JP2002256361A - Contact material for vacuum valve - Google Patents

Contact material for vacuum valve

Info

Publication number
JP2002256361A
JP2002256361A JP2001051442A JP2001051442A JP2002256361A JP 2002256361 A JP2002256361 A JP 2002256361A JP 2001051442 A JP2001051442 A JP 2001051442A JP 2001051442 A JP2001051442 A JP 2001051442A JP 2002256361 A JP2002256361 A JP 2002256361A
Authority
JP
Japan
Prior art keywords
arc
vacuum valve
contact material
comparative example
performance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001051442A
Other languages
Japanese (ja)
Other versions
JP3909804B2 (en
Inventor
Isao Okutomi
功 奥富
Takashi Kusano
貴史 草野
Atsushi Yamamoto
敦史 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Shibafu Engineering Corp
Original Assignee
Toshiba Corp
Shibafu Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Shibafu Engineering Corp filed Critical Toshiba Corp
Priority to JP2001051442A priority Critical patent/JP3909804B2/en
Publication of JP2002256361A publication Critical patent/JP2002256361A/en
Application granted granted Critical
Publication of JP3909804B2 publication Critical patent/JP3909804B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
  • Contacts (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a contact material for a vacuum valve the phenomena of the covering of electrically conductive components onto arc resistance componential grains, the depression of the electrically conductive components to the circumferences of the arc resistance componential grains, and the falling- off of the arc resistant componential grains are reduced and which is provided with good cut-off performance and withstand voltage performance. SOLUTION: The material contains electrically conductive components essentially consisting of at least one kind selected from Ag and Cu and arc resistant components provided with at least one kind selected from Cr, W, Nb, Ta, Ti and Mo, and the carbides thereof. The melting depth of a conducting surface is defined as 0.001 to 2 mm, and the maximum roughness of the conducting surface is defined as <=3 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、真空バルブ用接点
材料に関する。
[0001] The present invention relates to a contact material for a vacuum valve.

【0002】[0002]

【従来の技術】電力系統において、一般に事故の拡大を
防ぐため遮断器が設けられるが、その1つに開閉部の絶
縁媒体を真空とした真空遮断器がある。真空遮断器は、
開閉部をなす真空バルブと、この真空バルブの真空容器
内に設けられる接離可能な一対の電極を操作する操作機
構から成っている。真空バルブの一対の電極における接
点材料に要求される特性には、基本三要件である遮断特
性、耐電圧特性、耐溶着特性の他、接触抵抗特性や温度
上昇特性がある。これら全ての特性が良好である真空バ
ルブ用接点材料が理想であるが、これらの特性には相反
する性質のものがある関係上、単一の金属種によって全
ての特性を満足させるのは困難である。このため、実用
化されている真空バルブ用接点材料は、不足する特性を
相互に補えるような2種以上の元素、例えば導電成分と
耐弧成分を組合せて構成され、大電流用や高電圧用等と
いった所望する用途に応じて使用される。一方、多種多
用な真空バルブ用接点材料の中でも比較的満足する特性
を有するものとしては、例えば特開昭54−71375
号公報に記載されているように、導電成分としてのCu
と耐弧成分としてのCrから成るCu−Cr系真空バル
ブ用接点材料がある。同公報によれば、真空中では優秀
な耐電圧特性を示すが大電流性能は期待できないCrの
性質を補うべく大電流性能を有するCuを添加し、Cu
マトリクス中にCr、特に平均粒径が100μm以下の
Crを均一に分散させ、遮断性能や耐電圧性能等の諸特
性を良好とすることができる。
2. Description of the Related Art In a power system, a circuit breaker is generally provided in order to prevent the spread of accidents. One of such circuit breakers is a vacuum circuit breaker in which an insulating medium in an opening and closing section is vacuum. The vacuum circuit breaker is
The vacuum valve comprises an opening / closing unit and an operating mechanism for operating a pair of electrodes which can be brought into contact with and separated from each other and which is provided in a vacuum container of the vacuum valve. The characteristics required of the contact material of the pair of electrodes of the vacuum valve include contact resistance characteristics and temperature rise characteristics, in addition to the three basic requirements of cut-off characteristics, withstand voltage characteristics and welding resistance characteristics. A vacuum valve contact material having all these properties is ideal, but it is difficult to satisfy all the properties with a single metal species because these properties have contradictory properties. is there. For this reason, contact materials for vacuum valves that have been put to practical use are composed of a combination of two or more elements that can mutually compensate for the insufficient properties, for example, a conductive component and an arc-resistant component, and are used for large currents and high voltages. It is used according to a desired use such as. On the other hand, among various types of contact materials for vacuum valves, those having relatively satisfactory characteristics are described in, for example, Japanese Patent Application Laid-Open No. 54-71375.
As described in the publication, Cu as a conductive component
And a contact material for a Cu-Cr vacuum valve made of Cr as an arc-resistant component. According to the publication, Cu having high current performance is added to compensate for the property of Cr that exhibits excellent withstand voltage characteristics in a vacuum but cannot be expected to have high current performance.
Cr, particularly Cr having an average particle diameter of 100 μm or less, is uniformly dispersed in the matrix, and various characteristics such as blocking performance and withstand voltage performance can be improved.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
Cu−Cr系真空バルブ用接点材料では、導電成分と耐
弧成分において、硬度、引張強度、靭性値等の機械的強
度が大きく異なるために、接点材料の表面を所定形状へ
と加工する際、耐弧成分粒子上への導電成分の覆被り、
耐弧成分粒子の周囲への導電成分の凹み又は耐弧成分粒
子の脱落といった現象を生じることがある。これらの現
象は、遮断性能等に悪影響を及ぼし、真空バルブ用接点
材料として満足できる諸特性を得ることはできない。本
発明の目的は、接点材料の表面を所定形状へと加工する
際、耐弧成分粒子上への導電成分の覆被り、耐弧成分粒
子の周囲への導電成分の凹み又は耐弧成分粒子の脱落と
いった現象の発生を低減させ、良好な遮断性能と耐電圧
性能を得られる真空バルブ用接点材料を得ることにあ
る。
However, in the conventional contact material for a Cu-Cr based vacuum valve, the mechanical strength such as hardness, tensile strength, toughness, etc. of the conductive component and the arc-resistant component is greatly different. When processing the surface of the contact material into a predetermined shape, covering of the conductive component on the arc resistant component particles,
Phenomena such as dents of the conductive component around the arc resistant component particles or falling off of the arc resistant component particles may occur. These phenomena adversely affect the breaking performance and the like, and it is not possible to obtain various characteristics satisfactory as a contact material for a vacuum valve. An object of the present invention is to cover the conductive component on the arc-resistant component particles when processing the surface of the contact material into a predetermined shape, to dent the conductive component around the arc-resistant component particles or to form the arc-resistant component particles. An object of the present invention is to provide a vacuum valve contact material that can reduce the occurrence of a phenomenon such as falling off and obtain good breaking performance and withstand voltage performance.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に請求項1記載の発明は、Ag及びCuの内の少なくと
も一種を主成分とする導電成分と、Cr、W、Nb、T
a、Ti、Mo及びこれらの炭化物の内の少なくとも1
種を備える耐弧成分とを有し、通電面を溶融させる深さ
が0.001mm以上2mm以下であって、通電面の最
大粗さを3μm以下としたことを特徴とする。これによ
り、耐弧成分粒子上への導電成分の覆被り、耐弧成分粒
子の周囲への導電成分の凹み又は耐弧成分粒子の脱落と
いった現象の発生を低減させることができる。また、請
求項2記載の発明は、Ag及びCuの内の少なくとも一
種を主成分とする導電成分と、Cr、W、Nb、Ta、
Ti、Mo及びこれらの炭化物の内の少なくとも1種を
備える耐弧成分とを有し、耐弧成分の占める割合xと、
通電面での1mm以上で深さが0.01mm以下の所
定領域における耐弧成分の占める割合ynは重量比で0.
9≦yn/x≦1.1の関係にしたことを特徴とする。
これにより、良好な遮断性能と耐電圧性能を得られる真
空バルブ用接点材料を得ることができる。
In order to achieve the above object, the invention according to claim 1 comprises a conductive component containing at least one of Ag and Cu as a main component and Cr, W, Nb, Tb.
a, Ti, Mo and at least one of these carbides
And an arc-resistant component having a seed, wherein the depth at which the energized surface is melted is 0.001 mm or more and 2 mm or less, and the maximum roughness of the energized surface is 3 μm or less. This can reduce the occurrence of phenomena such as covering of the conductive component on the arc-resistant component particles, dent of the conductive component around the arc-resistant component particles, or falling off of the arc-resistant component particles. The invention according to claim 2 provides a conductive component containing at least one of Ag and Cu as a main component and Cr, W, Nb, Ta,
An arc-resistant component comprising at least one of Ti, Mo and these carbides, and a ratio x of the arc-resistant component;
The ratio yn occupied by the arc-resistant component in a predetermined area of 1 mm 2 or more and 0.01 mm or less on the current-carrying surface is 0.1% by weight.
It is characterized in that a relationship of 9 ≦ yn / x ≦ 1.1 is satisfied.
This makes it possible to obtain a contact material for a vacuum valve capable of obtaining good breaking performance and withstand voltage performance.

【0005】[0005]

【発明の実施の形態】以下、本発明の実施の形態につい
て詳細に説明する。図1は、本発明の真空バルブ用接点
材料が適用される真空バルブの断面図である。同図にお
いて、1は遮断室を示し、この遮断室1は、絶縁材料に
よりほぼ円筒状に形成された絶縁容器2と、この両端に
封着金具3a,3bを介して設けた金属性の蓋体4a,
4bとで真空気密に構成されている。遮断室1内には、
導電棒5,6の対向する端部に取り付けられた一対の電
極7,8が配設され、上部の電極7を固定電極、下部の
電極8を可動電極としている。また、この可動電極8の
導電棒6にはベローズ9が取り付けられ、遮断室1内を
真空気密に保持しながら可動電極8の軸方向の移動を可
能にする。ベローズ9の上部には金属性の第1のアーク
シールド10が設けられ、ベローズ9がアーク蒸気で覆
われることを防止している。11は、固定電極7と可動
電極8を覆うようにして遮断室1内に設けられた金属性
の第2のアークシールドで、絶縁容器2がアーク蒸気で
覆われることを防止している。一方、可動電極8側は、
図2に示すように、導電棒6にロウ付け部12によって
固定されるか、また、かしめによって圧着接続されてい
る。可動側接点13aは、可動電極8にロウ付け14で
固着されている。尚、固定電極7側について、固定側接
点13bは図2の可動側接点13bと同様に固定電極7
に固着されている。
Embodiments of the present invention will be described below in detail. FIG. 1 is a sectional view of a vacuum valve to which the contact material for a vacuum valve of the present invention is applied. In the figure, reference numeral 1 denotes a shut-off chamber. The shut-off chamber 1 includes an insulating container 2 formed of an insulating material in a substantially cylindrical shape, and a metallic lid provided at both ends thereof through sealing fittings 3a and 3b. Body 4a,
4b are vacuum-tight. In the shut-off room 1,
A pair of electrodes 7 and 8 attached to opposing ends of the conductive rods 5 and 6 are provided, and the upper electrode 7 is a fixed electrode and the lower electrode 8 is a movable electrode. A bellows 9 is attached to the conductive rod 6 of the movable electrode 8 to enable the movable electrode 8 to move in the axial direction while keeping the inside of the shut-off chamber 1 vacuum-tight. A metallic first arc shield 10 is provided on the bellows 9 to prevent the bellows 9 from being covered with the arc vapor. Reference numeral 11 denotes a metallic second arc shield provided in the shut-off chamber 1 so as to cover the fixed electrode 7 and the movable electrode 8, and prevents the insulating container 2 from being covered with the arc vapor. On the other hand, the movable electrode 8 side
As shown in FIG. 2, the conductive rod 6 is fixed to the conductive rod 6 by a brazing portion 12, or is connected by crimping. The movable contact 13 a is fixed to the movable electrode 8 by brazing 14. The fixed contact 13b on the fixed electrode 7 side is the same as the movable contact 13b in FIG.
It is stuck to.

【0006】ところで、真空バルブ用接点材料、例えば
Cu−Cr系接点材料は、接点材料の表面を所定形状へ
と加工する際、耐弧成分粒子上への導電成分の覆被り、
耐弧成分粒子の周囲への導電成分の凹み又は耐弧成分粒
子の脱落といった現象の発生を低減させると、良好な遮
断性能と耐電圧性能が得られる。本発明者等は、上述し
たような現象を低減させることと、通電面近傍の断面組
織の微細化及び最大粗さに密接な関係があることを発見
した。特に、通電面において、接点を所定形状に加工後
に表面から0.001mm以上2mm以下の深さまで溶
融して微細化し且つ最大粗さを3μmmにする。このよ
うに、通電面において、表面から0.001mm以上2
mm以下の深さまで溶融して微細化し且つ最大粗さを3
μmmにすると、表面の凹凸が小さくなって通電面の組
成比と接点全体の組成比が同等になる。特に、本発明者
等の研究によれば、通電面において、1mm以上で深
さが0.01mm以下の所定領域における耐弧成分の占
める割合ynは重量比で0.9≦yn/x≦1.1とな
るくらいに、通電面及び接点全体における組成比のバラ
ツキを小さくすれば遮断性能及び耐電圧性能が良好とな
る。
When a contact material for a vacuum valve, for example, a Cu—Cr-based contact material is processed into a predetermined shape on the surface of the contact material, the conductive component is covered on the arc-resistant component particles.
By reducing the occurrence of phenomena such as dents of the conductive component around the arc-resistant component particles or falling off of the arc-resistant component particles, good breaking performance and withstand voltage performance can be obtained. The present inventors have discovered that there is a close relationship between the reduction of the above-described phenomenon and the miniaturization and maximum roughness of the cross-sectional structure near the current-carrying surface. In particular, on the current-carrying surface, after processing the contact into a predetermined shape, the contact is melted to a depth of 0.001 mm or more and 2 mm or less from the surface to make it finer and have a maximum roughness of 3 μmm. In this way, on the current-carrying surface, 0.001 mm or more from the surface 2
mm to a depth of less than 3 mm
When the thickness is set to μ mm, the unevenness of the surface is reduced, and the composition ratio of the current-carrying surface is equal to the composition ratio of the entire contact. In particular, according to the study by the present inventors, the ratio yn of the arc-resistant component in a predetermined region of 1 mm 2 or more and 0.01 mm or less in the current-carrying surface is 0.9 ≦ yn / x ≦ by weight. If the variation of the composition ratio on the current-carrying surface and the contact as a whole is reduced to 1.1, the breaking performance and the withstand voltage performance are improved.

【0007】より詳細には、上述した各現象との関係を
みてみると、耐弧成分粒子の上への導電成分の覆被り
は、導電成分が耐弧成分よりも軟質で伸びが大きいため
に発生する現象であるから通電面に存在する耐弧成分が
減少するので、ynはxより小さくなる。また、耐弧成
分粒子の周囲の導電成分の凹みは、耐弧成分の被切削性
が導電成分よりも良好なために発生する現象であるから
下地の耐弧成分粒子が通電面に現れるので、ynはxよ
り大きくなる。更に、耐弧成分粒子の脱落は、耐弧成分
粒子と導電成分マトリックスとの結合力が弱い場合、例
えば燒結法、特に固層燒結法で製造した場合に発生し易
いことから、ynはxより小さくなる。従って、耐弧成
分粒子の上への導電成分の覆被り、耐弧成分粒子の周囲
の導電成分の凹み及び耐弧成分粒子の脱落といった現象
を低減させることにより、1mm 以上で深さが0.0
1mm以下の所定領域における耐弧成分の占める割合y
nは重量比で0.9≦yn/x≦1.1の関係となるく
らいに通電面及び接点全体における組成比のバラツキを
小さくするすることが可能となり、良好な遮断性能及び
耐電圧性能が得られる。ここで、上述した真空バルブに
採用される真空バルブ用接点材料として、Cu−Cr系
接点材料を例にとり、本実施の形態による真空バルブ用
接点材料の製造方法及び遮断特性と静耐圧特性の測定結
果につき表1を参照しながら説明する。
More specifically, the relationship with each of the phenomena described above will be described.
When you look at it, the covering of the conductive component on the arc resistant component particles
Is because the conductive component is softer and has a larger elongation than the arc resistant component.
Is a phenomenon that occurs in the
As it decreases, yn becomes smaller than x. In addition, arc resistant
The dent of the conductive component around the particle is the machinability of the arc resistant component
Is a phenomenon that occurs because it is better than the conductive component
Since the base arc-resistant component particles appear on the current-carrying surface, yn is equal to x.
Larger. Furthermore, the falling off of the arc resistant component particles
If the binding force between the particles and the conductive component matrix is weak,
For example, it is likely to occur when manufactured by the sintering method, especially the solid-state sintering method.
Therefore, yn is smaller than x. Therefore, arc resistance
Covering of conductive component on separating particles, around arc-resistant component particles
Phenomena such as dents in the conductive component and falling off of the arc resistant component particles
1 mm 2The depth is 0.0
Ratio y of the arc-resistant component in a predetermined area of 1 mm or less
n has a relation of 0.9 ≦ yn / x ≦ 1.1 in weight ratio.
The variation of the composition ratio on the current-carrying surface and the entire contact
It is possible to reduce the
Withstand voltage performance is obtained. Here, the vacuum valve
Cu-Cr based material used as vacuum valve contact material
Taking the contact material as an example, for the vacuum valve according to the present embodiment
Method of manufacturing contact material and measurement of breaking characteristics and static withstand voltage characteristics
The results will be described with reference to Table 1.

【0008】[0008]

【表1】 (比較例1〜比較例2,実施例1〜実施例3)比較例1
では、固相焼結法でCu−50Cr接点を製造した。C
u粉末とCr粉末を重量比で1:1となるように混合し
てφ60mmの坩堝に充填した後、10−3Paオーダ
の真空中で、1000℃*5時間の条件で焼結した。次
に、得られた焼結体をφ60mmの金型で10t/cm
2で成形した後、再度同一条件で焼結し、Cu−50C
r合金を得た。このCu-Cr合金を所定の接点形状(φ
50mm、t5mm)に加工した後、真空バルブに組み
込んで遮断試験を実施した。遮断試験は、5kAから徐
々に電流値を上げていく方法で最大遮断電流を測定し
た。また、遮断試験と並行して、静耐圧試験を試験片
(針電極と平板電極の組み合わせ)とで実施した。静耐圧
試験は、電極間隔を一定にして破壊電圧を5回測定し、
その平均値を算出した。この比較例1の測定結果を基準
とし、その他の測定結果は相対値で示した。なお、表1
に示したynとxの比については、ynとxを別々の方法
で測定した後に算出した。通電面の耐弧成分比であるy
nは、通電面の拡大写真(数十倍程度)から導電成分と耐
弧成分の面積比を測定して重量比に換算した。この測定
を位置を変えて5回実施し、最大値と最小値を記録し
た。耐弧成分の粒径が数十μmと細かい場合は、電子顕
微鏡に付属のEDXで重量比を測定した(この方法につ
いても、位置を変えて5回測定した)。また、接点全体
の耐弧成分比であるxは、湿式分析で測定した。ynの
最大値または最小値をxで除した値が、表1に示した
0.92と1.12である。
[Table 1] (Comparative Example 1 to Comparative Example 2, Example 1 to Example 3) Comparative Example 1
Manufactured a Cu-50Cr contact by a solid phase sintering method. C
The u powder and the Cr powder were mixed at a weight ratio of 1: 1 and filled in a crucible of φ60 mm, and then sintered under a vacuum of the order of 10-3 Pa at 1000 ° C. for 5 hours. Next, the obtained sintered body was subjected to 10 t / cm with a φ60 mm mold.
2 and then sintered again under the same conditions to obtain Cu-50C
An r alloy was obtained. This Cu-Cr alloy is formed into a predetermined contact shape (φ
After processing into a vacuum valve (50 mm, t5 mm), a cutoff test was performed. In the interruption test, the maximum interruption current was measured by gradually increasing the current value from 5 kA. In addition, in parallel with the cutoff test, the static pressure
(Combination of needle electrode and plate electrode). In the static withstand voltage test, the breakdown voltage was measured five times while keeping the electrode interval constant.
The average was calculated. Based on the measurement results of Comparative Example 1, the other measurement results are shown as relative values. Table 1
Is calculated after measuring yn and x by different methods. Y, which is the ratio of the arc resistant component of the conducting surface
For n, the area ratio between the conductive component and the arc-resistant component was measured from an enlarged photograph of the energized surface (about several tens times) and converted to a weight ratio. This measurement was performed five times at different positions, and the maximum and minimum values were recorded. When the particle diameter of the arc-resistant component was as small as several tens of μm, the weight ratio was measured with an EDX attached to an electron microscope (this method was also measured five times at different positions). Further, x, which is the arc resistance component ratio of the entire contact, was measured by wet analysis. Values obtained by dividing the maximum value or the minimum value of yn by x are 0.92 and 1.12 shown in Table 1.

【0009】実施例1では、Cu−50Cr合金を比較
例1と同一工程で作製して所定形状に加工した後、通電
面(遮断試験用接点の場合は遮断面,静耐圧用試験片の
場合は耐圧評価面)に電子線を照射して(注入エネルギー
は、例えば1W/mm2)、CuとCrを溶融微細化させ
て遮断試験と静耐圧試験を実施した。電子線照射後のy
n/xは0.96〜1.07であり、遮断性能と耐電圧性
能は比較例1のそれぞれ1.2倍と1.1倍であった。実
施例2と実施例3では、Cu−50Cr合金を比較例1
と同一工程で作製して所定形状に加工した後、通電面を
溶融させてCuとCrを微細化させて遮断試験と静耐圧
試験を実施した。実施例2では、レーザ照射(注入エネ
ルギーは、例えば2W/mm2)により溶融させたとこ
ろ、yn/xは0.91〜1.05であり、遮断性能と静
耐電圧性能は比較例1の1.3倍と1.0倍であった。ま
た、実施例3では、遮断試験用接点を真空バルブに組み
込んだ後に、数百Aを通電させて50回開閉することに
より溶融したものとし、静耐圧用試験片には数十kVの
電圧を10秒間、10回印加することにより溶融させた
ものとしたところ、yn/xは0.93〜1.04であ
り、遮断性能と静耐電圧性能は比較例1の1.3倍と1.
1倍であった。
In Example 1, a Cu-50Cr alloy was produced in the same process as in Comparative Example 1, processed into a predetermined shape, and then subjected to a current-carrying surface (a cut-off surface in the case of a contact for a break-off test, and a test piece for a static withstand voltage). Was irradiated with an electron beam (injection energy is, for example, 1 W / mm 2 ), Cu and Cr were melted and refined, and a cutoff test and a static pressure test were performed. Y after electron beam irradiation
n / x was 0.96 to 1.07, and the breaking performance and the withstand voltage performance were 1.2 times and 1.1 times of Comparative Example 1, respectively. In Example 2 and Example 3, Cu-50Cr alloy was used in Comparative Example 1
After processing in the same process and processing into a predetermined shape, the current-carrying surface was melted to make Cu and Cr finer, and a cutoff test and a static withstand voltage test were performed. In Example 2, when melted by laser irradiation (injection energy is, for example, 2 W / mm 2 ), yn / x is 0.91 to 1.05, and the breaking performance and static withstand voltage performance are the same as those of Comparative Example 1. It was 1.3 times and 1.0 times. Further, in Example 3, after the contact for the interruption test was assembled in the vacuum valve, it was melted by energizing several hundred A and opening and closing 50 times, and a voltage of several tens kV was applied to the static withstand voltage test piece. When melted by applying 10 times for 10 seconds, yn / x was 0.93 to 1.04, and the breaking performance and static withstand voltage performance were 1.3 times and 1.3 times that of Comparative Example 1.
It was one time.

【0010】比較例2では、Cu−50Cr合金を比較
例1と同一工程で作製して所定形状に加工した後、電子
線を実施例1よりも長時間照射したところ、CuがCr
よりも多量に蒸発した為にCr含有率が増大し、yn/
xの最大値は1.15であり、遮断性能と静耐電圧性能
は比較例1の1.2倍と0.9倍であった。(比較例3〜
比較例4,実施例4〜実施例5)比較例3〜比較例4と
実施例4〜実施例5では、水素雰囲気中の固相焼結法で
作製したCu−40Cr合金を所定形状に加工後、通電
面を溶融する際の注入エネルギーを調整して、溶融深さ
をパラメータとした。なお、エネルギーは、Cu−40
Crにアークを発生させることにより注入した。比較例
3では、表面からの溶融深さは約0.0008mmであ
り、遮断性能、耐電圧性能ともに比較例1とほぼ同等で
あった。実施例4と実施例5では、溶融深さはそれぞ
れ、0.002mmと1.5mmであり、遮断性能と耐電
圧性能は比較例1の1.1〜1.2倍であり、若干向上し
た。比較例4では、溶融深さは2.2mmで接点厚さの
半分程度であり、真空バルブの組立て中に接点側面が割
れたので、試験を中止した。この割れは、溶融微細層と
基材の材料物性(硬度,熱膨張率等)の差により発生した
と考えられる。
In Comparative Example 2, a Cu-50Cr alloy was produced in the same process as in Comparative Example 1, processed into a predetermined shape, and irradiated with an electron beam for a longer time than in Example 1.
And the Cr content increased due to evaporation of yn /
The maximum value of x was 1.15, and the breaking performance and the withstand voltage performance were 1.2 times and 0.9 times of Comparative Example 1. (Comparative Examples 3 to
Comparative Example 4, Example 4 to Example 5) In Comparative Example 3 to Comparative Example 4 and Example 4 to Example 5, a Cu-40Cr alloy produced by a solid phase sintering method in a hydrogen atmosphere was processed into a predetermined shape. Thereafter, the injection energy for melting the energized surface was adjusted, and the melting depth was used as a parameter. In addition, energy is Cu-40.
Cr was injected by generating an arc. In Comparative Example 3, the melting depth from the surface was about 0.0008 mm, and the breaking performance and withstand voltage performance were almost the same as Comparative Example 1. In Example 4 and Example 5, the melting depths were 0.002 mm and 1.5 mm, respectively, and the breaking performance and withstand voltage performance were 1.1 to 1.2 times that of Comparative Example 1 and were slightly improved. . In Comparative Example 4, the melting depth was 2.2 mm, which was about half of the contact thickness, and the contact side surface was broken during assembly of the vacuum valve, so the test was stopped. This crack is considered to have occurred due to a difference in material properties (hardness, coefficient of thermal expansion, etc.) between the molten fine layer and the substrate.

【0011】(比較例5,実施例6〜実施例7)比較例
5と実施例6〜実施例7では、焼結溶浸法でCu−55
Cr合金を作製し、所定形状に加工した後に、通電面を
溶融する際の電子線の注入エネルギーと凝固する際の冷
却速度を調整して、微細層中のCr粒子の粒径をパラメ
ータとした。Cu−55Cr合金は、Cr粉末を加圧成
形した後、水素雰囲気中で1150℃*1時間の条件で
焼結して製造したCrスケルトンと溶浸材Cuを坩堝内
で上下に配置し、水素雰囲気中で1150℃で加熱して
導電成分であるCuを溶浸させることにより作製した。
比較例5では、Cr粒子径が約70μm、yn/xの最
大値は1.12であり、遮断性能と耐電圧性能は比較例
1のそれぞれ0.9倍と1.1倍であった。実施例6で
は、Cr粒子径が約40μm、yn/xが0.95〜1.
08であり、遮断性能と耐電圧性能は比較例1のそれぞ
れ1.1倍と1.2倍であった。実施例7では、Cr粒子
径が約10μm、yn/xが0.97〜1.05であり、
遮断性能と耐電圧性能は比較例1のそれぞれ1.2倍と
1.3倍であった。 (比較例6,実施例8〜実施例11)上述した比較例2
〜比較例5と実施例1〜実施例7では、Cu-Cr合金
を所定形状に加工後に通電面を溶融させた事例について
述べたが、実施例8〜11では通電面を機械的に滑らか
にすることによりyn/xを0.9〜1.1にし、接点特
性を向上させている。
(Comparative Example 5, Examples 6 to 7) In Comparative Example 5 and Examples 6 to 7, Cu-55
After preparing a Cr alloy and processing it into a predetermined shape, the injection energy of the electron beam when melting the energized surface and the cooling rate when solidifying were adjusted, and the particle size of the Cr particles in the fine layer was used as a parameter. . The Cu-55Cr alloy is formed by pressing a Cr powder under pressure and then sintering it under a condition of 1150 ° C. * 1 hour in a hydrogen atmosphere. It was produced by heating at 1150 ° C. in an atmosphere to infiltrate Cu as a conductive component.
In Comparative Example 5, the Cr particle diameter was about 70 μm, the maximum value of yn / x was 1.12, and the breaking performance and the withstand voltage performance were 0.9 and 1.1 times that of Comparative Example 1, respectively. In Example 6, the Cr particle diameter was about 40 μm, and yn / x was 0.95 to 1.
08, and the breaking performance and the withstand voltage performance were 1.1 times and 1.2 times that of Comparative Example 1, respectively. In Example 7, the Cr particle diameter was about 10 μm, yn / x was 0.97 to 1.05,
The breaking performance and withstand voltage performance were 1.2 times and 1.3 times that of Comparative Example 1, respectively. (Comparative Example 6, Examples 8 to 11) Comparative Example 2 described above
In Comparative Example 5 and Examples 1 to 7, the case where the energized surface was melted after processing the Cu-Cr alloy into a predetermined shape was described. In Examples 8 to 11, the energized surface was mechanically smoothed. As a result, yn / x is set to 0.9 to 1.1 to improve the contact characteristics.

【0012】比較例6では、真空雰囲気中での液相焼結
により作製したCu−20Cr合金を所定形状に加工し
たところ、通電面の最大粗さは5μm、yn/xの最大
値が1.13であり、遮断性能と耐電圧性能は比較例1
のそれぞれ1.0倍と0.9倍であった。実施例8では、
比較例6と同一工程で作製したCu−20Cr合金を所
定形状に加工した後、通電面のみをバイトの送り速度,
角度を調整した特殊な研削加工した結果、通電面の最大
粗さは3μmに低下し、yn/xが0.95〜1.08で
あり、遮断性能と耐圧性能は比較例1のそれぞれ1.2
倍と1.1倍であった。実施例9では、比較例6と同一
工程で作製したCu−20Cr合金を所定形状に加工し
た後、通電面のみをエメリー紙で研摩した結果、通電面
の最大粗さは2μmに低下し、yn/xが0.96〜1.
06であり、遮断性能と耐電圧性能は比較例1のそれぞ
れ1.3倍と1.2倍であった。実施例10は、比較例6
と同一工程で作製したCu−20Cr合金を所定形状に
加工した後、通電面のみをダイヤモンド粉を含むペース
トで研摩した結果、通電面の最大粗さは1μmに低下
し、yn/xが0.97〜1.04であり、遮断性能と耐
電圧性能はともに比較例1のそれぞれ1.3倍であっ
た。
In Comparative Example 6, when a Cu-20Cr alloy produced by liquid phase sintering in a vacuum atmosphere was processed into a predetermined shape, the maximum roughness of the energized surface was 5 μm, and the maximum value of yn / x was 1. 13 and the breaking performance and the withstand voltage performance were Comparative Example 1.
Were 1.0 times and 0.9 times, respectively. In Example 8,
After processing the Cu-20Cr alloy produced in the same process as in Comparative Example 6 into a predetermined shape, only the current-carrying surface was subjected to the bite feed rate,
As a result of the special grinding processing with the adjusted angle, the maximum roughness of the energized surface was reduced to 3 μm, yn / x was 0.95 to 1.08, and the breaking performance and the pressure resistance performance were 1. 2
And 1.1 times. In Example 9, after the Cu-20Cr alloy produced in the same process as Comparative Example 6 was processed into a predetermined shape, only the energized surface was polished with emery paper. As a result, the maximum roughness of the energized surface was reduced to 2 μm, and yn / X is 0.96 to 1.
06, and the breaking performance and the withstand voltage performance were 1.3 times and 1.2 times of Comparative Example 1, respectively. Example 10 is Comparative Example 6
After the Cu-20Cr alloy produced in the same process as above was processed into a predetermined shape, only the current-carrying surface was polished with a paste containing diamond powder. As a result, the maximum roughness of the current-carrying surface was reduced to 1 μm, and yn / x was reduced to 0.3. 97 to 1.04, and both the breaking performance and the withstand voltage performance were 1.3 times that of Comparative Example 1.

【0013】実施例11では、比較例6と同一工程で作
製したCu−20Cr合金を所定形状に加工した後、通
電面をイオンビームの照射(注入エネルギーは、例えば
0.5W/mm2)により溶融させ、さらにアルミナ粉で
研摩した結果、通電面の最大粗さは1μmに低下し、y
n/xが0.98〜1.03であり、遮断性能と耐電圧性
能は比較例1のそれぞれ1.4倍と1.3倍であった。 (比較例8〜比較例9,実施例12〜実施例13)上述
した比較例1〜比較例7と実施例1〜実施例11では、
焼結温度を1000℃、1100℃、1150℃の3通
り、即ち導電成分Cuの融点(1083℃)を基準にして
±90℃以内の温度で焼結したが、比較例8〜比較例
9、実施例12〜13では、焼結温度をそれぞれ900
℃、950℃、1200℃、1300℃で、Cu−25
Cr合金を製造した。この内、1300℃で焼結した比較例
9では、CuとCrが分離してしまったので接点の電気
評価に値しないと判断した。残りの3種類のCu−25C
r合金については、所定形状に加工した後、通電面をイ
オンビームの照射により溶融させた。比較例8では、y
n/xが0.98〜1.03であったが、遮断性能と耐電
圧性能は比較例1のそれぞれ1.0倍と0.9倍であっ
た。これは、焼結温度が低いために焼結が進まず、密度
が低かった(相対密度85%)からである。
In Example 11, after the Cu-20Cr alloy produced in the same process as Comparative Example 6 is processed into a predetermined shape, the current-carrying surface is irradiated with an ion beam (injection energy is, for example, 0.5 W / mm 2 ). As a result of melting and further polishing with alumina powder, the maximum roughness of the energized surface was reduced to 1 μm, and y
n / x was 0.98 to 1.03, and the breaking performance and withstand voltage performance were 1.4 times and 1.3 times of Comparative Example 1, respectively. (Comparative Examples 8 to 9 and Examples 12 to 13) In Comparative Examples 1 to 7 and Examples 1 to 11 described above,
The sintering temperature was 1000 ° C., 1100 ° C., and 1150 ° C., that is, sintering was performed at a temperature within ± 90 ° C. based on the melting point of the conductive component Cu (1083 ° C.). In Examples 12 and 13, the sintering temperature was 900
950 ° C, 1200 ° C, 1300 ° C, Cu-25
A Cr alloy was manufactured. Among them, in Comparative Example 9 sintered at 1300 ° C., Cu and Cr were separated, so it was judged that the electrical evaluation of the contact was not worthy. The remaining three types of Cu-25C
After processing the r alloy into a predetermined shape, the energized surface was melted by irradiation with an ion beam. In Comparative Example 8, y
Although n / x was 0.98 to 1.03, the breaking performance and the withstand voltage performance were 1.0 times and 0.9 times of Comparative Example 1, respectively. This is because the sintering did not proceed due to the low sintering temperature and the density was low (relative density 85%).

【0014】実施例12では、yn/xが0.96〜1.
08であり、遮断性能と耐電圧性能は比較例1のそれぞ
れ1.1倍と1.0倍であった。実施例13では、yn/
xが0.94〜1.06であり、遮断性能と耐電圧性能は
比較例1のそれぞれ1.2倍と1.1倍であった。 (実施例14〜実施例19)上述した比較例1〜比較例
9と実施例1〜実施例13では、耐弧成分がCrで導電
成分がCuであるCu−Cr系接点材料について述べた
が、実施例14では耐弧成分をWとし導電成分をCuと
したCu−20wt(重量)%W接点とした。しかし
て、実施例14では、所定形状に加工した後にその通電
面を溶融させて作製し、遮断性能と静耐電圧性能を評価
した結果、最大遮断電流と絶縁破壊電圧は、加工後の処
理工程(通電面の溶融工程)を経ていない通常の固相焼結
法で製造した時のCu−W接点のそれぞれ1.2倍と1.
1倍であった。実施例15〜実施例17では、耐弧成分
をそれぞれNb、WC、Cr+Wとし、導電成分をCu
として、実施例14と同様な条件で接点材料を製造し、
遮断性能と静耐電圧性能を評価した結果、実施例15〜
実施例17の全てについて、通電面溶融工程を経ていな
い通常の固相焼結法で製造した時の接点と比較して、遮
断性能は1.2倍であり、静耐電圧性能は1.1倍であっ
た。
In Embodiment 12, yn / x is 0.96 to 1.
08, and the breaking performance and the withstand voltage performance were 1.1 times and 1.0 times of Comparative Example 1, respectively. In Example 13, yn /
x was 0.94 to 1.06, and the breaking performance and the withstand voltage performance were 1.2 times and 1.1 times of Comparative Example 1, respectively. (Examples 14 to 19) In Comparative Examples 1 to 9 and Examples 1 to 13 described above, the Cu-Cr contact material in which the arc resistant component is Cr and the conductive component is Cu has been described. In Example 14, a Cu-20 wt (% by weight)% W contact having W as the arc resistant component and Cu as the conductive component was used. Thus, in Example 14, after processing into a predetermined shape, the current-carrying surface was melted and manufactured, and the breaking performance and the withstand voltage performance were evaluated. (Cu-W contacts) 1.2 times and 1.0 times the Cu-W contacts manufactured by the ordinary solid phase sintering method without passing through the (current-carrying surface melting step).
It was one time. In Examples 15 to 17, the arc resistant components were Nb, WC, and Cr + W, respectively, and the conductive component was Cu.
As a contact material was manufactured under the same conditions as in Example 14,
As a result of evaluating the breaking performance and the withstand voltage performance, Examples 15 to
In all of Examples 17, the breaking performance was 1.2 times and the static withstand voltage performance was 1.1 times as compared with the contacts manufactured by the ordinary solid phase sintering method without passing through the energizing surface melting step. It was twice.

