導電成分と、WC、Mo2
C、TaC、Cr2 3 、TiCのうちの少なくとも1
つ以上よりなる耐弧材と、Fe、Co、Niのうちの少
なくとも1つ以上よりなる焼結助材とからなる真空バル
ブ用接点材料において、高導電成分が20〜65vol
%でこのうちAgの割合が30wt%以上であり、焼結
助材が1wt%以下であるとともに、その組識は、粒径
が3μm以下の耐弧材が高導電成分中に微細かつ均一に
分散している第1の領域と、幅あるいは粒径が10μm
以上の高導電成分が主体の第2の領域よりなり、第1の
領域の全組識中に占める割合が80vol%以上であるよ
うにしたので、安定して低い優れた電流裁断特性を有す
る真空バルブ用接点材料を得ることができる。
As described above, according to the present invention, Ag or Cu is used.
A highly conductive component composed of at least one of WC, Mo 2
At least one of C, TaC, Cr 2 C 3 and TiC
In a contact material for a vacuum valve, which comprises an arc-resistant material made of one or more and a sintering aid made of at least one of Fe, Co, and Ni, the highly conductive component is 20 to 65 vol.
%, Of which the proportion of Ag is 30 wt% or more, the sintering aid is 1 wt% or less, and the organization is that the arc resistant material having a particle size of 3 μm or less is fine and uniform in the highly conductive component. The dispersed first region and the width or grain size is 10 μm
Since the above-mentioned second region is mainly composed of the high-conductivity component, and the ratio of the first region in the whole tissue is 80 vol% or more, the vacuum having stable and excellent current cutting property is obtained. A contact material for a valve can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す真空バルブの断面図。FIG. 1 is a sectional view of a vacuum valve showing an embodiment of the present invention.

【図2】〔図1〕の電極成分の拡大断面図。FIG. 2 is an enlarged cross-sectional view of the electrode components of FIG.

【図3】代表的な真空バルブ用接点材料の電流裁断値−
頻度特性図。
[Fig. 3] Current cutting value of a typical contact material for vacuum valve-
Frequency characteristic diagram.

【符号の説明】[Explanation of symbols]

7,8…電極、 13a,13b…接点。 7, 8 ... Electrodes, 13a, 13b ... Contacts.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 AgまたはCuの少なくとも1つからな
る高導電成分と、WC、Mo2 C、TaC、Cr
2 3 、TiCのうちの少なくとも1つ以上よりなる耐
弧材と、Fe、Co、Niのうちの少なくとも1つ以上
よりなる焼結助材とから成る真空バルブ用接点材料にお
いて、前記高導電成分が20〜65vol%で、このう
ちAgの割合が30wt%以上であり、前記焼結助材が
1wt%以下であるとともに、その組識は、粒径が3μ
m以下の前記耐弧材が前記高導電成分中に微細かつ均一
に分散している第1の領域と、幅あるいは粒径が10μ
m以上の前記高導電成分が主体の第2の領域によりな
り、前記第1の領域の全組識中に占める割合が80vol
%以上であることを特徴とする真空バルブ用接点材料。
1. A highly conductive component comprising at least one of Ag and Cu, and WC, Mo 2 C, TaC and Cr.
In the vacuum valve contact material comprising an arc resistant material made of at least one or more of 2 C 3 and TiC and a sintering aid made of at least one or more of Fe, Co and Ni, the high conductivity The composition is 20 to 65 vol%, the Ag proportion is 30 wt% or more, the sintering aid is 1 wt% or less, and the organization is that the particle size is 3 μm.
The first region in which the arc-resistant material of m or less is finely and uniformly dispersed in the highly conductive component, and the width or particle size is 10 μm.
The second region is mainly composed of the highly conductive component of m or more, and the ratio of the first region to the entire tissue is 80 vol.
% Or more contact material for vacuum valve.
JP23361391A 1991-09-13 1991-09-13 Contact material for vacuum valve Expired - Fee Related JP2904452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23361391A JP2904452B2 (en) 1991-09-13 1991-09-13 Contact material for vacuum valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23361391A JP2904452B2 (en) 1991-09-13 1991-09-13 Contact material for vacuum valve

Publications (2)

Publication Number Publication Date
JPH0574284A true JPH0574284A (en) 1993-03-26
JP2904452B2 JP2904452B2 (en) 1999-06-14

Family

ID=16957794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23361391A Expired - Fee Related JP2904452B2 (en) 1991-09-13 1991-09-13 Contact material for vacuum valve

Country Status (1)

Country Link
JP (1) JP2904452B2 (en)

Also Published As

Publication number Publication date
JP2904452B2 (en) 1999-06-14

Similar Documents

Publication Publication Date Title
US5420384A (en) Contact material for a vacuum interrupter
JP2768721B2 (en) Contact material for vacuum valve
US5149362A (en) Contact forming material for a vacuum interrupter
JPS6277439A (en) Contact point material for vacuum valve
EP0929088A2 (en) Contact material
JPH09161628A (en) Contact material for vacuum valve and manufacture thereof
JP2904452B2 (en) Contact material for vacuum valve
JP2006228684A (en) Contact point material for vacuum valve, the vacuum valve, and manufacturing method thereof
JP2911594B2 (en) Vacuum valve
JP2889344B2 (en) Contact for vacuum valve
JPS60197840A (en) Sintered alloy for contact point of vacuum circuit breaker
JP3150516B2 (en) Contact material for vacuum valve
JP2692945B2 (en) Contact material for vacuum valve
JP2878718B2 (en) Contact material for vacuum valve
JP3443516B2 (en) Manufacturing method of contact material for vacuum valve
JPH0653907B2 (en) Contact material for vacuum valve
JP2904448B2 (en) Contact material for vacuum valve
JP3068880B2 (en) Contact for vacuum valve
JPH0877856A (en) Contact material for vacuum valve
JPH08293233A (en) Contact material for vacuum valve
JPH0791612B2 (en) Sintered alloy for vacuum contacts and breaker contacts
JPH06150783A (en) Contact material for vacuum valve
JPH03295118A (en) Contact material for vacuum valve
JPH05101753A (en) Vacuum valve
JPH1083746A (en) Electrode for vacuum valve and its manufacture

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080326

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees