JPH0415487B2 - - Google Patents

Info

Publication number
JPH0415487B2
JPH0415487B2 JP61036250A JP3625086A JPH0415487B2 JP H0415487 B2 JPH0415487 B2 JP H0415487B2 JP 61036250 A JP61036250 A JP 61036250A JP 3625086 A JP3625086 A JP 3625086A JP H0415487 B2 JPH0415487 B2 JP H0415487B2
Authority
JP
Japan
Prior art keywords
electrode
substrate
equation
point detector
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61036250A
Other languages
Japanese (ja)
Other versions
JPS62192818A (en
Inventor
Kazuo Yamaha
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP61036250A priority Critical patent/JPS62192818A/en
Publication of JPS62192818A publication Critical patent/JPS62192818A/en
Publication of JPH0415487B2 publication Critical patent/JPH0415487B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (イ) 発明の目的 [産業上の利用分野] この発明は平板上に集中荷重が作用した場合
に、その集中荷重が作用する加圧点を検出するた
めの加圧点検出器に関するものである。
[Detailed Description of the Invention] (a) Purpose of the Invention [Field of Industrial Application] This invention provides a method for applying pressure to detect a pressurizing point where the concentrated load acts when a concentrated load acts on a flat plate. It concerns a point detector.

[従来の技術] 平板に作用する集中荷重の作用点を検出するた
めに、従来から使用されている方法は、その平板
上にマトリツクス状に多数の電極や歪ゲージ等を
配設し、その各電極や歪ゲージによつて検出され
る平板各部分の歪の大小を比較して加圧点を検出
していた。
[Prior Art] A method conventionally used to detect the point of application of a concentrated load acting on a flat plate is to arrange a large number of electrodes, strain gauges, etc. in a matrix on the flat plate, and Pressure points were detected by comparing the magnitude of strain in each part of the flat plate detected by electrodes and strain gauges.

[発明が解決しようとする問題点] しかるに、このように構成された従来の加圧点
検出器では、マトリツクス状に配置される歪ゲー
ジの数が多くなり、検出器の構造を複雑にし、か
つ、価格も高価になつている。
[Problems to be Solved by the Invention] However, in the conventional pressure point detector configured as described above, the number of strain gauges arranged in a matrix increases, making the structure of the detector complicated and , and prices are becoming more expensive.

この発明は上記の如き事情に鑑みてなさたもの
であつて、構成部品数が少なく、構造が簡単で、
かつ、確実に加圧点を検出することが可能な加圧
点検出器を提供することを目的とするものであ
る。
This invention was made in view of the above circumstances, and has a small number of component parts, a simple structure,
Another object of the present invention is to provide a pressurization point detector that can reliably detect pressurization points.

(ロ) 発明の構成 [問題を解決するための手段] この目的に対応して、この発明の加圧点検出器
は、圧抵抗効果を有する材料からなる平板状の基
板と、前記基板の中心から任意の距離を隔てた3
箇所の部分に取付けられ前記それぞれの部分の変
位に伴う抵抗変化量を検出する電極とを有し、前
記電極は前記基板の一方の面上に形成された円形
の内側電極と前記内側電極の外側に位置する円環
形の外側電極と他方の面上に形成された共通電極
とからなることを特徴としている。
(b) Structure of the Invention [Means for Solving the Problem] Corresponding to this object, the pressure point detector of the present invention includes a flat substrate made of a material having a piezoresistive effect, and a center plate of the substrate. 3 at an arbitrary distance from
and an electrode attached to a portion of the substrate to detect the amount of change in resistance due to displacement of each portion, and the electrode includes a circular inner electrode formed on one surface of the substrate and an outer side of the inner electrode. It is characterized by consisting of an annular outer electrode located on the surface and a common electrode formed on the other surface.

以下、この発明の詳細を一実施例を示す図面に
ついて説明する。
Hereinafter, details of the present invention will be explained with reference to the drawings showing one embodiment.