【0015】実施例18〜実施例19では、導電成分を
それぞれAg、Ag+Cuとし、耐弧成分をWCとし
て、実施例15と同様な条件で接点材料を製造して電気
特性を評価した結果、実施例18、実施例19共に、通
電面溶融工程を経ていない通常の焼結溶浸法で製造した
時の接点と比較して、遮断性能は1.3倍であり、静耐
電圧性能は1.2倍であった。 (実施例20〜実施例22)上述した比較例1〜比較例
9と実施例1〜実施例19では、導電成分と耐弧成分で
構成される接点材料について述べたが、実施例20〜実
施例22では補助成分としてそれぞれBi、Te、Te
+Seを添加し、実施例14と同様な条件で接点材料を
製造して電気特性を評価した結果、実施例20〜22全
てについて、通電面の溶融工程を経ていない通常の固相
焼結法で製造した時の接点と比較して、遮断性能は1.
2倍であり、静耐電圧性能は1.1倍であった。以上の
結果が示すように、本実施の形態による真空バルブ用接
点材料は、基準とした比較例1の接点材料と比較して、
遮断性能と静耐電圧性能を向上させることができる。な
お、耐弧成分について、本実施の形態では、Cr、W、
Nb、WC、Cr+Wの記載しかないが、Cr、W、N
b、Ta、Ti、Mo及びこれらの炭化物の内の少なく
とも1つを耐弧成分として使用しても、同様の効果が得
られる。
In Examples 18 to 19, contact materials were manufactured under the same conditions as in Example 15 with the conductive components being Ag and Ag + Cu and the arc resistant component being WC, respectively, and the electrical characteristics were evaluated. In both Examples 18 and 19, the breaking performance was 1.3 times and the static withstand voltage performance was 1.3 times that of the contacts manufactured by the normal sintering and infiltration method without passing through the energized surface melting step. It was 1.2 times. (Examples 20 to 22) In the comparative examples 1 to 9 and the examples 1 to 19, the contact material composed of the conductive component and the arc-resistant component was described. In Example 22, Bi, Te, and Te were used as auxiliary components, respectively.
+ Se was added, a contact material was manufactured under the same conditions as in Example 14, and the electrical characteristics were evaluated. As a result, all of Examples 20 to 22 were subjected to a normal solid-phase sintering method that did not pass through the step of melting the energized surface. Breaking performance is 1.
It was twice, and the withstand voltage performance was 1.1 times. As the above results show, the contact material for a vacuum valve according to the present embodiment is compared with the reference contact material of Comparative Example 1 as a reference.
Breaking performance and static withstand voltage performance can be improved. In the present embodiment, the arc resistance component is Cr, W,
There are only Nb, WC, Cr + W, but Cr, W, N
The same effect can be obtained by using at least one of b, Ta, Ti, Mo and their carbides as an arc-resistant component.

【0016】また、導電成分について、本実施の形態で
は、Cu、Ag、Ag+Cuの記載しかないが、Cuま
たはAgを主成分とするならば同様の効果が得られる。
さらに、補助成分については、本実施の形態では、B
i,Te,Te+Seの記載しかないが、Bi、Te、
Se、Sb、Coの内の少なくとも1つを補助成分とし
ても、同様の効果が得られる。
Further, in this embodiment, there is only the description of Cu, Ag, Ag + Cu for the conductive component, but the same effect can be obtained if Cu or Ag is the main component.
Further, regarding the auxiliary component, in the present embodiment, B
There are only descriptions of i, Te, Te + Se, but Bi, Te,
Similar effects can be obtained by using at least one of Se, Sb, and Co as an auxiliary component.

【0017】[0017]

【発明の効果】以上述べたように、本発明によれば、遮
断性能と耐電圧性能が良好な真空バルブ用接点材料を得
ることができる。
As described above, according to the present invention, it is possible to obtain a contact material for a vacuum valve having excellent breaking performance and withstand voltage performance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の真空バルブ用接点材料が適用される真
空バルブの断面図。
FIG. 1 is a sectional view of a vacuum valve to which a contact material for a vacuum valve of the present invention is applied.

【図2】 [図1]の可動電極8の拡大断面図。FIG. 2 is an enlarged sectional view of a movable electrode 8 in FIG.

【符号の説明】[Explanation of symbols]

7…固定電極、8…可動電極、13a…可動側接点、1
3b…固定側接点
7: fixed electrode, 8: movable electrode, 13a: movable contact, 1
3b ... fixed side contact

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01H 1/02 H01H 1/02 A C 33/66 33/66 B // C22C 32/00 C22C 32/00 A B (72)発明者 草野 貴史 東京都府中市東芝町1番地 株式会社東芝 府中事業所内 (72)発明者 山本 敦史 東京都府中市東芝町1番地 株式会社東芝 府中事業所内 Fターム(参考) 4K018 AA02 AA04 AB02 AC01 BA01 BA02 BA03 BA04 BA09 BA20 BB04 DA11 FA10 KA34 4K020 AA22 AC04 AC05 BB29 5G026 BA01 BA02 BB02 BB04 BB10 BB12 BB14 BB15 BB16 BB17 BB18 BB24 BB25 BB27 5G050 AA01 AA11 AA12 AA13 AA25 AA27 AA40 AA42 AA46 AA47 AA48 AA51 AA60 BA01 BA02 CA01 DA03 EA02 EA06 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01H 1/02 H01H 1/02 A C 33/66 33/66 B // C22C 32/00 C22C 32/00 A B (72) Inventor Takashi Kusano 1 Toshiba-cho, Fuchu-shi, Tokyo Inside the Toshiba Fuchu office, Inc. AA02 AA04 AB02 AC01 BA01 BA02 BA03 BA04 BA09 BA20 BB04 DA11 FA10 KA34 4K020 AA22 AC04 AC05 BB29 5G026 BA01 BA02 BB02 BB04 BB10 BB12 BB14 BB15 BB16 BB17 BB18 BB24 BB25 BB27 AAAAAAAAAAAAAAA1A CA01 DA03 EA02 EA06

