JPH01140526A - Contact material for vacuum bulb and its manufacture - Google Patents

Contact material for vacuum bulb and its manufacture

Info

Publication number
JPH01140526A
JPH01140526A JP29605787A JP29605787A JPH01140526A JP H01140526 A JPH01140526 A JP H01140526A JP 29605787 A JP29605787 A JP 29605787A JP 29605787 A JP29605787 A JP 29605787A JP H01140526 A JPH01140526 A JP H01140526A
Authority
JP
Japan
Prior art keywords
contact material
vacuum valve
contact
conductive material
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29605787A
Other languages
Japanese (ja)
Other versions
JPH07111857B2 (en
Inventor
Keisei Seki
経世 関
Isao Okutomi
功 奥富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP29605787A priority Critical patent/JPH07111857B2/en
Publication of JPH01140526A publication Critical patent/JPH01140526A/en
Publication of JPH07111857B2 publication Critical patent/JPH07111857B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/0203Contacts characterised by the material thereof specially adapted for vacuum switches
    • H01H1/0206Contacts characterised by the material thereof specially adapted for vacuum switches containing as major components Cu and Cr

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

PURPOSE:To improve the anti-deposition property extensively by applying an adequate processing rate of plastic process and an adequate heat treatment to designate the crystalline grading in a high conductive material. CONSTITUTION:The crystalline grading of a high conductive material is made to NO.3 to 13 of ASTM by applying an adequate processing rate of plastic process and an adequate heat treatment. In case of Cu-Cr material, a powder formation is obtained by pressure-forming a specific grading of Cr. Then, the powder formation is sintered temporarily in a hydrogen ambiance or in a vacuum at a specific temperature, to obtain a temporarily sintered substance. After that, Cu is molten in the resedual pores of the temporarily sintered substance to obtain a Cu-Cr alloy. Then, the 50% processing rate of process is applied in a cold rolling, and a heat treatment is applied in a vacuum at a specific temperature for a specific time. The contact material manufactured in such a process has the crystalline grading in the conductive material of the level NO.8 of ASTM, and the anti-deposition property is improved extensively.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、真空バルブに係り、待に耐溶着特性を改良し
た真空バルブ用接点材Flおよびその製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a vacuum valve, and more particularly to a contact material Fl for a vacuum valve with improved anti-welding properties and a method for manufacturing the same.

(従来の技術) 真空バルブ用接点材料に要求される特性としては、耐溶
着、耐電圧、″a断に対する各性能で示される基本三要
件と、この他に温度上背、接触抵抗が低く安定している
ことが重要な要件となっている。しかしながら、これら
の要件の中には相反するものがある関係上、単一の金属
種によって全ての要件を満足させることは不可能でおる
。このため、実用されている多くの接点材料においては
、不足する性能を相互に補えるような2種以上の元素を
組合せ、かつ大電流用又は高電圧用などのように特定の
用途に合った接点材料の開発が行われ、それなりに優れ
た特性を有するものが開発されているが、ざらに強まる
高耐圧化および大電流化の要求を充分満足する真空バル
ブ用接点材料は未だ得られていないのが実状である。
(Prior art) The properties required for contact materials for vacuum valves include the three basic requirements of welding resistance, voltage resistance, and resistance to "a breakage," as well as low and stable temperature resistance and contact resistance. However, since some of these requirements are contradictory, it is impossible to satisfy all requirements with a single metal type. Therefore, many contact materials in practical use are made by combining two or more elements that mutually compensate for the lack of performance, and are suitable for specific applications such as for large current or high voltage applications. However, a contact material for vacuum valves that fully satisfies the increasingly increasing demands for higher voltage resistance and larger currents has not yet been obtained. This is the actual situation.

たとえば、大電流化を思考した接点材料としてBi の
ような溶着防止成分を5%以下の量で含有するCu−8
;合金が知られている(特公昭41−12131号公報
)がCu−母相に対するBiの溶解度が極めて低いため
、しばしば偏析を生じ、遮断後の表面荒れが大ぎく、加
工成形が困難で必るなどの問題点を有している。
For example, Cu-8, which contains less than 5% of a welding prevention component such as Bi, is used as a contact material designed for high current.
; alloy is known (Japanese Patent Publication No. 12131/1983), but because the solubility of Bi in the Cu-matrix is extremely low, segregation often occurs, the surface roughness after cutting is severe, and processing is difficult and necessary. It has problems such as:

また、大電流化を指向した他の接点材料として、CLL
−Te合金も知られている(特公昭44−23751号
公報)。この合金は、CcL Bi系合金が持つ上記問
題点を緩和してはいるが、CcL−Bi系合金に比較し
て雰囲気に対し、より敏感なため接触抵抗などの安定性
に欠ける。
In addition, CLL is another contact material that is oriented towards large currents.
-Te alloys are also known (Japanese Patent Publication No. 44-23751). Although this alloy alleviates the above-mentioned problems of the CcL-Bi alloy, it is more sensitive to the atmosphere than the CcL-Bi alloy and therefore lacks stability in terms of contact resistance and the like.

ざらに、これらCu、  Te 、Cc  Bi 等の
接点の共通的特徴として、耐溶着性に優れているものの
、耐電圧特性が従来の中電圧クラスへの適用には充分で
あるとしても、これ以上高い電圧分野への適用に対して
は、必ずしも満足でないことが明らかとなってきた。
Generally speaking, a common feature of these Cu, Te, Cc Bi, etc. contacts is that they have excellent welding resistance, but even if their withstand voltage characteristics are sufficient for application to the conventional medium voltage class, It has become clear that this method is not always satisfactory for applications in the field of high voltages.

一方、Crを含有したCttC+−合金が真空バルブ用
接点材料として、知られている。この接点合金は、高温
下でのCrとCu−どの熱特性が好ましい状態で発揮さ
れるため高耐圧大電流用として優れた特性を有している
。すなわち、Cu−Cr合金は、高耐圧特性と、大容伍
遮断とを両立させ得る接点として多用されている。
On the other hand, a CttC+- alloy containing Cr is known as a contact material for vacuum valves. This contact alloy exhibits favorable thermal properties of Cr and Cu at high temperatures, and thus has excellent properties for use with high withstand voltages and large currents. That is, the Cu-Cr alloy is frequently used as a contact that can achieve both high voltage resistance and large-capacity interruption.

しかしながら、CtL Cr合金は、遮断器用接点材料
として一般に多用されている前述したB1を5%程度以
下添加したCtL−Bi合金と比較して、耐溶着特性が
大幅に劣っている。
However, the CtL-Cr alloy is significantly inferior in welding resistance compared to the aforementioned CtL-Bi alloy to which about 5% or less of B1 is added, which is commonly used as a contact material for circuit breakers.

酒肴現象とは、接点同士の接触面に発生するジュール熱
により接点材料が溶融し、その後に凝固する場、開閉の
瞬間に発生するアーク放電により接点材料が気化しその
後に凝固する場合の2通りに於いて発生する。Ca  
Cr合金に於いて、何れの場合も凝固する段階でCrと
Caが1如以下の微粒子となり互いに入り乱れた状態で
数珈〜数百期程度の層を形成する。一般に、組織の超微
細化は、材料の強度向上に寄与する要因の一つであり、
この場合も例外ではない。しかして、この超微細Cu−
Cr層の強度がCtt  Cr合金のマトリクスの強度
に優れ、かつ、マトリクス強度が設計された引外し力を
超えた時にも溶着が発生する。
There are two types of phenomenon: when the contact material melts due to Joule heat generated on the contact surface between the contacts and then solidifies, and when the contact material vaporizes due to the arc discharge that occurs at the moment of opening and closing and then solidifies. Occurs in. Ca
In any Cr alloy, at the stage of solidification, Cr and Ca become fine particles of one size or less and are intermingled with each other to form a layer of several to hundreds of particles. In general, ultra-fine structure is one of the factors that contributes to improving the strength of materials.
This case is no exception. However, this ultrafine Cu-
The strength of the Cr layer is superior to that of the matrix of the CttCr alloy, and welding also occurs when the matrix strength exceeds the designed tripping force.

したがって、CtL−Cr材料を用いた真空バルブを駆
動させる操作機構は、Cu−8; に比べ引外し力を大
きく設計する必要があり、小型化や経済性の点で困難が
ある。
Therefore, the operating mechanism for driving a vacuum valve using CtL-Cr material needs to be designed to have a larger tripping force than Cu-8, which is difficult in terms of miniaturization and economical efficiency.

(発明が解決しようとする問題点) 上記したように、従来の高導電材料と耐弧材料から構成
される真空バルブ用接点材料は、耐溶着性が劣るという
欠点がある。
(Problems to be Solved by the Invention) As described above, the conventional contact materials for vacuum valves made of highly conductive materials and arc-resistant materials have a drawback of poor welding resistance.

そこで、本発明は、上記した事情に鑑みてなされたもの
で、その目的とするところは高導電材料と耐弧材料から
構成され、耐溶着特性に優れ接点の溶着用外し力を低減
した真空バルブ用接点材料およびその製造方法を提供す
ることにおる。
Therefore, the present invention was made in view of the above-mentioned circumstances, and its purpose is to provide a vacuum valve that is made of a highly conductive material and an arc-resistant material, has excellent welding resistance, and reduces the force required to weld and remove the contacts. The purpose of the present invention is to provide a contact material for use in the market and a method for manufacturing the same.

[発明の構成] (問題点を解決するための手段) 本発明は、高導電材料と耐弧材料から構成される真空バ
ルブ用接点材料に於いて、導電材料の結晶粒度をAST
)fのNα3乃至13としたことを特徴とするものであ
る。
[Structure of the Invention] (Means for Solving the Problems) The present invention provides a contact material for a vacuum valve composed of a highly conductive material and an arc-resistant material.
) f is Nα3 to 13.

また、真空バルブに組込まれ、かつ真空バルブとして完
成するまでの間に、少なくとも1回以上は接点材料に塑
性加工を施すことを特徴とする製造方法でおる。
Further, the manufacturing method is characterized in that the contact material is subjected to plastic working at least once before it is incorporated into a vacuum valve and until it is completed as a vacuum valve.

しかして、実施態様は次の通りである。Thus, the implementation is as follows.

(1)接点材料の高導電材料中に双晶組織を有する真空
バルブ用接点材料である。
(1) A contact material for a vacuum valve that has a twin structure in the highly conductive material of the contact material.

(2)高導電材料は、Cc又は/及びAgである真空バ
ルブ用接点材料である。
(2) The highly conductive material is a contact material for a vacuum valve, which is Cc or/and Ag.

(3)耐弧材料は、Cr又はTi である真空バルブ用
接点材料である。
(3) The arc-resistant material is a contact material for vacuum valves, which is Cr or Ti.

(4)接点材料に8+ 、Pb 、Te 、Se又はS
bのうち少なくとも1つ以上の元素を添加した真空バル
ブ用接点材料である。
(4) 8+, Pb, Te, Se or S for contact material
This is a contact material for a vacuum valve to which at least one or more elements of B are added.

(5)塑性加工後に熱処理を施す真空バルブ用接点材料
の製造方法である。
(5) A method for producing a contact material for a vacuum valve, in which heat treatment is performed after plastic working.

(6)接点材料は、耐弧材料スケルトンに高導電材料を
溶浸した真空バルブ用接点材料の製造方法である。
(6) Contact material is a method of manufacturing a contact material for vacuum valves in which a highly conductive material is infiltrated into an arc-resistant material skeleton.

(7)高導電材料はCu、又は/及びAgである真空バ
ルブ用接点材料の製造方法である。
(7) A method for manufacturing a contact material for a vacuum valve in which the highly conductive material is Cu or/and Ag.

(8)耐弧材料は、Cr−又はTiである真空バルブ用
接点材料の製造方法である。
(8) Arc-resistant material is a method for manufacturing a contact material for a vacuum valve, which is Cr- or Ti.

(9)塑性加工は、圧延加工、fi造加工又はプレス加
工のうち少なくとも1つ以上の加工を含む真空バルブ周
接点材利の製造方法である。
(9) Plastic working is a method for manufacturing a vacuum valve circumferential contact material, which includes at least one of rolling, fi-forming, and press working.

(10)塑性加工は、熱間加工であり、熱処理又は冷間
加工を施すまでの加工率は20%乃至80%で好ましく
は50%乃至70%である真空バルブ用接点材料の製造
方法である。
(10) Plastic working is hot working, and the working rate before heat treatment or cold working is 20% to 80%, preferably 50% to 70%, in a method for manufacturing a contact material for a vacuum valve. .

(11)塑性加工は、冷間加工でめり、熱処理を施すま
での加工率は10%以上70%以下で好ましくは30%
乃至60%でおる真空バルブ用接点材料の?!造方法で
である。
(11) In plastic working, the processing rate is 10% or more and 70% or less, preferably 30%, until cold working and heat treatment are performed.
What about contact materials for vacuum valves that have a coverage of 60% to 60%? ! It's the way it's built.

(12)熱間加工後熱処理を施さないで冷間加工を行う
真空バルブ用接点材料の製造方法である。
(12) A method for producing a contact material for a vacuum valve, in which cold working is performed without heat treatment after hot working.

(13)熱処理温度は250℃以上である真空バルブ用
接点材料の製造方法である。
(13) A method for manufacturing a contact material for a vacuum valve in which the heat treatment temperature is 250° C. or higher.

(14)接点材料にB; 、Pb 、Te 、Se又は
Sbのうち少なくとも1つ以上を添加した真空バルブ周
接点材利の製造方法である。
(14) A method for manufacturing a vacuum valve peripheral contact material in which at least one of B, Pb, Te, Se, or Sb is added to the contact material.

(作 用) 上記した手段のように、高導電材料と耐弧材料より構成
される接点材料に於いて、高導電材料中の結晶粒度を規
定し、また、その結晶中に双晶組織を引出すことにより
、接点材料の溶着用外しに合った接点組織とすることが
できた。
(Function) As with the above-mentioned means, in a contact material composed of a highly conductive material and an arc-resistant material, the crystal grain size in the highly conductive material is defined, and the twin structure is brought out in the crystal. This made it possible to create a contact structure suitable for welding and removing the contact material.

つまり、溶浸上りの高導電材R等に於いては結晶粒が非
常に大きくなり、1粒子以上の耐弧材を1つの導電材料
の結晶で覆ってしまう場合が多くあり、これが耐弧材料
の延性をも助長し、耐弧材料の導電材料へのノツチ効果
をも得られず、強いては耐溶着性の低下原因となる。一
方、高導電材料の結晶粒が非常に細い場合は、上記した
ように接点材料の強度が向上し、これも耐溶着性の低下
原因となる。このような見地から、導電材料中にある一
定の結晶粒度を持つ材料だけが、耐溶着性の向上に寄与
できる。
In other words, in highly conductive materials such as R after infiltration, the crystal grains become extremely large, and in many cases, one or more particles of the arc-resistant material are covered with crystals of one conductive material. It also promotes the ductility of the arc-resistant material, making it impossible to obtain the notch effect of the arc-resistant material on the conductive material, and ultimately causing a decrease in welding resistance. On the other hand, when the crystal grains of the highly conductive material are very fine, the strength of the contact material increases as described above, which also causes a decrease in welding resistance. From this point of view, only materials with a certain grain size in the conductive material can contribute to improving the welding resistance.

双晶を有する材料が、耐溶着性の改善に適するのは、導
電材料中により多くの界面を得られるからである。
The reason why materials with twins are suitable for improving welding resistance is that more interfaces can be obtained in the conductive material.

(実施例) 以下、本発明の実施例を具体的実施態様に基づいて説明
するが、はじめに本発明の接点材料が適用される真空バ
ルブの構成を第1図および第2図を参照して説明する。
(Example) Examples of the present invention will be described below based on specific embodiments. First, the configuration of a vacuum valve to which the contact material of the present invention is applied will be explained with reference to FIGS. 1 and 2. do.

第1図は、本発明の接点材料を適用する真空バルブの構
成例を示すもので、同図に於いて、1は遮断室を示し、
この遮断室1は、絶縁材料によりほぼ円筒状に形成され
た絶縁6器2と、この両端に封止金具3 a、 3 b
を介して設けた金属性の蓋体、   /la、4bとで
真空気密に構成されている。しかして、上記遮断室1内
には、導電棒5,6の対向する端部に取付けられた1対
の電極7,8が配設され、上部の電極7を固定電極、下
部の電極8を可動電極としている。また、この可動電極
8の電極棒6には、ベローズ9が取付けられ遮断室1内
を真空気密に保持しながら電極8の軸方向の移動を可能
にし、このベローズ9上部には金属性のアークシールド
10が設けられ、ベローズ9がアーク蒸気で覆われるこ
とを防止している。11は、上記電極7,8を覆うよう
にして遮断室1内に設けられた金属性のアークシールド
で、絶縁容器2がアーク蒸気で覆われることを防止して
いる。ざらに、電極8は、第2図に拡大して示すように
、導電棒6にろう付部12によって固定されるか、また
、かしめによって圧着接続されている。接点13aは、
電極8にろう付け14で固着されている。なお、第1図
における13bは固定側接点である。
FIG. 1 shows an example of the configuration of a vacuum valve to which the contact material of the present invention is applied, and in the figure, 1 indicates a cutoff chamber;
This cutoff chamber 1 includes an insulator 2 formed of an insulating material into a substantially cylindrical shape, and sealing fittings 3 a and 3 b at both ends of the insulator 2 .
A metal lid body, /la, and 4b, provided through the cap, is vacuum-tight. A pair of electrodes 7 and 8 attached to opposite ends of conductive rods 5 and 6 are arranged in the cutoff chamber 1, with the upper electrode 7 being a fixed electrode and the lower electrode 8 being a fixed electrode. It is a movable electrode. Further, a bellows 9 is attached to the electrode rod 6 of the movable electrode 8 to enable the electrode 8 to move in the axial direction while keeping the inside of the cutoff chamber 1 vacuum-tight. A shield 10 is provided to prevent the bellows 9 from being covered with arc vapors. Reference numeral 11 denotes a metallic arc shield provided in the cutoff chamber 1 so as to cover the electrodes 7 and 8, and prevents the insulating container 2 from being covered with arc vapor. Roughly speaking, the electrode 8 is fixed to the conductive rod 6 by a brazing portion 12, or is crimped and connected to the conductive rod 6 by caulking, as shown in an enlarged view in FIG. The contact 13a is
It is fixed to the electrode 8 by brazing 14. Note that 13b in FIG. 1 is a fixed side contact.

本発明に係る接点材料は、上記したような接点13a、
 13bの双方または何れか一方を構成するのに適した
ものである。
The contact material according to the present invention includes the contact 13a as described above,
13b.

ここで、本発明の接点材料を得るまでの考察について説
明する。
Here, considerations for obtaining the contact material of the present invention will be explained.

本発明者らの研究によれば、Cc  Cr−接点材料の
溶着現客は、 (1)接点同士の接触面に発生するジュール熱により接
点材料が溶融し、その後凝固する場合、(2)遮断器の
開閉の瞬間に発生するアーク放電により接点材料が気化
し、その後凝固する場合の一方または相互作用に於いて
発生する。何れの場合も凝固する段階においてCrとC
u−が1如以下の微細粒子となり、互いに入り乱れた状
態で数Hrから数十庫程度の層を形成する。一般に組織
の微細化は、材Hの強度向上に寄与する要因の一つであ
り、この場合も例外ではない。しかして、この微細Cu
、  Cr層の強度がCtL Cr合金の71へりクス
強度に優れ、かつマトリクス強度が設計された引外し力
を超えた時に溶着が発生する。
According to the research conducted by the present inventors, when welding Cc Cr-contact materials, (1) when the contact material melts due to Joule heat generated at the contact surface between the contacts and then solidifies, (2) when the contact material is This occurs on one side or in the interaction when the contact material vaporizes due to the arc discharge that occurs at the moment of opening and closing of the device, and then solidifies. In either case, Cr and C
The particles become fine particles with u- of 1 or less, and are mixed with each other to form a layer of several hours to several tens of hours. Generally, refinement of the structure is one of the factors contributing to improving the strength of material H, and this case is no exception. However, this fine Cu
, the strength of the Cr layer is superior to the 71 helix strength of the CtL Cr alloy, and welding occurs when the matrix strength exceeds the designed tripping force.

