JPS61219844A - Force sensor - Google Patents

Force sensor

Info

Publication number
JPS61219844A
JPS61219844A JP6161985A JP6161985A JPS61219844A JP S61219844 A JPS61219844 A JP S61219844A JP 6161985 A JP6161985 A JP 6161985A JP 6161985 A JP6161985 A JP 6161985A JP S61219844 A JPS61219844 A JP S61219844A
Authority
JP
Japan
Prior art keywords
substrate
electrode
electrodes
force sensor
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6161985A
Other languages
Japanese (ja)
Inventor
Kazuo Yamaha
和夫 山羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP6161985A priority Critical patent/JPS61219844A/en
Publication of JPS61219844A publication Critical patent/JPS61219844A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/18Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pressure Sensors (AREA)
  • Adjustable Resistors (AREA)

Abstract

PURPOSE:To make it possible to detect a wide range of force in an elastic range while reducing the cost and wt. of the titled sensor, by providing an electrode comprising a metal membrane obtained by metal vapor deposition to the front and back surfaces of a substrate made of a polymer composite material having piezoresistive effect. CONSTITUTION:A force sensor 1 has a substrate 2 and an electrode pair 10 consisting of electrodes 3, 4, 5 is mounted to both upper and lower surfaces of the substrate 2. The substrate 2 is formed by using a polymer material having rubbery elasticity, for example, an ethylene/vinyl acetate copolymer as a base material and mixing a conductive substance such as carbon, graphite, nickel or aluminum with said base material and forming the resulting mixture into a plate shape. The electrodes 4, 5, 6 are formed by vapor deposition and the electrodes 3, 5 are circular while the electrode 4 is annular. By applying voltage between the electrodes 5, 3 in such a state that the electrodes 5, 4 are held to the same potential, the volume electric resistance of the substrate 2 can be measured. By this method, the relation between the magnitude of compression force applied to the substrate 2 and electric resistance can be determined.

Description

【発明の詳細な説明】 (イ)発明の目的 [産業上の利用分野] この発明は力を検出するために使用する力センサに関す
るものである。
Detailed Description of the Invention (a) Object of the Invention [Field of Industrial Application] This invention relates to a force sensor used to detect force.

[従来の技術] 一般に力を検出する場合、従来は、1棒またはダイヤフ
ラムに歪検出用ゲージを貼付して外力に対する1棒の1
口を検出したり、あるいはダイヤフラム自体が3iで構
成されている場合には、St単結晶基板の表面に不純物
を拡散させてストレンゲージを形成させ、ダイヤプラム
面上の外力を検出していた。また、その他にも、静電容
量形の圧力検出器が力センサとして利用されていた。
[Prior Art] Generally, when detecting force, conventionally, a strain detection gauge is attached to one rod or a diaphragm to measure the force of one rod against external force.
To detect the opening, or when the diaphragm itself is made of 3i, impurities are diffused onto the surface of the St single crystal substrate to form a strain gauge, and the external force on the diaphragm surface is detected. In addition, capacitive pressure detectors have also been used as force sensors.

[発明が解決しようとする問題点] しかるに、1棒と歪ゲージとを組合せた力センサの場合
、歪の貼付位置や貼付手法が力センサの精度に重大な影
響を及ぼすために、力センサの製造が非常に手間のかか
る作業となり熟練を要するものであった。
[Problems to be Solved by the Invention] However, in the case of a force sensor that combines a bar and a strain gauge, the strain affixing position and affixing method have a significant effect on the accuracy of the force sensor. Manufacturing was extremely time-consuming and required skill.

しかも、過負荷に対して歪ゲージが剥れる可能性もあっ
た。また、シリコンダイヤフラムの表面にストレンゲー
ジを形成させた力センサの場合、精度が良い割には、そ
の精度域での温度補償が必要であり、製造工程の数が多
く、価格が高価になるという問題があった。さらに、静
電容量形力検出器に関しては、電極板間に存在する誘電
体の状況、電極板の対環境変化によって出力値が変動す
ること等の問題があった。
Moreover, there was a possibility that the strain gauge would peel off due to overload. In addition, in the case of a force sensor with a strain gauge formed on the surface of a silicon diaphragm, although it has good accuracy, it requires temperature compensation within that accuracy range, requires a large number of manufacturing steps, and is expensive. There was a problem. Furthermore, with regard to capacitive force detectors, there have been problems such as the output value fluctuating depending on the state of the dielectric material existing between the electrode plates and changes in the environment of the electrode plates.

この発明は上記の如き事情に鑑みてなされたものであっ
て、製造工程が簡略で、かつ安価であり、しかも軽量で
あり、さらに弾性範囲内では広レンジの力検出が可能な
力センサを提供することを目的とするものである。
The present invention was made in view of the above circumstances, and provides a force sensor that has a simple manufacturing process, is inexpensive, is lightweight, and is capable of detecting force over a wide range within the elastic range. The purpose is to

(ロ)発明の構成 [問題を解決するための手段] この目的に対応して、この発明の力センサは、圧抵抗効
果を有する高分子複合材料製の基板の表裏面に金属蒸着
によって形成された金属薄膜からなる電極を設けてなる
ことを特徴としている。−以下、この発明の詳細を一実
施例を示ず図面について説明する。
(b) Structure of the invention [Means for solving the problem] In response to this purpose, the force sensor of the present invention is formed by metal vapor deposition on the front and back surfaces of a substrate made of a polymer composite material having a piezoresistive effect. It is characterized by being provided with an electrode made of a thin metal film. - Hereinafter, details of the present invention will be explained with reference to the drawings without showing one embodiment.

第1図において、1は力センサであり、力センサ1は基
板2を有し、基板2の上下両面の電極3、電極4及び電
極5からなる電極対10を備えている。基板2には例え
ばエチレン酢酸ビニルコポリマの如きゴム的弾性を有す
る高分子材料を母材として、それにカーボングラファイ
ト、ニッケル、アルミニウム等の導?iN9物質を混入
し、それで板状の複合材料を構成したものである。この
場合の複合材料からなる基板2の外圧に対する電気抵抗
変化は第2図に示す如くなる。
In FIG. 1, 1 is a force sensor, and the force sensor 1 has a substrate 2, and is provided with an electrode pair 10 consisting of an electrode 3, an electrode 4, and an electrode 5 on both upper and lower surfaces of the substrate 2. The substrate 2 is made of a polymeric material having rubber-like elasticity, such as ethylene vinyl acetate copolymer, as a base material, and a conductive material such as carbon graphite, nickel, aluminum, etc., as a base material. A plate-shaped composite material is formed by mixing the iN9 substance. In this case, the change in electrical resistance of the substrate 2 made of a composite material with respect to external pressure is as shown in FIG.

基板2の下面には電極3及び電極4が形成され、また基
板2の上面には電極5が形成される。
An electrode 3 and an electrode 4 are formed on the lower surface of the substrate 2, and an electrode 5 is formed on the upper surface of the substrate 2.

電極3は半径r1を有する円形電極である。電極4は内
径2r2の円環電極であり、さらに電極5は電極4の外
径とほぼ同一径を有する円形電極である。電極3と電極
5を同電位に保ち電極3と同電位に保った状態で電極5
と電極3の間に電圧を印加することによって基板2の体
積電気抵抗を測定することができる。これによって基板
2に加えられる圧縮力の大きさと前記2種の電気抵抗の
関係を知ることができる。
Electrode 3 is a circular electrode with radius r1. The electrode 4 is a circular electrode having an inner diameter of 2r2, and the electrode 5 is a circular electrode having approximately the same diameter as the outer diameter of the electrode 4. Keeping electrode 3 and electrode 5 at the same potential, electrode 5 is kept at the same potential as electrode 3.
By applying a voltage between the electrode 3 and the electrode 3, the volume electrical resistance of the substrate 2 can be measured. This makes it possible to know the relationship between the magnitude of the compressive force applied to the substrate 2 and the two types of electrical resistance.

