JPH06213746A - Semiconductor pressure sensor - Google Patents
Semiconductor pressure sensorInfo
- Publication number
- JPH06213746A JPH06213746A JP2085993A JP2085993A JPH06213746A JP H06213746 A JPH06213746 A JP H06213746A JP 2085993 A JP2085993 A JP 2085993A JP 2085993 A JP2085993 A JP 2085993A JP H06213746 A JPH06213746 A JP H06213746A
- Authority
- JP
- Japan
- Prior art keywords
- diaphragm
- differential pressure
- pressure
- pressure detecting
- static pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Measuring Fluid Pressure (AREA)
- Pressure Sensors (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は差圧あるいは圧力および
静圧を検出する半導体圧力センサに関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor pressure sensor for detecting differential pressure or pressure and static pressure.
【0002】[0002]
【従来の技術】従来、この種の半導体圧力センサとして
はSi(シリコン)半導体ダイヤフラムを利用したもの
が知られている。このSiダイヤフラム型半導体圧力セ
ンサは、Si単結晶からなる半導体基板の表面に不純物
の拡散もしくはイオン打ち込み技術によりピエゾ抵抗領
域として作用するゲージを形成すると共に、Alの蒸着
等によりリードを形成し、裏面の一部をエッチングによ
って除去することにより厚さ20μm〜50μm程度の
起歪部、すなわちダイヤフラムを形成して構成したもの
で、ダイヤフラムの表裏面にそれぞれ測定すべき圧力を
加えると、ダイヤフラムの変形に伴いゲージの比抵抗が
変化し、この時の抵抗変化に伴う出力電圧を検出し、差
圧または圧力を測定するものである。また、最近では温
度や静圧により生じるセンサの零点変化を防止するた
め、静圧および温度を検出し、これらの検出信号により
差圧または圧力信号を補正することにより、差圧または
圧力をより高精度に測定し得るようにした複合機能型半
導体圧力センサが知られている(例:特開平4−113
239号公報)。2. Description of the Related Art Conventionally, as a semiconductor pressure sensor of this type, one using a Si (silicon) semiconductor diaphragm is known. In this Si diaphragm type semiconductor pressure sensor, a gauge that acts as a piezoresistive region is formed on the surface of a semiconductor substrate made of Si single crystal by an impurity diffusion or ion implantation technique, and leads are formed by vapor deposition of Al and the back surface is formed. Is formed by forming a strain-flexing portion having a thickness of about 20 μm to 50 μm, that is, a diaphragm by removing a part of it by etching. When pressure to be measured is applied to the front and back surfaces of the diaphragm, the diaphragm is deformed. Along with this, the specific resistance of the gauge changes, and the output voltage due to the resistance change at this time is detected to measure the differential pressure or pressure. Recently, in order to prevent the zero point change of the sensor caused by temperature or static pressure, the static pressure and temperature are detected, and the differential pressure or pressure signal is corrected by these detection signals to increase the differential pressure or pressure. A multi-function type semiconductor pressure sensor capable of measuring with high accuracy is known (eg, Japanese Patent Laid-Open No. 4-113).
No. 239).
【0003】図3および図4はこのような複合機能型半
導体圧力センサの従来例を示すもので、1はバックプレ
ートで、このバックプレート1は半導体基板2と線膨張
係数が近似したパイレックスガラス、セラミックス等に
よって形成され、上下面に貫通する圧力導入孔3を有
し、上面に半導体基板2が静電接合されている。半導体
基板2は、(001)面のn型単結晶Siからなり、中
央部と四隅部にそれぞれ薄肉部が設けれており、中央部
の薄肉部4が大きな円板状の差圧検出用ダイヤフラムを
形成し、四隅部の薄肉部5が同じく小さな円板状の静圧
検出用ダイヤフラムをそれぞれ形成している。これらの
薄肉部4,5は、半導体基板2の裏面を電解エッチング
によって部分的に除去し凹部6,7を設けることで形成
され、凹部6,7とは反対側の面に差圧検出用ゲージ8
と、静圧検出用ゲージ9がそれぞれ設けられている。半
導体基板2の裏面中央に形成されている凹部6は、前記
圧力導入孔3と連通し、測定圧力の一方P1 が導かれ
る。裏面四隅部に形成されている各凹部7は、バックプ
レート1の接合によって完全に密閉されることにより基
準圧室10をそれぞれ形成し、真空または大気圧に保持
されている。FIGS. 3 and 4 show a conventional example of such a multi-function type semiconductor pressure sensor, in which 1 is a back plate, which is a Pyrex glass whose linear expansion coefficient is similar to that of the semiconductor substrate 2. A pressure introducing hole 3 is formed of ceramics or the like and penetrates the upper and lower surfaces, and the semiconductor substrate 2 is electrostatically bonded to the upper surface. The semiconductor substrate 2 is made of (001) -plane n-type single crystal Si, has thin portions at the center and four corners, and the thin portion 4 at the center is a large disk-shaped differential pressure detection diaphragm. And the thin-walled portions 5 at the four corners respectively form small disk-shaped static pressure detecting diaphragms. These thin portions 4 and 5 are formed by partially removing the back surface of the semiconductor substrate 2 by electrolytic etching to provide recesses 6 and 7. The differential pressure detection gauge is provided on the surface opposite to the recesses 6 and 7. 8
And a static pressure detection gauge 9 are provided. The concave portion 6 formed in the center of the back surface of the semiconductor substrate 2 communicates with the pressure introducing hole 3 and one side P1 of the measured pressure is introduced. The recesses 7 formed at the four corners of the back surface are completely sealed by joining the back plates 1 to form the reference pressure chambers 10 and are maintained in vacuum or atmospheric pressure.