本発明者らは、高導電材料と耐弧材料から構成される接
点材料の耐溶着性を向上させるために、高導電材料の結
晶粒度と耐溶着性の関係に着目し、耐溶着性向上に適し
た結晶粒度があることを見出した。
In order to improve the welding resistance of a contact material composed of a highly conductive material and an arc-resistant material, the present inventors focused on the relationship between the crystal grain size of the highly conductive material and the welding resistance, and aimed to improve the welding resistance. It was found that there is a suitable grain size.

しかして、高導電材料が大きすぎた場合、1つの高導電
材料の結晶粒で1つ以上の耐弧材料を包囲してしまい、
溶看引外し時に、高導電材料の延性が耐弧材料をも巻き
込み、耐弧材料が高導電材料中に於いてノツチ効果の役
目を果たせないことが判明した。また、結晶粒が小さす
ぎる場合は、前述したように接点材料の強度が向上し過
ぎ、耐溶着性向上に対して良好な結果を得られない。以
上の見地から高導電材料の結晶粒度は、^5T)lのN
α5〜13が良好である。
However, if the highly conductive material is too large, one grain of the highly conductive material may surround one or more arc-resistant materials.
It has been found that during melt tripping, the ductility of the highly conductive material also engulfs the arc-resistant material, and the arc-resistant material cannot serve as a notch effect in the highly conductive material. Furthermore, if the crystal grains are too small, the strength of the contact material increases too much as described above, and good results in improving the welding resistance cannot be obtained. From the above viewpoint, the grain size of highly conductive material is ^5T)lN
α5-13 is good.

また、本発明者らのU1究によれば、導電材料中の結晶
粒内には双晶が存在した方が耐溶着性に対して良好な結
果を得られることが判明した。すなわち、双晶は、前述
したように導電材料の結晶粒が大ぎすぎる場合の耐弧材
料の延性を低下させる役目を果たすからである。
Further, according to U1 research conducted by the present inventors, it was found that the presence of twin crystals in the crystal grains in the conductive material provides better results in terms of welding resistance. That is, the twin crystals serve to reduce the ductility of the arc-resistant material when the crystal grains of the conductive material are too large, as described above.

ざらに、耐溶着性をより一層向上させる方法として、公
知技術のBi、Pb 、Te 、SeまたはSbのうち
少なくとも1つ以上を添加し、かつ結晶粒度を同じよう
にコントロールすることも有効でおることをも見出した
。結晶粒度が耐)d看性改善に寄与するのは前述した通
りでおる。一方、上記添加元素は、高導電材料への固溶
度が低く、かつマトリクスを脆化させる特徴を有してお
り、これら2つの要因を組み合わせることによって相乗
時に耐溶着性能は大幅に向上するものである。但し、こ
れらの元素は何れも蒸気圧が高いため、耐電圧特性を低
下させる恐れがあり、その添加量は微量な程よい。
Generally speaking, as a method to further improve the welding resistance, it is also effective to add at least one or more of Bi, Pb, Te, Se, or Sb using known techniques and to control the crystal grain size in the same way. I also discovered that. As mentioned above, the grain size contributes to improving the durability. On the other hand, the above additive elements have low solid solubility in highly conductive materials and have the characteristics of embrittling the matrix, and by combining these two factors, the welding resistance performance can be greatly improved when synergistic. It is. However, since each of these elements has a high vapor pressure, there is a risk that the withstand voltage characteristics will be lowered, so the amount of addition thereof should be as small as possible.

次に、このような高導電材料中の結晶粒度の製造方法に
ついて説明する。溶浸上りの接点材料中の高導電材料に
は明瞭な結晶粒界が存在しない。
Next, a method for manufacturing the crystal grain size in such a highly conductive material will be described. There are no clear grain boundaries in the highly conductive material in the infiltrated contact material.

本発明者らは、この状態から結晶粒界を造り出すには、
適当な加工率の塑性加工と適当な温度の熱処理を施すこ
とにより、高導電材料中に定められた結晶粒界を造り出
すことが可能であることを見出だした。
The present inventors believe that in order to create grain boundaries from this state,
We have discovered that it is possible to create defined grain boundaries in highly conductive materials by performing plastic working at an appropriate working rate and heat treatment at an appropriate temperature.

これに適した塑性加工方法、加工率、熱処理等について
は、以下の実施例で説明する。
Plastic working methods, working rates, heat treatments, etc. suitable for this will be explained in the following examples.

次に、この接点材料の製造方法の一例をCu、−Cr材
について説明する。所定粒径のCrを加圧成形して粉末
成形体を得る。ついで、この粉末成形体を露点が一50
℃以下の水素雰囲気または真空度が1X 10−3 r
orr以下で、所定温度例えば950°C×1時間にて
仮焼結し、仮焼結体を得る。
Next, an example of a method for manufacturing this contact material will be explained using Cu and -Cr materials. A powder compact is obtained by pressure-molding Cr having a predetermined particle size. Next, this powder compact was heated to a dew point of 150
Hydrogen atmosphere below ℃ or degree of vacuum is 1X 10-3 r
Temporary sintering is performed at a predetermined temperature, for example, 950° C. for 1 hour, at a temperature of 1.0 or less to obtain a temporary sintered body.

ついで、この仮焼結体の残存空孔中にCu、を例えば1
100℃×1時間で溶浸し、Cu−−Cr−合金を得る
。溶浸は主として真空中で行うが、水素中でも行い得る
Next, Cu is added, for example, to the remaining pores of this temporary sintered body.
Infiltration is carried out at 100°C for 1 hour to obtain a Cu--Cr-alloy. Infiltration is primarily carried out in vacuum, but can also be carried out in hydrogen.

ここで、焼結熱処理又は/及び溶浸熱処理温度を高めに
選択すると、Cu−の蒸発が激しく、その成分最の制御
が困難となる。しかし、炉の性能、または−度に熱処理
する素材の量、大きざ、熱容量などによって熱処理温度
は変動するので、その温度を普遍的に表現することは無
理でおり、実際には残存するCttflを、例えばX線
法によって直接的に決定し管理する方法が採られ得るが
、概して1300℃以上の温度の選択はCtLの存在を
少なくし、好ましくないことが明らかになっている。−
方、下限温度は、焼結熱処理に於いては、原料または成
形体の脱ガスの観点から600℃以上、好ましくは90
0℃以上を必要とし、また)d漠然処理に於いては、ス
ケルトンを脱ガスし、かつCttを溶融する必要性から
少なくとも1100°Cを必要とする。
Here, if the sintering heat treatment and/or infiltration heat treatment temperature is selected to be high, Cu evaporates rapidly and it becomes difficult to control its components. However, since the heat treatment temperature varies depending on the performance of the furnace, the amount of material to be heat treated, its size, heat capacity, etc., it is impossible to universally express the temperature, and in reality it is difficult to express the remaining Cttfl. Although a method of directly determining and controlling the temperature by, for example, an X-ray method may be adopted, it has been found that selecting a temperature of 1300° C. or higher generally reduces the presence of CtL and is not preferable. −
On the other hand, in the sintering heat treatment, the lower limit temperature is 600°C or higher, preferably 90°C or higher, from the viewpoint of degassing the raw material or the molded body.
0° C. or above is required, and in the d vague process, at least 1100° C. is required due to the need to degas the skeleton and melt Ctt.

ついで、冷間圧延にて50%の加工率を施し、真空中で
500℃×1時間の熱処理を施す。このような工程で製
造された接点材料は、導電材料中の結晶粒度がASTM
のNa3程度であり、接点材の延性及び強度の点からも
耐溶着性が優れたものである。
Then, cold rolling is performed at a processing rate of 50%, and heat treatment is performed at 500° C. for 1 hour in a vacuum. The contact material manufactured by this process has a crystal grain size in the conductive material of ASTM
The contact material has excellent welding resistance in terms of ductility and strength.

したがって、上記した焼結合金は耐溶着性に優れたもの
で、真空バルブ用接点材料として最適である。
Therefore, the above-described sintered alloy has excellent welding resistance and is optimal as a contact material for vacuum valves.

次に、以上のようにして製造された各接点材料を比較例
と対比して示す。なお、この各側において評価したとき
の条件、方法は、次の通りである。
Next, each contact material manufactured as described above will be shown in comparison with a comparative example. The conditions and methods used for evaluation on each side are as follows.

(1)耐)8着性 外径258φの一対の円板状試料に外径25sφ先端が
100Rの球面をなす加圧ロンドを対向させ、100K
Fiの荷重を加え1O−5sH(]の真空中において5
0H2,20にへの電流を20ミリ秒間通電し、その時
の試料−ロット間の引外しに必要な力を測定し耐溶着性
の判断をした。なあ、評価は、比較例2に示した溶浸上
りのCtt  Cr合金の溶看引外し力をi、ooとし
たときの相対的な値で比較した。各人には上記接点数3
個の測定値におけるばらつき幅を示す。
(1) Resistance) 8 Adhesion A pair of disc-shaped samples with an outer diameter of 258 φ was opposed to a pressurized iron whose tip had a spherical surface of 100 R, and was heated to 100 K.
5 in a vacuum of 1O-5sH (] with a load of Fi applied.
A current was applied to 0H2, 20 for 20 milliseconds, and the force required for tripping between the sample and the lot at that time was measured to judge the welding resistance. The evaluation was based on relative values, where i and oo are the melting force of the Ctt Cr alloy after infiltration shown in Comparative Example 2. Each person has the above 3 points of contact.
This shows the range of variation in individual measured values.

(2)耐電圧特性 耐電圧特性の低下が心配されるので、第3元素を添加し
たサンプルについてのみ実施した。
(2) Withstanding Voltage Characteristics Since there is a concern that the withstanding voltage characteristics may deteriorate, the test was carried out only for samples to which the third element was added.

各接点合金についてパフ研磨により鏡面仕上をしたN1
針を陽極とし、同じように鏡面仕上をした各試料を陰極
とし、両極間のギャップを0.5mmとし、1O−5s
H(lの真空において徐々に電圧を上背しスパークを発
生したときの電圧値を測定し、静耐圧値を求めた。第2
表に示す測定データは、3回の繰返しテストを行ったと
きのばらつき値を含めて、溶浸上りのCu、  Cr合
金の静耐圧値を1.00(第1表に示す比較例1)とし
たときの相対的な値で示した。
N1 with mirror finish by puff polishing for each contact alloy
The needle was used as an anode, each mirror-finished sample was used as a cathode, and the gap between the two electrodes was 0.5 mm.
In the vacuum of H(l), the voltage was gradually increased and the voltage value when a spark was generated was measured to determine the static withstand voltage value.Second
The measurement data shown in the table, including the variation value when repeated tests were performed three times, indicates that the static pressure resistance value of the Cu and Cr alloy after infiltration is 1.00 (Comparative Example 1 shown in Table 1). It is shown as a relative value when

実施例1〜3、比交例2,3 結晶粒度、冷間加工率、耐溶着性の関係を調査するため
に、溶浸上りのGu、  Cr−材を標Q(比較例1)
とし、冷間圧延の加工率をパラメータとし熱処理温度を
500℃×1時間一定として、導電材お1の結晶粒度に
対する耐溶着性能の向上度を調査した。冷間加工率はそ
れぞれ5.10.50.70゜90%とした。
Examples 1 to 3, Comparative Examples 2 and 3 In order to investigate the relationship between grain size, cold working rate, and welding resistance, Gu and Cr materials after infiltration were used as standard Q (Comparative Example 1)
The degree of improvement in the welding resistance performance with respect to the crystal grain size of the conductive material 1 was investigated using the cold rolling processing rate as a parameter and the heat treatment temperature constant at 500° C. for 1 hour. The cold working rates were 5, 10, 50, and 70°90%, respectively.

これらの特性を第1表に示す。These properties are shown in Table 1.

上記工程によって製造された高導電材の結晶粒度はAS
THのNαがそれぞれ0,3,8,12.15であった
。耐溶着性が最も良好であったものは、ASTHのNα
8の0.4〜0.6であり、ついで、Nα3の0.5〜
0.7である。Nα15のものは耐溶着性向上が0.8
〜1.0であり、実際に真空バルブに組み込んでも大き
な利益は得られない。一方、NαOのものは耐溶着性向
上は1.0と従来品と変りはない。したがって、高導電
材料の結晶粒度は、AS−THのNα3〜12程度が望
ましい。また、これを冷間加工率から見れば、10%〜
70%程度が望ましいことが分かる。
The grain size of the highly conductive material manufactured by the above process is AS
The Nα of TH was 0, 3, 8, and 12.15, respectively. The one with the best welding resistance was ASTH's Nα
8 is 0.4 to 0.6, and then Nα3 is 0.5 to 0.6.
It is 0.7. The one with Nα15 has a welding resistance improvement of 0.8
~1.0, and even if it is actually incorporated into a vacuum valve, no significant benefit will be obtained. On the other hand, the improvement in welding resistance of the NαO product was 1.0, which is the same as the conventional product. Therefore, the crystal grain size of the highly conductive material is desirably about Nα 3 to 12 of AS-TH. Also, if you look at this in terms of cold working rate, it is 10% ~
It can be seen that about 70% is desirable.

t [4〜6、ヒ較例45 冷間加工率の最適値を求めたのと同じように結晶粒度、
熱間加工率、耐溶着性の関係を調査するために、溶浸上
りのCtt  Cr材を標準とし、熱間加工率をパラメ
ータとして導電材の結晶粒度に対する耐溶着性能の向上
度を調査した。熱間加工率はそれぞれ10%、 20%
、 50%、 80%、 90%とし、熱間加工後の熱
処理は省略した。
t [4-6, Comparative Example 45 In the same way as determining the optimum value of cold working rate, the grain size,
In order to investigate the relationship between hot working rate and welding resistance, we used infiltrated Ctt Cr material as a standard and investigated the degree of improvement in welding resistance performance with respect to the grain size of the conductive material using hot working rate as a parameter. Hot processing rate is 10% and 20% respectively
, 50%, 80%, and 90%, and heat treatment after hot working was omitted.

これらの特性を第1表に示す。These properties are shown in Table 1.

上記工程によって製造された高導電材料の結晶粒度はA
ST)fのNαがそれぞれ1,3,8,13.16であ
った。冷間圧延の時と同様に耐溶着性能に効果が確かめ
られたものは、AST)lのNαがそれぞれ3゜8.1
3でおり、他は溶浸上つとほぼ同様の耐溶着性能であっ
た。したがって、熱間加工においては、その加工率が2
0%乃至80%が望ましいことが分かる。
The grain size of the highly conductive material manufactured by the above process is A
Nα of ST) f was 1, 3, 8, and 13.16, respectively. As with cold rolling, the effects on welding resistance were confirmed when Nα of AST)l was 3°8.1.
3, and the welding resistance performance was almost the same as that of the infiltration method. Therefore, in hot working, the working rate is 2
It can be seen that 0% to 80% is desirable.

実[比較」6 塑性加工後の最適熱処理温度を見出すために以下の評価
を行った。
Actual [Comparison] 6 The following evaluation was performed to find the optimal heat treatment temperature after plastic working.

Cμ−〇r溶浸材をもと材とし、冷間圧延により加工率
50%一定とした後、熱処理温度をそれぞれ150℃、
3H℃、  500℃、  800℃の4水準で熱処理
温度に対する耐溶着性を評価した。
Using Cμ-〇r infiltration material as the base material, after making the processing rate constant at 50% by cold rolling, the heat treatment temperature was 150°C and 150°C, respectively.
Welding resistance against heat treatment temperatures was evaluated at four levels: 3H°C, 500°C, and 800°C.

これらの特性を@2表に示す。These characteristics are shown in Table @2.

150℃で熱処理を施した時は、導電材料の再結晶が未
だ終了しておらf1材材料度的にも強いためか、耐溶着
性の向上は見られなかった。これに対し、300℃、 
 500℃、  800℃の各温度で熱処理を施したも
のは、結晶粒度がASTMのNα12.8.5に相当し
、耐溶着性能も0.4〜0.7と改善のあとが見られた
。したがって、塑性加工後の熱処理温度は250℃程度
以上が望ましい。熱処l!I!温度の上限は、導電材料
の溶融点以下が望ましい。
When the heat treatment was performed at 150° C., no improvement in welding resistance was observed, probably because recrystallization of the conductive material had not yet been completed and the f1 material was strong in terms of material strength. On the other hand, 300℃,
For those heat-treated at temperatures of 500°C and 800°C, the grain size corresponded to ASTM Nα of 12.8.5, and the welding resistance was 0.4 to 0.7, showing improvement. Therefore, the heat treatment temperature after plastic working is desirably about 250°C or higher. Heat treatment! I! The upper limit of the temperature is preferably below the melting point of the conductive material.

亙塵■旦 塑性加工の組み合わせによる耐溶着性の改善を調査する
ために、30%加工率の熱間圧延後20%加工率の冷間
圧延を施し、その後50()’cX’1時間の熱処理を
施したものの耐溶着改善状況を第2表に示ず。導電材料
の結晶粒度はAST)fのN(17であり、耐溶着性能
も0.4〜0.6と改善のあとが見られる。
In order to investigate the improvement of welding resistance by a combination of plastic working, cold rolling was performed at a working rate of 20% after hot rolling at a working rate of 30%. Table 2 does not show the improvement in welding resistance of the heat-treated samples. The crystal grain size of the conductive material is AST)fN(17), and the welding resistance is also 0.4 to 0.6, showing signs of improvement.

したがって、複数の塑性加工の組み合わせにおいても耐
溶着性が改善できる。
Therefore, the welding resistance can be improved even when a plurality of plastic workings are combined.

X塵五刊−■ 以上は圧延加工についての実施例について説明してきた
が、伯の塑性加工についての実施例について検討する。
X Dust 5th Edition-■ So far, examples regarding rolling processing have been described, but examples regarding Haku's plastic working will be discussed.

溶浸Ctt  Cr材を50%加工率で冷間プレスし、
そのあと500℃の熱処理を加えたもの(実施例10)
と、加工率60%の熱間鍛造を行ったもの(実施例11
)である。
Infiltrated Ctt Cr material is cold pressed at a processing rate of 50%,
Then heat treated at 500°C (Example 10)
and those subjected to hot forging with a processing rate of 60% (Example 11)
).

この結果を第2表に示す。The results are shown in Table 2.

何れも高導電材料の結晶粒度は、ASTHのNα7〜8
程度であり、また、耐溶着性能は、0.4〜0.6であ
り、耐溶着性改善に有効な手段であると考えられる。
In both cases, the crystal grain size of the highly conductive material is Nα7 to 8 according to ASTH.
Moreover, the welding resistance is 0.4 to 0.6, and is considered to be an effective means for improving the welding resistance.

X癒匠H−甘 耐溶着性をより改善するために、微量添加元素の影響を
検討する。予め溶解しておいた0、3%5b−Cφ金合
金Cr−スケルトンに溶浸したあとに10%の冷間圧延
し、ついで、500℃の熱処理を施したもの(実施例1
2) 、2%Te  CttをCI−スケルトンに溶浸
した後に30%の熱間圧延を施したもの〈実施例13)
 、’1%Se −0ct合金をCrミスケルトン浸し
た後に30%熱間圧延を施したちの〈実施例14) 、
2%Te −1%Se −CUL合金をCrスケルトン
に溶浸した後に30%の熱間圧延を施したちの〈実施例
15)の4水準である。
In order to further improve the welding resistance of After being infiltrated into a pre-melted 0.3% 5b-Cφ gold alloy Cr-skeleton, it was cold-rolled to 10% and then heat-treated at 500°C (Example 1).
2), 30% hot rolling after infiltrating CI-skeleton with 2% Te Ctt (Example 13)
, '1%Se-0ct alloy was immersed in Cr mis-skeleton and then subjected to 30% hot rolling (Example 14),
This is the fourth level of Example 15, in which the 2% Te -1% Se -CUL alloy was infiltrated into the Cr skeleton and then hot rolled by 30%.

これらの結果を第2表に示す。These results are shown in Table 2.

導電材料の結晶粒度は、実施例12がAST)fのNα
3である他は仝てNα5である。耐溶着性能は全て0.
3〜0.4であり、今までの塑性加工と熱処理の組合わ
せの工程のものより優れている。しかし、前述したよう
に耐電圧特性が0.7〜0.8と従来のものに比べて劣
っている。しかし、この程度の耐電圧特性の低下は、実
用上問題のない数値である。
The crystal grain size of the conductive material is Nα of AST) f in Example 12.
3, all other values are Nα5. All welding resistance performance is 0.
3 to 0.4, which is superior to conventional processes that combine plastic working and heat treatment. However, as mentioned above, the withstand voltage characteristic is 0.7 to 0.8, which is inferior to the conventional one. However, this level of decrease in withstand voltage characteristics is a value that poses no practical problem.

丈凰牲旦工■ 以上は、導電材料としてCtt 、また、耐弧材料とし
てCrを対象としてきたが、他″の元素についても有効
であることを調査した。
In the above, we have focused on Ctt as a conductive material and Cr as an arc-resistant material, but we have investigated the effectiveness of other elements as well.

Ti粉末を仮焼結しTi スケルトンを製造した後、C
u−を溶浸させて製造したCtL−Ti材料を50%の
冷間圧延し、500℃の熱処理を施したちの(実施例1
6)と、CrスケルトンにAgを溶浸させたものを50
%の冷間圧延し、500℃の熱処理を施したもの(実施
例17)について評価した。
After pre-sintering Ti powder to produce a Ti skeleton, C
The CtL-Ti material produced by infiltrating u- was 50% cold rolled and heat treated at 500°C (Example 1).
6) and a Cr skeleton infiltrated with Ag.
% cold rolled and heat treated at 500° C. (Example 17) was evaluated.

これらの結果を第3表に示す。These results are shown in Table 3.

何れも導電材料の結晶粒度はASTHのNα7〜8、耐
溶着性は0.4〜0.6であり、本製造方法がCη−C
r材のみならず、上記材料に於いても有効であることが
分かる。
In both cases, the crystal grain size of the conductive material is ASTH Nα7~8, the welding resistance is 0.4~0.6, and this manufacturing method is Cη-C
It can be seen that this method is effective not only for R materials but also for the above materials.

(以下 余白) なお、実施例1〜17は、高導電性材料と耐弧材料との
比率がほぼ50 : 50の場合について説明したが、
本発明の趣旨が高導電性材料の状態によって発揮される
ことから、上記比率は50 :、50に限らずその効果
が発揮されることは明らかである。
(Hereinafter, blank space) In Examples 1 to 17, the case where the ratio of the highly conductive material and the arc-resistant material was approximately 50:50 was explained.
Since the purpose of the present invention is achieved depending on the state of the highly conductive material, it is clear that the above-mentioned ratio is not limited to 50:50 and the effect can be achieved.

[発明の効果] 本発明は、以上のように構成されているから、耐溶着性
を著しく向上した真空バルブ用接点材料およびその製造
方法を提供することができる。
[Effects of the Invention] Since the present invention is configured as described above, it is possible to provide a contact material for a vacuum valve with significantly improved welding resistance and a method for manufacturing the same.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明が適用される真空バルブの断面図、第2
図は接点部の拡大断面図である。 1・・・遮断室 7.8・・・電極 13a 、 13b ・・・接点 (8733)代理人 弁理士 猪 股 祥 晃(ほか 
1名) 第 1 図 第2図
Fig. 1 is a sectional view of a vacuum valve to which the present invention is applied;
The figure is an enlarged sectional view of the contact portion. 1... Cutoff chamber 7.8... Electrodes 13a, 13b... Contacts (8733) Agent Patent attorney Yoshiaki Inomata (and others)
1 person) Figure 1 Figure 2

Claims (16)

【特許請求の範囲】[Claims] (1)高導電材料と耐弧材料から構成される真空バルブ
用接点材料において、前記高導電材料の結晶粒度がAS
TMのNo.3乃至13であることを特徴とする真空バ
ルブ用接点材料。
(1) In a vacuum valve contact material composed of a highly conductive material and an arc-resistant material, the crystal grain size of the highly conductive material is AS.
TM No. A contact material for a vacuum valve, characterized in that the number is 3 to 13.
(2)接点材料の高導電材料中に双晶組織を有する特許
請求の範囲第1項記載の真空バルブ用接点材料。
(2) The contact material for a vacuum valve according to claim 1, which has a twin structure in the highly conductive material of the contact material.
(3)高導電材料は、Cu又は/及びAgである特許請
求の範囲第1項及び第2項記載の真空バルブ用接点材料
(3) The contact material for a vacuum valve according to claims 1 and 2, wherein the highly conductive material is Cu or/and Ag.
(4)耐弧材料は、Cr又はTiである特許請求の範囲
第1項乃至第3項記載の真空バルブ用接点材料。
(4) The contact material for a vacuum valve according to any one of claims 1 to 3, wherein the arc-resistant material is Cr or Ti.
(5)接点材料に、Bi、Pb、Te、Be又はSbの
うち少なくとも1つ以上の元素を添加した特許請求の範
囲第1項乃至第4項記載の真空バルブ用接点材料。
(5) The contact material for a vacuum valve according to claims 1 to 4, wherein at least one element selected from Bi, Pb, Te, Be, or Sb is added to the contact material.
(6)高導電材料と耐弧材料から構成される真空バルブ
用接点材料に於いて、この接点材料が真空バルブに組込
まれ、かつ真空バルブとして完成するまでの間に、少な
くとも1回以上前記接点材料に塑性加工を施すことを特
徴とする真空バルブ用接点材料の製造方法。
(6) In a vacuum valve contact material composed of a highly conductive material and an arc-resistant material, the contact material is assembled into a vacuum valve and the contact material is used at least once before the vacuum valve is completed. A method for manufacturing a contact material for a vacuum valve, characterized by subjecting the material to plastic working.
(7)塑性加工後に熱処理を施す特許請求の範囲第6項
記載の真空バルブ用接点材料の製造方法。
(7) The method for manufacturing a contact material for a vacuum valve according to claim 6, wherein heat treatment is performed after plastic working.
(8)接点材料は、耐弧材料スケルトンに高導電材料を
溶浸したものである特許請求の範囲第6項及び第7項記
載の真空バルブ用接点材料の製造方法。
(8) The method for manufacturing a contact material for a vacuum valve according to claims 6 and 7, wherein the contact material is made by infiltrating a highly conductive material into an arc-resistant material skeleton.
(9)高導電材料は、Cu又は/及びAgである特許請
求の範囲第6項乃至第8項記載の真空バルブ用接点材料
の製造方法。
(9) The method for manufacturing a contact material for a vacuum valve according to claims 6 to 8, wherein the highly conductive material is Cu or/and Ag.
(10)耐弧材料は、Cr又はTiである特許請求の範
囲第6項乃至第9項記載の真空バルブ用接点材料の製造
方法。
(10) The method for manufacturing a contact material for a vacuum valve according to claims 6 to 9, wherein the arc-resistant material is Cr or Ti.
(11)塑性加工は、圧延加工、鍛造加工又はプレス加
工のうち少なくとも1つ以上の加工を含む特許請求の範
囲第6項乃至第10項記載の真空バルブ用接点材料の製
造方法。
(11) The method for manufacturing a contact material for a vacuum valve according to claims 6 to 10, wherein the plastic working includes at least one of rolling, forging, and press working.
(12)塑性加工は、熱間加工であり、熱処理又は冷間
加工を施すまでの加工率は20%乃至80%で好ましく
は50%乃至10%である特許請求の範囲第6項乃至第
11項記載の真空バルブ用接点材料の製造方法。
(12) Plastic working is hot working, and the working rate before heat treatment or cold working is 20% to 80%, preferably 50% to 10%.Claims 6 to 11 A method for manufacturing a contact material for a vacuum valve as described in .
(13)塑性加工は、冷間加工であり、熱処理を施すま
での加工率は10%以上70%以下で好ましくは30%
乃至60%である特許請求の範囲第6項乃至第11項記
載真空バルブ用接点材料の製造方法。
(13) Plastic working is cold working, and the processing rate before heat treatment is 10% or more and 70% or less, preferably 30%.
A method for producing a contact material for a vacuum valve according to any one of claims 6 to 11, wherein the contact material for a vacuum valve is 60%.
(14)熱間加工後熱処理を施さないで冷間加工を行う
特許請求の範囲第6項乃至第13項記載の真空バルブ用
接点材料の製造方法。
(14) A method for manufacturing a contact material for a vacuum valve according to claims 6 to 13, wherein cold working is performed without heat treatment after hot working.
(15)熱処理温度は250℃以上である特許請求の範
囲第6項乃至第13項記載の真空バルブ用接点材料の製
造方法。
(15) The method for manufacturing a contact material for a vacuum valve according to any of claims 6 to 13, wherein the heat treatment temperature is 250°C or higher.
(16)接点材料にBi、Pb、Te、Se又はSbの
うち少なくとも1つ以上を添加した特許請求の範囲第6
項乃至第15項記載の真空バルブ用接点材料の製造方法
(16) Claim 6 in which at least one of Bi, Pb, Te, Se, or Sb is added to the contact material.
A method for producing a contact material for a vacuum valve according to items 1 to 15.
JP29605787A 1987-11-26 1987-11-26 Contact material for vacuum valve and manufacturing method thereof Expired - Lifetime JPH07111857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29605787A JPH07111857B2 (en) 1987-11-26 1987-11-26 Contact material for vacuum valve and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29605787A JPH07111857B2 (en) 1987-11-26 1987-11-26 Contact material for vacuum valve and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH01140526A true JPH01140526A (en) 1989-06-01
JPH07111857B2 JPH07111857B2 (en) 1995-11-29

Family

ID=17828544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29605787A Expired - Lifetime JPH07111857B2 (en) 1987-11-26 1987-11-26 Contact material for vacuum valve and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH07111857B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10014071B4 (en) * 1999-03-26 2005-12-29 Nec Electronics Corp., Kawasaki A method of storing a semiconductor wafer after its CMP polishing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10014071B4 (en) * 1999-03-26 2005-12-29 Nec Electronics Corp., Kawasaki A method of storing a semiconductor wafer after its CMP polishing

Also Published As

Publication number Publication date
JPH07111857B2 (en) 1995-11-29

Similar Documents

Publication Publication Date Title
KR100194504B1 (en) Manufacturing Method of Silver-Metal Oxide Composite
US5358585A (en) Process of producing silver-or silver-copper alloy-metal oxide composite material
KR910000486B1 (en) Contact forming material for a vacuum valve and the method
JPH01111832A (en) Electrode material for vacuum switch
US5354352A (en) Contact material for vacuum circuit breakers
US5286441A (en) Silver-metal oxide composite material and process for producing the same
US5489412A (en) Electrode material
KR950006738B1 (en) Contact point for a vacuum interrupter
JPH01140526A (en) Contact material for vacuum bulb and its manufacture
JP2653461B2 (en) Manufacturing method of contact material for vacuum valve
JP5116538B2 (en) Contact material
JP3909804B2 (en) Contact material for vacuum valves
JP5002398B2 (en) Contact materials for vacuum circuit breakers
JP2005150032A (en) Manufacturing method for contact for vacuum bulb
JP2878718B2 (en) Contact material for vacuum valve
JPH0193018A (en) Contact material for vacuum bulb
JP2006032036A (en) Contact material for vacuum valve
JP2878787B2 (en) Contact for vacuum valve
JP2831834B2 (en) Manufacturing method of contact material for vacuum valve
KR0171607B1 (en) Vacuum circuit breaker and contact
JP4619821B2 (en) Contact material and vacuum valve
JP2511043B2 (en) Manufacturing method of contact alloy for vacuum valve
JPH04129119A (en) Manufacture of electrode material
JPS61121218A (en) Vacuum breaker
JPH02117029A (en) Electrode material of vacuum interrupter and its manufacture

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term