それぞれの電極3.4及び5は金やアルミニウム等の金
属を基板2の表面に真空蒸着法を使用して蒸着すること
によって形成される。この場合に使用する金属蒸着手法
には2通りあり、1つは、予め電極の形状をしたマスク
を高分子複合材料からなる基板2の上に載せ、その上か
ら金属真空蒸着を行い、さらに基板2を裏返し、同種の
真空蒸着を行う手法である。この金属蒸着手法は、上下
の真空蒸着箇所の位置合せが必要であるが、真空蒸着と
同時に求める電極パターンが形成できるという利点があ
る。第2の手法は、真空蒸着:[程においては、電極膜
のみを基板2の上下面に形成し、その後、電極パターン
をフォトエツチング手法によって形成させる手法である
。この手法は、エツチングの際の技術的熟練度によって
力センサの成否が決定されるが、上記第1の手法と異な
って、微小電極を形成できる特徴がある。
Each of the electrodes 3.4 and 5 is formed by depositing a metal such as gold or aluminum onto the surface of the substrate 2 using a vacuum deposition method. There are two methods of metal evaporation used in this case. One is to place a mask in the shape of an electrode on the substrate 2 made of a polymer composite material, perform metal vacuum evaporation on top of it, and then This is a method in which the same type of vacuum evaporation is performed by flipping 2 over. Although this metal vapor deposition method requires alignment of the upper and lower vacuum vapor deposition locations, it has the advantage that the desired electrode pattern can be formed simultaneously with the vacuum vapor deposition. The second method is vacuum evaporation, in which only electrode films are formed on the upper and lower surfaces of the substrate 2, and then an electrode pattern is formed by photoetching. The success or failure of this method is determined by the technical skill level of the etching process, but unlike the first method described above, it has the feature of being able to form microelectrodes.

力センサ1の温度補償をする場合には次のようにする。To compensate for the temperature of the force sensor 1, proceed as follows.

第3図及び第4図に示すように4個の電極対10a、1
0b、10c、10dを設ける。この場合、各電極対の
電極5は共通にする。電極10aと10cは力センサ1
の中心に対して一定距離を隔てて対称に配置し、また電
極対10bと106は中心に対して他の一定距離を隔て
て対称に配置する。これら4個の電極対の出力を第5図
に示すようにブリッジ回路を構成させることによって、
温度変化に対処することができる。
As shown in FIGS. 3 and 4, four electrode pairs 10a, 1
0b, 10c, and 10d are provided. In this case, the electrode 5 of each electrode pair is made common. Electrodes 10a and 10c are force sensor 1
The electrode pairs 10b and 106 are arranged symmetrically with respect to the center at a fixed distance apart, and the electrode pair 10b and 106 are arranged symmetrically with respect to the center at another fixed distance. By configuring the outputs of these four electrode pairs into a bridge circuit as shown in Figure 5,
Able to cope with temperature changes.

[作用] 以上のように構成された力センサ1における力検出作用
は次の通りである。
[Operation] The force detection operation in the force sensor 1 configured as described above is as follows.

基Ifi2の厚さをhとし、そのときの体積抵抗をRと
する。基板2を構成する高分子複合材料の固有抵抗をρ
とすると、このときのρは p= ((π(r、 十r2) )/h) R−(1)
となる。(1)式において第1図に示す基板2に上部方
向から荷重が加わった時の各々の値はρ→ρ+Δρ、h
−+h→Δh1 r1→r1+Δr1、r2→r2+Δr2R−R+ΔR となる。これを(1)式に代入して整理すると(ΔR/
R)=(Δρ/ρ)+(Δh/h )−(2(Δr1+
 r2) ) /(r  →−r )    ・・・(2)が算出でき
る。(2)式においてΔR/Rが一般にいわれるゲージ
率であり、各荷重下の抵抗変化が求められることになる
。すなわちΔh、Δr1Δr2は荷重によって高分子複
合材料の形状が変化したことによるものであり、一般に
知られている金属ゲージのゲージ変化分に相当する項で
ある。
Let h be the thickness of the base Ifi2, and let R be the volume resistance at that time. The specific resistance of the polymer composite material constituting the substrate 2 is ρ
Then, ρ at this time is p= ((π(r, 10r2) )/h) R-(1)
becomes. In equation (1), when a load is applied to the board 2 shown in Figure 1 from above, the respective values are ρ → ρ + Δρ, h
-+h→Δh1 r1→r1+Δr1, r2→r2+Δr2R−R+ΔR. Substituting this into equation (1) and rearranging it, (ΔR/
R)=(Δρ/ρ)+(Δh/h)−(2(Δr1+
r2) ) /(r → −r) ... (2) can be calculated. In equation (2), ΔR/R is a gauge factor that is generally referred to, and the resistance change under each load is determined. That is, Δh, Δr1Δr2 are due to changes in the shape of the polymer composite material due to the load, and are terms corresponding to gauge changes in a generally known metal gauge.

また、Δρは力センサ1が1Ω−C+a〜1000Ω−
cmと比較的低い、半導性領域で使用していることによ
るゲージファクタからくる項で事導体ゲージの場合のゲ
ージ変化分に相当する。
Also, Δρ is 1Ω-C+a to 1000Ω-
This term comes from the gauge factor due to the use in the semiconducting region, which is relatively low as cm, and corresponds to the gauge change in the case of a conductive gauge.

この発明の力センサ1を有効に利用するための一例を第
6図に示す。すなわち、第6図に示す例では、力センサ
1を利用して円形の差圧検出器11を構成する。差圧検
出器11は密閉容器12を備え、密閉容器12の内部空
間を力センサ1を境として2個の室13.14に分割し
ている。上部の室13に圧力POを加えることによって
、基板2の下の室14の圧力Psの差分の圧力が基板2
に加わり、その出力が(2)式によって導き出される。
An example of how to effectively utilize the force sensor 1 of the present invention is shown in FIG. That is, in the example shown in FIG. 6, a circular differential pressure detector 11 is constructed using the force sensor 1. The differential pressure detector 11 includes a closed container 12, and the internal space of the closed container 12 is divided into two chambers 13 and 14 with the force sensor 1 as a boundary. By applying pressure PO to the upper chamber 13, the pressure difference between the pressure Ps in the chamber 14 below the substrate 2 is applied to the substrate 2.
, and its output is derived from equation (2).

(ハ)発明の効果 この発明の力センサは、複合材料製の基板の両面に金属
蒸着膜を形成するだけで構成されるから、製造が極めて
簡単であり、従って価格も低部にすることができる。歪
ゲージを貼付する作業を必要とせず、歪ゲージの貼付位
置や貼付手法が力検出精度に影響を及ぼすことがなく、
熟練を要さずに力センサを製造することができる1、電
極は金属蒸着による薄膜によって形成されるのであり、
付着力が大きく、過負荷に対しても剥離することがなく
、かつ装置を小型、軽量化することが可能であり、産業
用ロボット等における力検出用として簡易に利用するこ
とが可能である。しかも温度補償も容易であり、基板の
弾性範囲内では広レンジの力検出が可能である。
(c) Effects of the Invention The force sensor of this invention is constructed by simply forming a metal vapor deposited film on both sides of a substrate made of a composite material, so it is extremely easy to manufacture, and therefore the price can be kept low. can. There is no need to attach strain gauges, and the location and method of attaching strain gauges does not affect force detection accuracy.
Force sensors can be manufactured without requiring any skill. 1. The electrodes are formed from thin films formed by metal vapor deposition.
It has a strong adhesion force, does not peel off even under overload, and allows the device to be made smaller and lighter, and can be easily used for force detection in industrial robots and the like. Moreover, temperature compensation is easy, and force can be detected over a wide range within the elastic range of the substrate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は力センサを示す縦断面説明図、第2図は基板の
外圧に対する電気抵抗変化を示すグラフ、第3図はこの
発明の他の実施例に係わる力センサを示す縦断面説明図
、第4図は第3図に示す力センサの平面説明図、第5図
は温度補償回路を示す回路図、及び第6図は力センサを
組込んだ差圧検出器を示す縦断面説明図である。 1・・・力センサ  2・・・基板  3・・・電極 
 4・・・電極  5・・・電極  10,10a、1
0b。 10c、10d・・・電極対 第1図 第2図 嘘ヒ、九 1氏、jL  夕−イヒ 第3図 4  3  10b     loa      lo
d第4図 第5図 第6図
FIG. 1 is an explanatory longitudinal cross-sectional view showing a force sensor, FIG. 2 is a graph showing changes in electrical resistance of a substrate with respect to external pressure, and FIG. 3 is an explanatory longitudinal cross-sectional view showing a force sensor according to another embodiment of the present invention. Fig. 4 is a plan view of the force sensor shown in Fig. 3, Fig. 5 is a circuit diagram showing a temperature compensation circuit, and Fig. 6 is a vertical cross-sectional view showing a differential pressure detector incorporating the force sensor. be. 1... Force sensor 2... Substrate 3... Electrode
4... Electrode 5... Electrode 10, 10a, 1
0b. 10c, 10d... Electrode pair Fig. 1 Fig. 2 Mr. 1, jL Yu-ihi Fig. 3 4 3 10b loa lo
dFigure 4Figure 5Figure 6

Claims (1)

【特許請求の範囲】[Claims]  圧抵抗効果を有する高分子複合材料製の基板の表裏面
に金属蒸着によつて形成された金属薄膜からなる電極を
設けてなることを特徴とする力センサ
A force sensor comprising electrodes made of thin metal films formed by metal vapor deposition on the front and back surfaces of a substrate made of a polymer composite material having a piezoresistive effect.
JP6161985A 1985-03-26 1985-03-26 Force sensor Pending JPS61219844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6161985A JPS61219844A (en) 1985-03-26 1985-03-26 Force sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6161985A JPS61219844A (en) 1985-03-26 1985-03-26 Force sensor

Publications (1)

Publication Number Publication Date
JPS61219844A true JPS61219844A (en) 1986-09-30

Family

ID=13176369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6161985A Pending JPS61219844A (en) 1985-03-26 1985-03-26 Force sensor

Country Status (1)

Country Link
JP (1) JPS61219844A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010518447A (en) * 2007-02-07 2010-05-27 ピーピージー インダストリーズ オハイオ インコーポレーテツド Crystalline colloid arrays in response to activators

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51114090A (en) * 1975-04-01 1976-10-07 Tokyo Denki Daigaku Metal-oxide membrane-semiconductor voltage senser element
JPS5874086A (en) * 1981-10-29 1983-05-04 Toshiba Corp Stress detecting element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51114090A (en) * 1975-04-01 1976-10-07 Tokyo Denki Daigaku Metal-oxide membrane-semiconductor voltage senser element
JPS5874086A (en) * 1981-10-29 1983-05-04 Toshiba Corp Stress detecting element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010518447A (en) * 2007-02-07 2010-05-27 ピーピージー インダストリーズ オハイオ インコーポレーテツド Crystalline colloid arrays in response to activators

Similar Documents

Publication Publication Date Title
US4207604A (en) Capacitive pressure transducer with cut out conductive plate
US7389697B2 (en) Pressure sensor for detecting small pressure differences and low pressures
US4785669A (en) Absolute capacitance manometers
US4177496A (en) Capacitive pressure transducer
US4388668A (en) Capacitive pressure transducer
GB2086058A (en) Capacitive fluid pressure sensors
US20060169048A1 (en) Differential pressure sensor
US7360429B1 (en) High sensitivity pressure actuated switch based on MEMS-fabricated silicon diaphragm and having electrically adjustable switch point
US3814998A (en) Pressure sensitive capacitance sensing element
CA1154502A (en) Semiconductor variable capacitance pressure transducer
JPS61219844A (en) Force sensor
CA2109619A1 (en) A gas sensor
US4106349A (en) Transducer structures for high pressure application
JPH0415487B2 (en)
JPS6037401B2 (en) Method for detecting center of gravity position of surface pressure
JPH023123B2 (en)
JP2813721B2 (en) Capacitive pressure sensor
JP3144647B2 (en) Capacitive pressure sensor element
JPH0571894B2 (en)
JPH06160221A (en) Wiring pattern of strain sensor
JPH11237292A (en) Pressure detection element and pressure sensor
JPS57191526A (en) Pressure sensor
JPH06213746A (en) Semiconductor pressure sensor
JPH06102128A (en) Semiconductor composite function sensor
JPH065186B2 (en) Flat pressure sensor