第1図及び第2図において、1は加圧点検出器
であり、加圧点検出器1は基板2を有する。基板
2は例えばエチレン酢酸ビニルコポリマの如きゴ
ム的弾性を有する高分子材料を母材として、それ
にカーボングラフアイト、ニツケル、アルミニウ
ム等の導電性物質を混入し、それで板状の複合材
料を構成したものである。この場合の複合材料か
らなる基板2の外圧に対する電気抵抗変化は第3
図に示す如くになる。
In FIGS. 1 and 2, 1 is a pressure point detector, and the pressure point detector 1 has a substrate 2. In FIG. The substrate 2 is made of a polymer material having rubber-like elasticity, such as ethylene vinyl acetate copolymer, as a base material, and a conductive substance such as carbon graphite, nickel, or aluminum mixed therein to form a plate-shaped composite material. It is. In this case, the change in electrical resistance of the substrate 2 made of a composite material with respect to external pressure is the third
The result will be as shown in the figure.

基板2には中心から任意の距離に電極3,3
a,3b,3cが設けられている。第4図に示す
如く、電極3は基板2の下面には内側電極4及び
外側電極5が形成され、また基板2の上面には共
通電極6が形成される。
The substrate 2 has electrodes 3, 3 at arbitrary distances from the center.
a, 3b, and 3c are provided. As shown in FIG. 4, the electrodes 3 include an inner electrode 4 and an outer electrode 5 formed on the lower surface of the substrate 2, and a common electrode 6 formed on the upper surface of the substrate 2.

内側電極4は半径r1を有する円形電極である。
外側電極5は内径2r2の円環電極であり、さらに
共通電極6は外側電極5の外径とほぼ同一径を有
する円形電極である。内側電極4と共通電極6を
同電位に保ち、内側電極4と外側電極5との間に
電圧を印加することによつて基板2の表面抵抗を
測定し、また、共通電極6と外側電極5を同電位
に保つた状態で共通電極6と内側電極4の間に電
圧を印加することによつて基板2の体積電気抵抗
を測定することができる。これによつて基板2に
加えられる圧縮力の大きさと前記2種の電気抵抗
の関係を知ることができる。
The inner electrode 4 is a circular electrode with radius r 1 .
The outer electrode 5 is a circular electrode having an inner diameter of 2r 2 , and the common electrode 6 is a circular electrode having approximately the same diameter as the outer diameter of the outer electrode 5 . The surface resistance of the substrate 2 is measured by keeping the inner electrode 4 and the common electrode 6 at the same potential and applying a voltage between the inner electrode 4 and the outer electrode 5. The volume electrical resistance of the substrate 2 can be measured by applying a voltage between the common electrode 6 and the inner electrode 4 while keeping them at the same potential. This makes it possible to know the relationship between the magnitude of the compressive force applied to the substrate 2 and the two types of electrical resistance.

それぞれの電極4,5及び6は金やアルミニウ
ム等の金属を基板2の表面に真空蒸着法を使用し
て蒸着することによつて形成される。この場合に
使用する金属蒸着法には2通りあり、1つは、予
め電極の形状をしたマスクを高分子複合材料から
なる基板2の上に載せ、その上から金属真空蒸着
を行い、さらに基板2を裏返し、同種の真空蒸着
を行う手法である。この金属蒸着手法は、上下の
真空蒸着箇所の位置合せが必要であるが、真空蒸
着と同時に求める電極パターンが形成できるとい
う利点がある。第2の手法は、真空蒸着工程にお
いては、電極膜のみを基板2の上下面に形成し、
その後、電極パターンをフオトエツチング等の手
法によつて形成させる手法である。この手法は、
エツチングの際の技術的熟練度によつて力センサ
の成否が決定されるが、上記第1の手法と異なつ
て、微小電極を形成できる特徴がある。
Each of the electrodes 4, 5 and 6 is formed by depositing metal such as gold or aluminum on the surface of the substrate 2 using a vacuum deposition method. There are two types of metal vapor deposition methods used in this case. One is to place a mask in the shape of an electrode on the substrate 2 made of a polymer composite material, perform metal vacuum vapor deposition on top of the mask, and then This is a method in which the same type of vacuum evaporation is performed by flipping 2 over. Although this metal vapor deposition method requires alignment of the upper and lower vacuum vapor deposition locations, it has the advantage that the desired electrode pattern can be formed simultaneously with the vacuum vapor deposition. The second method is to form only electrode films on the upper and lower surfaces of the substrate 2 in the vacuum evaporation process,
Thereafter, an electrode pattern is formed by a method such as photoetching. This method is
The success or failure of a force sensor is determined by the level of technical proficiency in etching, but unlike the first method described above, this method has the feature of being able to form microelectrodes.

[作用] 以上のように構成された加圧点検出器の作用は
次の通りである。
[Function] The function of the pressure point detector configured as described above is as follows.

まず、電極3の設置位置における力検出作用に
ついて説明する。
First, the force detection effect at the installation position of the electrode 3 will be explained.

基板2の厚さをhとし、そのときの体積抵抗を
Rとする。基板2を構成する高分子複合材料の固
有抵抗をρとすると、このときのρは ρ=〔{π(r1+r2)}/h〕R ……(1) となる。(1)式において第1図に示す基板2に上部
方向から荷重が加わつた時の各々の値は ρ→ρ+Δρ、h→h+Δh、 r1→r1+Δr1、r2→r2+Δr2 R→R+ΔR となる。これを(1)式に代入して整理すると (ΔR/R)=(Δρ/ρ)+(Δh/h) −{2(Δr1+r2)}/(r1+r2) ……(2) が算出できる。(2)式においてΔR/Rが一般にい
われるゲージ率であり、各荷重下の抵抗変化が求
められることになる。すなわちΔh、Δr1、Δr2
荷重によつて高分子複合材料の形状が変化したこ
とによるものであり、一般に知られている金属ゲ
ージのゲージ変化分に相当する項である。
Let h be the thickness of the substrate 2, and let R be the volume resistance at that time. If the specific resistance of the polymer composite material constituting the substrate 2 is ρ, then ρ=[{π(r 1 +r 2 )}/h]R (1). In equation (1), when a load is applied from above to the board 2 shown in Figure 1, the respective values are ρ → ρ + Δρ, h → h + Δh, r 1 → r 1 + Δr 1 , r 2 → r 2 + Δr 2 R →R+ΔR. Substituting this into equation (1) and rearranging it, (ΔR/R) = (Δρ/ρ) + (Δh/h) −{2(Δr 1 + r 2 )}/(r 1 + r 2 ) ……(2 ) can be calculated. In equation (2), ΔR/R is the gauge factor that is generally referred to, and the resistance change under each load is determined. That is, Δh, Δr 1 , and Δr 2 are due to changes in the shape of the polymer composite material due to the load, and are terms corresponding to gauge changes in a generally known metal gauge.

また、Δρは加圧点検出器1が1Ω−cm〜1000Ω
−cmと比較的低い、半導性領域で使用しているこ
とによるゲージフアクタからくる項で半導体ゲー
ジの場合のゲージ変化分に相当する。
In addition, Δρ is 1Ω-cm to 1000Ω when the pressure point detector 1 is
This term comes from the gauge factor due to use in the semiconducting region, which is relatively low at -cm, and corresponds to the gauge change in the case of semiconductor gauges.

次に検出器1における加圧点検出の原理につい
て説明する。
Next, the principle of pressure point detection in the detector 1 will be explained.

第5図に示すように、センサ平面(X−Z平
面)上の三点a、b、cに電極を置き、これから
加圧点Pの座標を求める。aからpまでの長さを
RA、bからPまでの長さをRB、cからPまでの
長さをRcとする。
As shown in FIG. 5, electrodes are placed at three points a, b, and c on the sensor plane (X-Z plane), and the coordinates of the pressurizing point P are determined from this. the length from a to p
Let R A be the length from b to P, R B be the length from c to P, and R c be the length from c to P.

円の方程式から a(racosθa・rasinθa)を中心とする半径RAの方程
式は (x−racosθa2+(Z−rasinθa2=RA 2……(3)a b(rbcosθb、rbsinθb)を中心とする半径RBの方程
式は (x−rbcosθb2+(Z−rbsinθb2=RB 2 ……(4) c(rccosθc、rcsinθc)を中心とする半径RCの方程
式は (x−rccosθc2+(Z−rcsinθc2=RC 2 ……(5) となり (3)式より x2+Z2−2(xracosθa+Zrasinθa)+ra 2−RA 2=0 ……(6) (4)式より x2+Z2−2(xrbcosθb+Zrbsinθb)+rb 2−RB 2=0 ……(7) (5)式より x2+Z2−2(xrccosθc+Zrcsinθc)+rc 2−RC 2=0 ……(8) ここで簡単なため、第6図に示すように、 θa=0°、θb=120°、θc=240° ra=rbc=rとして考えると racosθa=r rasinθa=0 rbcosθb=−0.5r rbsinθb=0.866r rccosθc=−0.5r rcsinθc=0.866r となる。(6)(7)(8)式は、これらから x2+Z2−2rx+r2−RA 2=0 ……(6)′ x2+Z2+rx−1.732rZ+r2−RB 2=0 ……(7)′ x2+Z2+rx+1.732rZ+r2−RC 2=0 ……(8)′ となる。
From the equation of a circle, the equation for radius R A centered at a (r a cosθ a・ra sinθ a ) is (x− r a cosθ a ) 2 + (Z− r a sinθ a ) 2 = R A 2 … ...(3) The equation for the radius R B centered on a b (r b cosθ b , r b sinθ b ) is (x−r b cosθ b ) 2 + (Z−r b sinθ b ) 2 = R B 2 ...(4) The equation of the radius R C centered at c (r c cosθ c , r c sinθ c ) is (x−r c cosθ c ) 2 + (Z−r c sinθ c ) 2 = R C 2 ...(5) From equation (3), x 2 + Z 2 −2 (xr a cosθ a +Zr a sinθ a ) + r a 2 −R A 2 = 0 ...(6) From equation (4), x 2 + Z 2 −2(xr b cosθ b +Zr b sinθ b )+r b 2 −R B 2 =0 ...(7) From equation (5), x 2 +Z 2 −2(xr c cosθ c +Zr c sinθ c )+r c 2 -R C 2 =0 ...(8) For simplicity, as shown in Figure 6, θ a = 0°, θ b = 120°, θ c = 240° r a = r b = c = When considered as r, r a cosθ a = r r a sinθ a = 0 r b cosθ b = −0.5r r b sinθ b = 0.866r r c cosθ c = −0.5r r c sinθ c = 0.866r. Equations (6), (7), and ( 8 ) are derived from these as follows: x 2 +Z 2 −2rx+r 2 −R A 2 =0 ……(6 ) (7)′ x 2 +Z 2 +rx+1.732rZ+r 2 −R C 2 =0 ……(8)′.

(6)′−(7)′は −3rx+1.732rZ=RA 2−RB 2 ……(9) (7)′−(8)′は Z=(RB 2−RC 2)/−3.464r ……(10) となり、 (10)式を(9)式に代入すると x=(−RB 2−RC 2+RC 2)/6r ……(11) (10)、(11)式より加圧点Pの座標(x、y)は (x、y)=〔{(−RA 2−RB 2+RC 2)/6r}、 {(RC 2−RB 2)/3.464rZ}〕 ……(12) となる。 (6)′−(7)′ is −3rx+1.732rZ=R A 2 −R B 2 …(9) (7)′−(8)′ is Z=(R B 2 −R C 2 )/− 3.464r ……(10), and substituting equation (10) into equation (9), x=(−R B 2 −R C 2 +R C 2 )/6r ……(11) (10), (11) From the formula, the coordinates (x, y) of the pressurizing point P are (x, y) = [{(-R A 2 - R B 2 + R C 2 )/6r}, {(R C 2 - R B 2 )/ 3.464rZ}] ...(12)

(12)式を成立させるための電極の配置図を示
すと第6図のようになる。
FIG. 6 shows the arrangement of electrodes for establishing equation (12).

センサがもし均一の無限の板材であれば、それ
ぞれ電極部で変位量はそれぞれの電極から加圧点
までの距離に比例する。
If the sensor is a uniform infinite plate, the amount of displacement at each electrode portion is proportional to the distance from each electrode to the pressurizing point.

ここで、各種電極部における無負荷時、加圧時
の抵抗値を求める。各電極はセンサ表面上に第4
図に示すような、構成で形成したとする。
Here, the resistance values of the various electrode parts under no load and under pressure are determined. Each electrode has a fourth
Assume that the structure is formed as shown in the figure.

内径2r2の外側電極5の内部に半径r1の内側電
極4があり、この2つの電極間の無負荷時の抵抗
RXはRX=(C/L)ρSOとなり、ここでL≒2π(r1
+r2)、ρSO無負荷時の表面抵抗率、Cは両電極の
間隔で r2−r1を示す。
There is an inner electrode 4 with a radius r 1 inside the outer electrode 5 with an inner diameter 2r 2 , and the resistance at no load between these two electrodes is
R X becomes R X = (C/L)ρ SO , where L≒2π(r 1
+r 2 ), ρ SO surface resistivity under no load, C represents r 2 −r 1 at the distance between both electrodes.

よつてRXは RX={(r2−r1)/(r1+r2)π}ρSOとなる。 Therefore, R X becomes R X = {(r 2 − r 1 )/(r 1 + r 2 )π}ρ SO .

このような条件で、定電流源より定電流を電
極4,5に流したとき発生する電圧VXは RX=・RX={(r2−r1) /(r1+r2)π}ρSO・ ……(13) となる。 次に加圧時について考える。加圧によ
つて電極の各形状がΔr1、Δr2変化し、ρSOがΔρだ
け変化したとき、そのときの抵抗Rは R=〔{(r2+Δr2)−(r、−Δr1)}/{(r1
Δr1+r2+Δr2)π}〕×(ρSO+Δρ)……(14) となる。
Under these conditions, the voltage VX generated when a constant current is passed through the electrodes 4 and 5 from a constant current source is R X =・R X = {(r 2 − r 1 ) / (r 1 + r 2 ) }ρ SO・ ...(13) Next, consider the time of pressurization. When the shapes of the electrodes change by Δr 1 and Δr 2 and ρ SO changes by Δρ due to pressurization, the resistance R at that time is R=[{(r 2 +Δr 2 )−(r, −Δr 1 )}/{(r 1 +
Δr 1 + r 2 + Δr 2 )π}]×(ρ SO +Δρ)……(14).

上と同様に定電流を流したときの発生する電
圧Vpは Vp=・RX=〔{(r2+Δr2)−(r1−Δr1)}/{
(r1+Δr1+r2+Δr2)π}〕×(ρSO+Δρ)・…
…(15) (15)式−(13)式がいわゆる加圧したことと
によつては発生した電圧と考えてよい。電極と加
圧点の距離をMとすると M∝(Vp−VR) ……(16) このMは(12)式のRA、RB、RCの値に関係す
ることになる。実際の検出においては予め校正に
よりMの値を求めれば(12)式が算出できる。そ
の方法は以下の通りである。
As above, the voltage V p generated when a constant current flows is V p =・R X = [{(r 2 + Δr 2 ) − (r 1 − Δr 1 )}/{
(r 1 + Δr 1 + r 2 + Δr 2 ) π}] × (ρ SO + Δρ)・…
...(15) Equation (15) - Equation (13) can be considered to be the voltage generated due to so-called pressurization. If the distance between the electrode and the pressurizing point is M, then M∝(V p −V R )...(16) This M is related to the values of R A , R B , and R C in equation (12). In actual detection, equation (12) can be calculated by calculating the value of M in advance through calibration. The method is as follows.

1つの電極からの距離nを変えて一定圧加圧し
たときのMの値を求める(第7図)。
The value of M is determined when constant pressure is applied while changing the distance n from one electrode (FIG. 7).

実際の検出の場合にはこの校正曲線のMの値か
らnの値を求め、その値がそのまま(12)式の
RA、RB、RCの値に代入することによつて求める
加圧点が算出できる。
In the case of actual detection, the value of n is determined from the value of M of this calibration curve, and the value is used as is in equation (12).
By substituting the values of R A , R B , and R C , the desired pressurizing point can be calculated.

今まではセンサ材料が均一の無限の板材である
とした。実際には無限の板材は存在しない。下に
実際のセンサ構造を示す。
Until now, we have assumed that the sensor material is a uniform, infinite plate. In reality, there are no infinite plates. The actual sensor structure is shown below.

第8図及び第9図で示すように、加圧点検出器
は周囲固定の円板とする。加圧点検出器の力学的
解析においてもし基板2が薄膜であると仮定する
なら、ここで、S.Pチエモシエンコの理論をその
まま適用することができよう。(一般的には基板
素材がSi系統のダイヤフラム形状ならば本理論を
適用してよい)しかしながらセンサの厚さが問題
になるときには、この理論を適用しないで有限要
素によつてこれまでのΔrを求めなければならな
い。
As shown in FIGS. 8 and 9, the pressure point detector is a circular plate whose periphery is fixed. In the mechanical analysis of the pressure point detector, if it is assumed that the substrate 2 is a thin film, SP Tiemoshienko's theory can be directly applied here. (In general, this theory can be applied if the substrate material is a Si-based diaphragm shape.) However, when the thickness of the sensor is an issue, this theory is not applied and the conventional Δr is calculated using finite elements. have to ask.

即ち、有限要素法によつて任意の場所における
加圧時のそれぞれのΔrを求めることによつてM
値とnの補正を行なうことになる。
That is, by finding each Δr when pressurizing at an arbitrary location using the finite element method, M
The value and n will be corrected.

本発明では、電極3として内側電極、外側電極
としたが、電極形状は、これによらない。即ち、
加圧によつてΔrの変化がとれればどのような構
成をとつてもよい。
In the present invention, an inner electrode and an outer electrode are used as the electrodes 3, but the shape of the electrodes is not limited thereto. That is,
Any configuration may be used as long as Δr can be changed by pressurization.

(ハ) 発明の効果 以上の説明から明らかな通り、この発明では加
圧によつて抵抗変化が検出できるセンサを3組使
用することによつて、基板に作用する加圧点を検
出することができるので、構造が簡単で安価な加
圧点検出器を得ることができる。
(c) Effects of the invention As is clear from the above explanation, in this invention, by using three sets of sensors that can detect resistance changes due to pressurization, it is possible to detect the pressurized point acting on the substrate. Therefore, a pressure point detector with a simple structure and low cost can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は加圧点検出器を示す平面説明図、第2
図は第1図におけるA−A部断面図、第3図は基
板の外圧に対する電気抵抗変化を示すグラフ、第
4図はこの電極を示す縦断面説明図、第5図は加
圧点検出の原理を示す平面説明図、第6図は電極
の配置例を示す平面説明図、第7図は距離nを変
えて一定加圧した時のMの値を示すグラフ、第8
図は加圧点検出器の使用状態を示す縦断面図、及
び第9図は加圧点検出器の使用状態を示す平面図
である。 1……加圧点検出器、2……基板、3,3a,
3b,3c……電極、4……内側電極、5……外
側電極、6……共通電極。
Figure 1 is a plan view showing the pressure point detector, Figure 2 is a plan view showing the pressure point detector;
The figure is a cross-sectional view of the A-A section in Figure 1, Figure 3 is a graph showing the change in electrical resistance of the substrate with respect to external pressure, Figure 4 is a longitudinal cross-sectional view showing this electrode, and Figure 5 is a diagram showing the pressure point detection. FIG. 6 is a plan view showing an example of electrode arrangement; FIG. 7 is a graph showing the value of M when constant pressure is applied while changing the distance n; FIG.
The figure is a longitudinal cross-sectional view showing how the pressurizing point detector is used, and FIG. 9 is a plan view showing how the pressurizing point detector is used. 1... Pressure point detector, 2... Substrate, 3, 3a,
3b, 3c...electrode, 4...inner electrode, 5...outer electrode, 6...common electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 圧抵抗効果を有する材料からなる平板状の基
板と、前記基板の中心から任意の距離を隔てた3
箇所の部分に取付けられ前記それぞれの部分の変
位に伴う抵抗変化量を検出する電極とを有し、前
記電極は前記基板の一方の面上に形成された円形
の内側電極と前記内側電極の外側に位置する円環
形の外側電極と他方の面上に形成された共通電極
とからなることを特徴とする加圧点検出器。
1. A flat substrate made of a material having a piezoresistive effect, and 3.
and an electrode attached to a portion of the substrate to detect the amount of change in resistance due to displacement of each portion, and the electrode includes a circular inner electrode formed on one surface of the substrate and an outer side of the inner electrode. 1. A pressure point detector comprising an annular outer electrode located on the surface and a common electrode formed on the other surface.
JP61036250A 1986-02-20 1986-02-20 Detector for pressure application point Granted JPS62192818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61036250A JPS62192818A (en) 1986-02-20 1986-02-20 Detector for pressure application point

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61036250A JPS62192818A (en) 1986-02-20 1986-02-20 Detector for pressure application point

Publications (2)

Publication Number Publication Date
JPS62192818A JPS62192818A (en) 1987-08-24
JPH0415487B2 true JPH0415487B2 (en) 1992-03-18

Family

ID=12464525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61036250A Granted JPS62192818A (en) 1986-02-20 1986-02-20 Detector for pressure application point

Country Status (1)

Country Link
JP (1) JPS62192818A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112860111B (en) * 2021-02-07 2022-08-09 瑞态常州高分子科技有限公司 Resistance type multistage pressure sensor, pressure sensing method and application

Also Published As

Publication number Publication date
JPS62192818A (en) 1987-08-24

Similar Documents

Publication Publication Date Title
EP0457900B1 (en) Flexible, tactile sensor for measuring foot pressure distributions and for gaskets
US7121147B2 (en) Force detection device
JPH09179U (en) Pressure sensor
JPS6085342A (en) Measuring device for force
US5092177A (en) Device for measuring the deformations of a diaphragm
JPH0755598A (en) Tactile sensor and tactile imager
JPH0415487B2 (en)
JPS6037401B2 (en) Method for detecting center of gravity position of surface pressure
JPS61219844A (en) Force sensor
JPS6311672Y2 (en)
KR890010545A (en) Pressure transducer using thick film resistor
JPS6271828A (en) Detector for surface pressure distribution
JPH0610269Y2 (en) Pressure distribution measuring device
JPH1138038A (en) Acceleration sensor
JP3144647B2 (en) Capacitive pressure sensor element
JP2750583B2 (en) Surface pressure distribution detector
JPH02256278A (en) Semiconductor pressure sensor
JPS62274229A (en) Distributed type contact force sensor
JP2756067B2 (en) Wiring pattern of diaphragm type strain sensor
CN107340866A (en) A kind of display panel, display device and acceleration detection method
JPH065186B2 (en) Flat pressure sensor
LU93175B1 (en) Sensor
JP2530735Y2 (en) Mechanical quantity sensor
JPH11237292A (en) Pressure detection element and pressure sensor
JPH06160221A (en) Wiring pattern of strain sensor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term