【0004】差圧検出用ゲージ8はピエゾ抵抗領域(ピ
エゾ抵抗素子)として作用するもので、差圧または圧力
の印加時に差圧検出用ダイヤフラム4に発生する半径方
向と周方向の応力が最大となる周縁部寄りに不純物の拡
散もしくはイオン打ち込み技術によって4つ形成されて
おり、Alの蒸着等により形成されたリード11により
ホイールストーンブリッジを構成することにより差圧検
出用ダイヤフラム4の表裏面に加えられた測定すべき圧
力P1 ,P2 の差圧信号を差動的に出力する。測定差圧
または圧力は夫々最大120Kgf/cm2 ,140K
gf/cm2 程度である。The differential pressure detecting gauge 8 acts as a piezoresistive region (piezoresistive element), and the stress in the radial direction and the circumferential direction generated in the differential pressure detecting diaphragm 4 at the time of applying the differential pressure or the pressure is the maximum. 4 are formed near the peripheral edge portion by the diffusion of impurities or the ion implantation technique. By forming a wheel stone bridge with leads 11 formed by vapor deposition of Al or the like, in addition to the front and back surfaces of the differential pressure detecting diaphragm 4, The differential pressure signal between the measured pressures P1 and P2 to be measured is differentially output. Measured differential pressure or pressure is maximum 120Kgf / cm 2 , 140K, respectively
It is about gf / cm 2 .
【0005】静圧検出用ゲージ9も前記差圧検出用ゲー
ジ8と同様にピエゾ抵抗領域として作用するもので、各
静圧検出用ダイヤフラム5の表面中央に不純物の拡散も
しくはイオン打ち込み技術によって1つずつ形成されて
おり、Alの蒸着等により形成されたリード(図示せ
ず)によりホイールストーンブリッジに結線されること
で、基準圧室11内の静圧変化を検出する。The static pressure detecting gauge 9 also acts as a piezoresistive region like the differential pressure detecting gauge 8. One of the static pressure detecting gauges 9 is formed in the center of the surface of each static pressure detecting diaphragm 5 by the diffusion or ion implantation technique of impurities. They are formed separately, and are connected to a wheelstone bridge by leads (not shown) formed by vapor deposition of Al or the like to detect a change in static pressure in the reference pressure chamber 11.
【0006】なお、差圧検出用ゲージ8と静圧検出用ゲ
ージ9の向きはブリッジを構成した時の出力電圧に影響
する。結晶面方位(001)のSi上にこれらゲージ
8,9を設ける場合、ピエゾ抵抗係数が最大になる向き
は<110>の結晶軸方向であるため、この方向にゲー
ジ8,9を形成することが望ましい。12はエピタキシ
ャル層である。The orientations of the differential pressure detecting gauge 8 and the static pressure detecting gauge 9 affect the output voltage when the bridge is constructed. When these gauges 8 and 9 are provided on Si having a crystal plane orientation (001), the direction in which the piezoresistive coefficient is maximum is the <110> crystal axis direction, so the gauges 8 and 9 should be formed in this direction. Is desirable. 12 is an epitaxial layer.
【0007】[0007]
【発明が解決しようとする課題】上記した従来の半導体
圧力センサにあっては差圧検出用ダイヤフラム4の周り
に4つの静圧検出用ダイヤフラム5を形成しているの
で、圧力を受けて半導体基板2が変形すると、隣り合う
静圧検出用ダイヤフラム5間の肉厚部と、差圧検出用ダ
イヤフラム4と静圧検出用ダイヤフラム5との間の肉厚
部とでは、差圧検出用ダイヤフラム4に対する影響が異
なる。そのため、差圧検出用ダイヤフラム4の周方向に
不均一な応力が生じ易く、高い検出精度が得られないと
いう問題があった。In the conventional semiconductor pressure sensor described above, since the four static pressure detecting diaphragms 5 are formed around the differential pressure detecting diaphragm 4, the semiconductor substrate receives the pressure. When 2 is deformed, the thick portion between the adjacent static pressure detection diaphragms 5 and the thick portion between the differential pressure detection diaphragm 4 and the static pressure detection diaphragm 5 are different from the differential pressure detection diaphragm 4. The impact is different. Therefore, there is a problem that non-uniform stress is likely to occur in the circumferential direction of the differential pressure detection diaphragm 4 and high detection accuracy cannot be obtained.
【0008】したがって、本発明は上記したような従来
の問題点に鑑みてなされたもので、その目的とするとこ
ろは、差圧検出用ダイヤフラムの周方向の応力を均一に
することができ、測定精度を向上させるようにした半導
体圧力センサを提供することにある。Therefore, the present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to make it possible to make uniform the stress in the circumferential direction of the differential pressure detecting diaphragm and to perform the measurement. It is to provide a semiconductor pressure sensor which is improved in accuracy.
【0009】[0009]
【課題を解決するための手段】上記目的を解決するため
本発明に係る半導体圧力センサは、単結晶からなる半導
体基板に円板状薄肉部とこの円板状薄肉部の周囲にこれ
と同心の円輪状薄肉部を形成し、前記円板状薄肉部を差
圧検出用ダイヤフラムとしてその表面に差圧検出用ピエ
ゾ抵抗素子を設け、前記円輪状薄肉部を静圧検出用ダイ
ヤフラムとしてその表面に静圧検出用ピエゾ抵抗素子を
設けたものである。In order to solve the above-mentioned problems, a semiconductor pressure sensor according to the present invention is a semiconductor substrate made of a single crystal and has a disk-shaped thin portion and a disk-shaped thin portion concentric with the disk-shaped thin portion. A ring-shaped thin portion is formed, the disc-shaped thin portion is used as a differential pressure detection diaphragm, and a piezoresistive element for differential pressure detection is provided on the surface, and the ring-shaped thin portion is used as a static pressure detection diaphragm and is statically detected on the surface. A piezoresistive element for pressure detection is provided.
【0010】[0010]
【作用】半導体基板が圧力を受けて変形しても、静圧検
出用ダイヤフラムは差圧検出用ダイヤフラムと同心の円
輪状薄肉部を形成しているので、差圧検出用ダイヤフラ
ムの周方向に不均一な応力は生じない。[Function] Even if the semiconductor substrate is deformed under pressure, since the diaphragm for detecting static pressure has a thin annular portion that is concentric with the diaphragm for detecting differential pressure, the diaphragm for detecting differential pressure does not move in the circumferential direction. No uniform stress occurs.
【0011】[0011]
【実施例】以下、本発明に係る半導体圧力センサを図面
に基づいて詳細に説明する。図1は本発明に係る半導体
圧力センサの一実施例を示す平面図、図2は同センサの
断面図である。なお、図中図3および図4と同一構成部
材のものに対しては同一符号をもって示す。また、図に
おける各部の厚み、大きさは理解を容易にするため誇張
して示しており、実際の寸法とは異なる。これらの図に
おいて、本実施例は半導体基板2に円板状薄肉部4と、
円輪状薄肉部20を電解エッチングによって順次形成
し、前記円板状薄肉部4を差圧検出用ダイヤフラムとし
てその表面に差圧検出用ピエゾ抵抗素子としてのゲージ
8を拡散またはイオン打ち込み法によって形成し、前記
円輪状薄肉部20を静圧検出用ダイヤフラムとしてその
表面に静圧検出用ピエゾ抵抗素子としてのゲージ9を同
じく拡散またはイオン打ち込み法によって形成したもの
である。差圧検出用ダイヤフラム4は半導体基板2の中
央に形成され、静圧検出用ダイヤフラム20は差圧検出
用ダイヤフラム4の外側に差圧検出用ダイヤフラム4と
中心を一致させて形成されている。静圧検出用ゲージ9
は、静圧検出用ダイヤフラム20の幅方向中央に形成さ
れている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A semiconductor pressure sensor according to the present invention will be described below in detail with reference to the drawings. 1 is a plan view showing an embodiment of a semiconductor pressure sensor according to the present invention, and FIG. 2 is a sectional view of the sensor. In the figure, the same components as those in FIGS. 3 and 4 are designated by the same reference numerals. Further, the thickness and size of each part in the drawing are exaggerated for ease of understanding, and are different from actual dimensions. In these figures, in this embodiment, a disk-shaped thin portion 4 is formed on a semiconductor substrate 2,
The ring-shaped thin portion 20 is sequentially formed by electrolytic etching, and the disk-shaped thin portion 4 is used as a differential pressure detecting diaphragm and a gauge 8 as a differential pressure detecting piezoresistive element is formed on the surface thereof by a diffusion or ion implantation method. The ring-shaped thin portion 20 is used as a static pressure detecting diaphragm, and a gauge 9 as a static pressure detecting piezoresistive element is formed on the surface by the diffusion or ion implantation method. The differential pressure detection diaphragm 4 is formed in the center of the semiconductor substrate 2, and the static pressure detection diaphragm 20 is formed outside the differential pressure detection diaphragm 4 with the center of the differential pressure detection diaphragm 4 aligned. Static pressure detection gauge 9
Is formed in the center of the static pressure detection diaphragm 20 in the width direction.
【0012】差圧選出用ダイヤフラム4と静圧検出用ダ
イヤフラム20の製作に際しては、半導体基板2の表裏
面にPt,Au等の貴金属膜を蒸着等によって形成し、
この貴金属膜を陽極とし半導体基板2をフッ化水素等の
電解液中に浸漬して電解エッチングし、半導体基板2の
一方の面に円形の凹部6と円輪状(リング状)の凹部2
1を形成すればよい。なお、その他の構成は図3および
図4に示した従来センサと同様である。このように円輪
状の静圧検出用ダイヤフラム20を差圧検出用ダイヤフ
ラム4と同心に形成すると、半導体基板2が圧力を受け
て変形しても、差圧検出用ダイヤフラム4の周方向に不
均一な応力が生じず、差圧または圧力を正確に検出する
ことができる。When manufacturing the differential pressure selecting diaphragm 4 and the static pressure detecting diaphragm 20, a noble metal film such as Pt or Au is formed on the front and back surfaces of the semiconductor substrate 2 by vapor deposition or the like.
Using this noble metal film as an anode, the semiconductor substrate 2 is immersed in an electrolytic solution such as hydrogen fluoride for electrolytic etching to form a circular recess 6 and a ring-shaped recess 2 on one surface of the semiconductor substrate 2.
1 may be formed. The other configurations are the same as those of the conventional sensor shown in FIGS. 3 and 4. When the ring-shaped static pressure detection diaphragm 20 is formed concentrically with the differential pressure detection diaphragm 4 as described above, even if the semiconductor substrate 2 is deformed under pressure, it is not uniform in the circumferential direction of the differential pressure detection diaphragm 4. The differential pressure or the pressure can be accurately detected without causing any stress.
【0013】[0013]
【発明の効果】以上説明したように本発明に係る半導体
圧力センサによれば、差圧検出用ダイヤフラムの周囲に
これと同心の円輪状静圧検出用ダイヤフラムを形成した
ので、半導体基板が変形しても差圧検出用ダイヤフラム
の周方向に不均一な応力が生じず、差圧または圧力を正
確に検出することができ、センサの検出精度を向上させ
ることができる。As described above, according to the semiconductor pressure sensor of the present invention, since the circular ring-shaped static pressure detecting diaphragm concentric with the differential pressure detecting diaphragm is formed around the differential pressure detecting diaphragm, the semiconductor substrate is deformed. However, non-uniform stress does not occur in the circumferential direction of the differential pressure detecting diaphragm, the differential pressure or the pressure can be accurately detected, and the detection accuracy of the sensor can be improved.
【図1】本発明に係る半導体圧力センサの一実施例を示
す平面図である。FIG. 1 is a plan view showing an embodiment of a semiconductor pressure sensor according to the present invention.
【図2】同センサの断面図である。FIG. 2 is a sectional view of the sensor.
【図3】半導体圧力センサの従来例を示す平面図であ
る。FIG. 3 is a plan view showing a conventional example of a semiconductor pressure sensor.
【図4】図3のIV−IV線断面図である。4 is a sectional view taken along line IV-IV of FIG.
1 バックプレート 2 半導体基板 4 差圧検出用ダイヤフラム 5 静圧検出用ダイヤフラム 6,7 凹部 8 差圧検出用ゲージ 9 静圧検出用ゲージ 11 リード 20 静圧検出用ダイヤフラム 1 Back Plate 2 Semiconductor Substrate 4 Differential Pressure Detection Diaphragm 5 Static Pressure Detection Diaphragm 6,7 Recessed Area 8 Differential Pressure Detection Gauge 9 Static Pressure Detection Gauge 11 Lead 20 Static Pressure Detection Diaphragm
Claims (1)
部とこの円板状薄肉部の周囲にこれと同心の円輪状薄肉
部を形成し、前記円板状薄肉部を差圧検出用ダイヤフラ
ムとしてその表面に差圧検出用ピエゾ抵抗素子を設け、
前記円輪状薄肉部を静圧検出用ダイヤフラムとしてその
表面に静圧検出用ピエゾ抵抗素子を設けたことを特徴と
する半導体圧力センサ。1. A disc-shaped thin portion and a ring-shaped thin portion concentric with the disc-shaped thin portion are formed on a semiconductor substrate made of a single crystal, and the disc-shaped thin portion is used for differential pressure detection. A piezoresistive element for differential pressure detection is provided on the surface as a diaphragm,
A semiconductor pressure sensor characterized in that the annular thin portion is used as a static pressure detection diaphragm, and a static pressure detection piezoresistive element is provided on the surface thereof.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2085993A JPH06213746A (en) | 1993-01-14 | 1993-01-14 | Semiconductor pressure sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2085993A JPH06213746A (en) | 1993-01-14 | 1993-01-14 | Semiconductor pressure sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06213746A true JPH06213746A (en) | 1994-08-05 |
Family
ID=12038853
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2085993A Pending JPH06213746A (en) | 1993-01-14 | 1993-01-14 | Semiconductor pressure sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06213746A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010091384A (en) * | 2008-10-07 | 2010-04-22 | Yamatake Corp | Pressure sensor |
KR101032076B1 (en) * | 2008-10-07 | 2011-05-02 | 가부시키가이샤 야마다케 | Pressure sensor |
JP2011220927A (en) * | 2010-04-13 | 2011-11-04 | Yamatake Corp | Pressure sensor |
-
1993
- 1993-01-14 JP JP2085993A patent/JPH06213746A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010091384A (en) * | 2008-10-07 | 2010-04-22 | Yamatake Corp | Pressure sensor |
CN101713693A (en) * | 2008-10-07 | 2010-05-26 | 株式会社山武 | Pressure sensor |
KR101032076B1 (en) * | 2008-10-07 | 2011-05-02 | 가부시키가이샤 야마다케 | Pressure sensor |
US8042400B2 (en) | 2008-10-07 | 2011-10-25 | Yamatake Corporation | Pressure sensor |
US8161820B2 (en) | 2008-10-07 | 2012-04-24 | Yamatake Corporation | Pressure sensor |
KR101226852B1 (en) * | 2008-10-07 | 2013-01-25 | 아즈빌주식회사 | Pressure sensor |
JP2011220927A (en) * | 2010-04-13 | 2011-11-04 | Yamatake Corp | Pressure sensor |
US8671765B2 (en) | 2010-04-13 | 2014-03-18 | Azbil Corporation | Pressure sensor having a diaphragm |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3114570B2 (en) | Capacitive pressure sensor | |
US8384170B2 (en) | Pressure sensor | |
JPS5855732A (en) | Electrostatic capacity type pressure sensor | |
US4527428A (en) | Semiconductor pressure transducer | |
JPH09304206A (en) | Semiconductor pressure transducer | |
EP0080186B1 (en) | Semiconductor pressure transducer | |
JPH06213746A (en) | Semiconductor pressure sensor | |
JPH04178533A (en) | Semiconductor pressure sensor | |
JP2694593B2 (en) | Semiconductor pressure sensor | |
JPH0554708B2 (en) | ||
JPS6272178A (en) | Semiconductor pressure detecting device and manufacture of the same | |
JP2715738B2 (en) | Semiconductor stress detector | |
JPH06207873A (en) | Semiconductor pressure sensor and manufacture thereof | |
JPH0875581A (en) | Semiconductor pressure converter | |
JP2512220B2 (en) | Multi-function sensor | |
JPH0821774A (en) | Semiconductor pressure sensor and its manufacture | |
JPH0758347A (en) | Semiconductor pressure sensor and its manufacture | |
JPH0254137A (en) | Semiconductor pressure sensor | |
JP3120388B2 (en) | Semiconductor pressure transducer | |
JP2573539Y2 (en) | Semiconductor pressure sensor | |
JPH06258164A (en) | Semiconductor pressure sensor | |
JPH0536992A (en) | Semiconductor pressure detector | |
JP2573540Y2 (en) | Semiconductor pressure sensor | |
JPH06102128A (en) | Semiconductor composite function sensor | |
JPH0755619A (en) | Semiconductor pressure sensor |