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Ag及びCuの内の少なくとも一種を主
成分とする導電成分と、Cr、W、Nb、Ta、Ti、
Mo及びこれらの炭化物の内の少なくとも1種を備える
耐弧成分とを有し、通電面を溶融させる深さが0.00
1mm以上2mm以下であって、通電面の最大粗さを3
μm以下としたことを特徴とする真空バルブ用接点材
料。
1. A conductive component mainly composed of at least one of Ag and Cu, and Cr, W, Nb, Ta, Ti,
Mo and an arc-resistant component comprising at least one of these carbides, and the depth at which the current-carrying surface is melted is 0.00
1 mm or more and 2 mm or less, and the maximum roughness of the energized surface is 3
A contact material for a vacuum valve, characterized in that the thickness is less than μm.
【請求項2】 Ag及びCuの内の少なくとも一種を主
成分とする導電成分と、Cr、W、Nb、Ta、Ti、
Mo及びこれらの炭化物の内の少なくとも1種を備える
耐弧成分とを有し、前記耐弧成分の占める割合xと、通
電面での1mm以上で深さが0.01mm以下の所定
領域における耐弧成分の占める割合yn(nはyの添え
字)は重量比で0.9≦yn/x≦1.1の関係にあるこ
とを特徴とする真空バルブ用接点材料。
2. A conductive component mainly composed of at least one of Ag and Cu, and Cr, W, Nb, Ta, Ti,
Mo and an arc-resistant component comprising at least one of these carbides, and a ratio x of the arc-resistant component, and a predetermined area having a depth of 1 mm 2 or more and 0.01 mm or less on the conducting surface. A contact material for a vacuum valve, wherein a ratio yn (n is a suffix of y) occupied by an arc-resistant component is in a relationship of 0.9 ≦ yn / x ≦ 1.1 by weight.
【請求項3】 前記耐弧成分の平均粒子径を50μm以
下としたことを特徴とする請求項1又は請求項2記載の
真空バルブ用接点材料。
3. The contact material for a vacuum valve according to claim 1, wherein the arc-resistant component has an average particle diameter of 50 μm or less.
【請求項4】 含有量が5重量%以下であってBi、T
e、Se、Sb及びCoの内の少なくとも1種を有する
補助成分を含有させたことを特徴とする請求項1乃至請
求項3のいずれかに記載の真空バルブ用接点材料。
4. When the content is 5% by weight or less and Bi, T
4. The contact material for a vacuum valve according to claim 1, further comprising an auxiliary component having at least one of e, Se, Sb and Co.
JP2001051442A 2001-02-27 2001-02-27 Contact material for vacuum valves Expired - Fee Related JP3909804B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001051442A JP3909804B2 (en) 2001-02-27 2001-02-27 Contact material for vacuum valves

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001051442A JP3909804B2 (en) 2001-02-27 2001-02-27 Contact material for vacuum valves

Publications (2)

Publication Number Publication Date
JP2002256361A true JP2002256361A (en) 2002-09-11
JP3909804B2 JP3909804B2 (en) 2007-04-25

Family

ID=18912225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001051442A Expired - Fee Related JP3909804B2 (en) 2001-02-27 2001-02-27 Contact material for vacuum valves

Country Status (1)

Country Link
JP (1) JP3909804B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004273342A (en) * 2003-03-11 2004-09-30 Toshiba Corp Contact material for vacuum valve, and vacuum valve
CN1316047C (en) * 2005-02-06 2007-05-16 陈晓 Copper-tungsten-carbon-titanium-rare earth alloy material and production thereof
JP2011113887A (en) * 2009-11-27 2011-06-09 Toshiba Corp Contact for vacuum valve, and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004273342A (en) * 2003-03-11 2004-09-30 Toshiba Corp Contact material for vacuum valve, and vacuum valve
CN1316047C (en) * 2005-02-06 2007-05-16 陈晓 Copper-tungsten-carbon-titanium-rare earth alloy material and production thereof
JP2011113887A (en) * 2009-11-27 2011-06-09 Toshiba Corp Contact for vacuum valve, and its manufacturing method

Also Published As

Publication number Publication date
JP3909804B2 (en) 2007-04-25

Similar Documents

Publication Publication Date Title
EP0488083B1 (en) Contact material for a vacuum interrupter
WO2018142709A1 (en) Method for manufacturing electrode material, and electrode material
EP0530437B1 (en) Contact material for vacuum circuit breakers and method of manufacturing the same
US5489412A (en) Electrode material
JP3597544B2 (en) Contact material for vacuum valve and manufacturing method thereof
JP2002256361A (en) Contact material for vacuum valve
KR950006738B1 (en) Contact point for a vacuum interrupter
JP2003147407A (en) Electric contact, its manufacturing method, and vacuum valve and vacuum circuit breaker using the same
US4874430A (en) Composite silver base electrical contact material
JP2653461B2 (en) Manufacturing method of contact material for vacuum valve
JP2002088437A (en) Contact material for vacuum valve and its production method
JP2006233298A (en) Contact material for vacuum valve and its production method
JP2003223834A (en) Electrical contact member and manufacturing method therefor
JP2001307602A (en) Contact material for vacuum valve and manufacturing method of the same
JP2878718B2 (en) Contact material for vacuum valve
JPH0193018A (en) Contact material for vacuum bulb
Chen et al. Polarity effect of unsymmetrical material combination on the arc erosion and contact resistance behavior
JPH0443521A (en) Contact or vacuum valve
JP3790055B2 (en) Contact material for vacuum valves
GB2166161A (en) Manufacture of vacuum interrupter contacts
JP2004273342A (en) Contact material for vacuum valve, and vacuum valve
JP2001222934A (en) Contact material for vacuum valve
JP3443516B2 (en) Manufacturing method of contact material for vacuum valve
JPH01140526A (en) Contact material for vacuum bulb and its manufacture
JPH04132127A (en) Contact point for vacuum bulb

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040907

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050428

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070122

R150 Certificate of patent or registration of utility model

Ref document number: 3909804

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140202

Year of fee payment: 7

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313122

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees