JPH1138038A - Acceleration sensor - Google Patents

Acceleration sensor

Info

Publication number
JPH1138038A
JPH1138038A JP9208538A JP20853897A JPH1138038A JP H1138038 A JPH1138038 A JP H1138038A JP 9208538 A JP9208538 A JP 9208538A JP 20853897 A JP20853897 A JP 20853897A JP H1138038 A JPH1138038 A JP H1138038A
Authority
JP
Japan
Prior art keywords
electrode
layer
acceleration sensor
electrodes
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9208538A
Other languages
Japanese (ja)
Other versions
JP4056591B2 (en
Inventor
Osamu Torayashiki
治 寅屋敷
Ayumi Takahashi
歩 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Precision Products Co Ltd
Original Assignee
Sumitomo Precision Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Precision Products Co Ltd filed Critical Sumitomo Precision Products Co Ltd
Priority to JP20853897A priority Critical patent/JP4056591B2/en
Publication of JPH1138038A publication Critical patent/JPH1138038A/en
Application granted granted Critical
Publication of JP4056591B2 publication Critical patent/JP4056591B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/084Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass the mass being suspended at more than one of its sides, e.g. membrane-type suspension, so as to permit multi-axis movement of the mass

Abstract

PROBLEM TO BE SOLVED: To provide an acceleration sensor having a new structure and stable performance at a low cost by digitally calculating signals from electrodes with a sensor head having three fixed electrodes, and detecting the acceleration in three axial directions. SOLUTION: A metal electrode is formed on one face of a glass substrate as a fixed electrode layer 20, it is uniformly divided into three on a circumference with the required radius centering on the Z-axis to arrange three electrodes, and a silicon substrate is machined to form a flexible substrate layer 21 to form electrostatic capacity elements C1 -C3 arranged with three electrode pairs face to face in the X-axis direction. A heavy bob body 23 is connected beneath a moving electrode, and a silicone substrate layer 24 constituted of a pedestal layer 22 for securing a moving space and a stopper at the time of an overload is laminated to manufacture an electrostatic capacity type acceleration sensor with a four-layer structure. The fixed electrode layer 20 of a glass plate arranged on the face opposite to the flexible substrate layer 21 is provided with electrode lead pads on the flexible substrate layer 21 from peripheral notch gaps to connect leads 26 to the outside from the electrodes on the opposite faces.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、新規な構成から
なる加速度センサに係り、製造上の加工精度がセンサの
測定精度を支配し、かつ構造上の制約から直線性誤差が
生じて複雑な補正が不可欠である従来の加速度センサの
問題を解決するため、3電極構造の簡単な構成となした
静電容量型を含む加速度センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an acceleration sensor having a novel structure, in which the processing accuracy in manufacturing governs the measurement accuracy of the sensor, and a linearity error occurs due to structural restrictions, resulting in a complicated correction. The present invention relates to an acceleration sensor including a capacitance type having a simple configuration of a three-electrode structure in order to solve the problem of the conventional acceleration sensor in which the above-mentioned is indispensable.

【0002】[0002]

【従来の技術】静電容量型加速度センサとして、例え
ば、特開平4−148833号、特開平4−33743
1号、特開平5−188079号には、固定基板と可撓
基板との各対向面に電極を着設して対向配置される静電
容量素子を複数対設け、該基板面に平行なXY平面を設
定しこれと直交するZ軸のX,Y,Z軸3次元方向の加
速度の変化を、複数対の静電容量素子間の静電容量変化
に基づき各X,Y,Z軸方向成分の検出を行う構成が提
案されている。
2. Description of the Related Art For example, Japanese Patent Application Laid-Open Nos. 4-148833 and 4-33743 disclose capacitive acceleration sensors.
No. 1, Japanese Patent Application Laid-Open No. Hei 5-18879 discloses that a plurality of pairs of capacitance elements are provided on opposite surfaces of a fixed substrate and a flexible substrate and electrodes are attached to each other, and an XY parallel to the substrate surface is provided. A plane is set, and changes in acceleration in the three-dimensional directions of the X, Y, and Z axes of the Z axis orthogonal to the plane are calculated based on capacitance changes between a plurality of pairs of capacitance elements. There has been proposed a configuration for performing detection.

【0003】例えば、図13Bの縦断面に示すごとく、
円筒10内に直径方向に配置された固定基板11と、こ
れに所定の間隔を設けて可撓基板12を平行に配置し、
固定基板11の下面を示す図13Aに示すごとく、この
固定基板11と可撓基板12との各対向面にそれぞれ電
極1〜5を着設して静電容量素子C1〜C5を形成する構
成からなる。可撓基板12の下面には適当な質量を有し
て錘となる作動子13を設けてある。
For example, as shown in a vertical section of FIG. 13B,
A fixed substrate 11 arranged in a cylinder 10 in a diametric direction, and a flexible substrate 12 arranged in parallel with a predetermined interval provided therebetween;
As shown in FIG. 13A showing a lower surface of the fixed substrate 11, to form an electrostatic capacitance element C 1 -C 5 and clamped by the respective electrodes 5 to each opposing surface between the fixed substrate 11 and the flexible substrate 12 It consists of a configuration. An actuator 13 having an appropriate mass and serving as a weight is provided on the lower surface of the flexible substrate 12.

【0004】詳述するとここでは、該対向面間の外周部
に4対、中央部に1対の電極を設けて、静電容量素子C
1〜C5を形成した構成、すなわち、電極面にて直交する
X,Yの2軸上に配置された各々2つの静電容量素子C
1〜C4と、前2軸の中央に静電容量素子C5を配置した
構成からなる。
In detail, here, four pairs of electrodes are provided on the outer peripheral portion between the opposing surfaces, and one pair of electrodes are provided
Configuration to form a 1 -C 5, i.e., perpendicular with the electrode surface X, each two capacitances arranged on two axes of Y element C
And 1 -C 4, consisting of construction of arranging the capacitive element C 5 in the middle of the previous two axes.

【0005】上記の構成において、X軸方向に加速度が
加わった場合、図14Aに示すごとく、作動子13を有
する可撓基板12が変形することにより、固定基板11
と可撓基板12との対向面間の各電極1〜5間距離が変
化することから、各静電容量素子C1〜C4の静電容量が
変化する。また、図14Bに示すごとく、Z軸方向に加
速度が加わった場合も同様に各静電容量素子C1〜C4
静電容量が変化する。
In the above configuration, when acceleration is applied in the X-axis direction, as shown in FIG. 14A, the flexible substrate 12 having the actuator 13 is deformed, and
Since the distance between each of the electrodes 1 to 5 between the surfaces facing the flexible substrate 12 and the flexible substrate 12 changes, the capacitance of each of the capacitance elements C 1 to C 4 changes. Also, as shown in FIG. 14B, when acceleration is applied in the Z-axis direction, the capacitance of each of the capacitance elements C 1 to C 4 similarly changes.

【0006】静電容量の変化より加速度の各成分の検出
は、例えば、X軸方向の加速度に対する出力として、静
電容量素子C1とC3の静電容量差(C1−C3)、Y軸方
向の加速度に対する出力として、静電容量素子C2とC4
の静電容量差(C2−C4)、Z軸方向の加速度に対する
出力として、静電容量素子C5の静電容量(C5)として
検出する。
[0006] The detection of each component of the acceleration based on the change in the capacitance is performed, for example, as an output with respect to the acceleration in the X-axis direction, as a capacitance difference (C 1 -C 3 ) between the capacitance elements C 1 and C 3 , As outputs for the acceleration in the Y-axis direction, the capacitance elements C 2 and C 4
Is detected as the capacitance (C 5 ) of the capacitance element C 5 as an output with respect to the capacitance difference (C 2 −C 4 ) and acceleration in the Z-axis direction.

【0007】[0007]

【発明が解決しようとする課題】上記構成の静電容量型
加速度センサにおいて、静電容量素子C1〜C5の静電容
量に比例した電気信号で演算したX,Y,Z軸の出力
は、厳密には加速度に対し直線性を有しない問題があ
る。また、この場合、X,Y軸出力の感度がZ軸出力に
依存することになる問題がある。また、温度変化等によ
り電極ギャップの初期値d0が変化した場合、Z軸の0
点シフトに加えX,Y,Z軸の感度シフトが発生する問
題がある。
[SUMMARY OF THE INVENTION In the electrostatic capacitance type acceleration sensor having the above structure, X calculated in the electric signal proportional to the electrostatic capacitance of the capacitance element C 1 ~C 5, Y, the output of the Z-axis Strictly speaking, there is a problem that the acceleration does not have linearity. Further, in this case, there is a problem that the sensitivity of the X and Y axis outputs depends on the Z axis output. Further, when the initial value d 0 of the electrode gap changes due to a temperature change or the like, the value of 0 on the Z axis is changed.
There is a problem that a sensitivity shift in the X, Y, and Z axes occurs in addition to the point shift.

【0008】さらに、上記構成の静電容量型加速度セン
サにおいて、静電容量素子C1〜C5に逆比例した電気信
号で演算する場合にも、センサの静電容量以外の浮遊容
量が無視できないために、上述の各種問題が発生する。
Further, in the capacitance type acceleration sensor having the above configuration, even when the calculation is performed using an electric signal inversely proportional to the capacitance elements C 1 to C 5 , stray capacitance other than the capacitance of the sensor cannot be ignored. Therefore, the various problems described above occur.

【0009】以下に、4〜5電極方式での問題点を詳述
する。X(Y)軸加速度は、検出軸上に配置された2つ
の電極の静電容量の差から検出するされているが、実際
にはCV変換した出力の差分を取ることになる。その場
合、一般的に実現可能などんなCV変換方式を採用して
も、理論的には以下に示す直線性誤差が発生し、それに
よりX、Y、Zを完全に独立に検出することが不可能に
なる。
[0009] The problems in the 4-5 electrode system will be described below in detail. The X (Y) -axis acceleration is detected from the difference between the capacitances of the two electrodes arranged on the detection axis, but actually takes the difference between the CV-converted outputs. In that case, no matter what CV conversion method that can be generally adopted, the following linearity error theoretically occurs, and it is impossible to detect X, Y and Z completely independently. Will be possible.

【0010】[0010]

【数1】 (Equation 1)

【0011】 但しdo: 初期ギャップ距離 dx: x加速度による変化量(加速度と比例する量) dz: z加速度による変化量(加速度と比例する量)Where do: initial gap distance dx: change amount due to x acceleration (amount proportional to acceleration) dz: change amount due to z acceleration (amount proportional to acceleration)

【0012】このセンサにおいて、加速度に比例すると
期待できる物理量は電極間距離の変化量であり、静電容
量が加速度に対し直線的に変化することは期待できな
い。
In this sensor, the physical quantity that can be expected to be proportional to the acceleration is the amount of change in the distance between the electrodes, and it cannot be expected that the capacitance changes linearly with the acceleration.

【0013】直線性誤差の代表例1として、1/C→V
に変換する場合がある。現実的には、センサ容量Cと
は、対向電極部容量(理論上のセンサ容量)だけでは無
く、必ず有限の浮遊容量(センサ内部及び回路部)が存
在することになり、その浮遊容量分との和としてCV変
換することになる。そのため、浮遊容量が非線形項とな
り、直線性誤差が発生する。X、Y、Z出力の直線性の
劣化とX、Yの感度にZ加速度が影響するという他軸干
渉が発生する。
As a representative example 1 of the linearity error, 1 / C → V
May be converted to In reality, the sensor capacitance C means not only the counter electrode capacitance (theoretical sensor capacitance) but also a finite stray capacitance (inside the sensor and the circuit portion). CV conversion is performed as the sum of Therefore, the stray capacitance becomes a nonlinear term, and a linearity error occurs. Other axis interference occurs in which the linearity of the X, Y, and Z outputs is degraded, and the Z acceleration affects the sensitivity of X and Y.

【0014】直線性誤差の代表例2として、CV比例変
換の場合がある。上述した式に明らかなように加速度に
比例する量は、Cの分母にあるためCV比例変換の場合
は、出力電圧が加速度に直線的に変化しない。そのた
め、X、Y、Z出力の直線性の劣化とX、Yの感度にZ
加速度が影響するという他軸干渉が発生する。
As a second representative example of the linearity error, there is a case of CV proportional conversion. As is apparent from the above equation, since the amount proportional to the acceleration is in the denominator of C, in the case of the CV proportional conversion, the output voltage does not change linearly with the acceleration. Therefore, the linearity degradation of the X, Y, and Z outputs and the sensitivity of X, Y
Other axis interference, which is affected by acceleration, occurs.

【0015】[0015]

【数2】 (Equation 2)

【0016】[0016]

【数3】 (Equation 3)

【0017】上述の2つの直線性誤差の問題があるた
め、精度を要求される場合にはその後の何らかの補正が
必要になる。その補正に関しては、上記代表例1の場
合、出力されたX、Y、Zの出力から完全に真のX、
Y、Z加速度を補正演算によって得ることは困難であ
る。
Since there is a problem of the two linearity errors described above, if accuracy is required, some subsequent correction is required. With respect to the correction, in the case of the above-described representative example 1, the true X,
It is difficult to obtain the Y and Z accelerations by the correction calculation.

【0018】また、上記代表例2の場合は、補正演算方
法を提案(特開平8−313552号)したが、厳密に
補正するには、非常に複雑な計算式となり、現実的に発
生するその他の補正(調整)項である、加工誤差による
他軸感度や主軸感度及び0点などを含めて、補正演算を
実施する場合は特に複雑になり、例えば、社団法人電気
学会の物理センサ研究会における資料(1996年11
月11日、12日発表の資料番号PS−96−15「静
電容量型3軸加速度センサの補正について」)で報告さ
れているごとく、近似式による補正演算を行うことにな
る。しかし、その場合、近似による誤差が無視できない
場合があり、さらに高精度の要求に対しては、この方式
では満足できない場合が生じる。
Further, in the case of the above-mentioned representative example 2, a correction calculation method was proposed (Japanese Patent Laid-Open No. Hei 8-313552). However, in order to perform strict correction, a very complicated calculation formula is required. Compensation is particularly complicated when the correction calculation is performed, including the other axis sensitivity, main axis sensitivity, and zero point due to the processing error, which are the correction (adjustment) terms of, for example, in the physical sensor workshop of the Institute of Electrical Engineers of Japan. Document (1996 11
As described in the document No. PS-96-15 “Correction of Capacitance Type Three Axis Acceleration Sensor” published on the 11th and 12th of May, correction calculation using an approximate expression is performed. However, in this case, the error due to the approximation may not be negligible, and this method may not be able to satisfy the demand for higher precision.

【0019】従来の加速度センサでは、X、Y検出軸は
4つの固定電極の配置により決まり、Z軸は可動電極面
の配置により決定される。また、加工誤差が他軸感度と
なって現れるため、非常に高精度の加工技術が要求され
る。
In the conventional acceleration sensor, the X and Y detection axes are determined by the arrangement of the four fixed electrodes, and the Z axis is determined by the arrangement of the movable electrode surface. Further, since the processing error appears as the sensitivity of the other axis, a very high-precision processing technique is required.

【0020】すなわち、従来の加速度センサでは、X、
Y検出軸は4つの固定電極の配置により、Z軸は可動電
極面の配置により決定されること、また、加工誤差が他
軸感度となって現れるため、直線性誤差の問題が生じて
しまい、何らかの補正が不可欠であり、補正に際しても
複雑な演算が必要でセンサの製造加工に際する精度が厳
しくかつ厳密な補正を行うにも限度があり、かかる加速
度センサを安定的にかつ大量に製造ずることが極めて困
難であった。
That is, in the conventional acceleration sensor, X,
The Y-detection axis is determined by the arrangement of the four fixed electrodes, and the Z-axis is determined by the arrangement of the movable electrode surface. Further, since the processing error appears as the sensitivity of another axis, a problem of linearity error occurs. Some kind of correction is indispensable, and complicated calculations are required for the correction, and the precision in the manufacturing process of the sensor is severe and there is a limit in performing the strict correction, and such an acceleration sensor is manufactured stably and in large quantities. It was extremely difficult.

【0021】この発明は、従来の加速度センサが、構造
上の制約から直線性誤差の問題が生じて、複雑な補正が
不可欠であること、また、製造上の加工精度がセンサの
測定精度を支配している現実に鑑み、直線性誤差の問題
が生じ難く、製造上の加工精度がセンサの測定精度を決
定することがないよう、新規な構成からなる静電容量型
を含む加速度センサの提供を目的としている。
According to the present invention, the conventional acceleration sensor has a problem of linearity error due to structural restrictions, and complicated correction is indispensable. In addition, the processing accuracy in manufacturing dominate the measurement accuracy of the sensor. In consideration of the reality, a problem of a linearity error hardly occurs, and an acceleration sensor including a capacitance type having a novel configuration is provided so that processing accuracy in manufacturing does not determine measurement accuracy of the sensor. The purpose is.

【0022】[0022]

【課題を解決するための手段】発明者は、直線性誤差の
問題が生じ難く、製造上の加工精度がセンサの測定精度
を決定することがない構成について種々検討した結果、
3個の固定電極を持つセンサヘッドを用いて各電極から
の信号をデジタル演算することにより、X、Y、Zの直
交した3軸方向の加速度の検出が可能であり、目的が達
成できることを知見し、センサ上に規定されるX−Y−
Z直交座標系に作用する3軸方向加速度Ax、Ay、A
zに対し、各々の加速度に対し、感度を有する最低1組
の電極対を持つ、3組の電極対から構成される静電容量
型を含む加速度センサを完成した。
As a result of various studies on a configuration in which the problem of linearity error is unlikely to occur and the processing accuracy in manufacturing does not determine the measurement accuracy of the sensor,
By using a sensor head having three fixed electrodes to digitally calculate signals from each electrode, it is possible to detect accelerations in three directions orthogonal to X, Y, and Z, thereby achieving the object. XY- specified on the sensor
3-axis accelerations Ax, Ay, A acting on the Z orthogonal coordinate system
An acceleration sensor including a capacitance type composed of three electrode pairs having at least one electrode pair having sensitivity to each acceleration with respect to z was completed.

【0023】また、発明者は、上記の構成からなる加速
度センサにおいて、各電極の平面形状の図心がX−Y座
標系平面で同一直線上にない加速度センサ、各電極の平
面形状の図心がX−Y座標系平面にZ軸中心に3等分さ
れた位置にそれぞれある加速度センサ、並びに、X−Y
座標系平面にZ軸を中心にした所要半径の円周上に3等
分して3電極を配置して、Z軸方向に3つの電極対を対
向配置したことを特徴とする加速度センサを併せて提案
する。
Further, the present inventor proposes an acceleration sensor having the above configuration, wherein the centroid of the plane shape of each electrode is not on the same straight line in the XY coordinate system plane, and the centroid of the plane shape of each electrode. Are respectively located at three equally divided positions on the Z-axis center on the XY coordinate system plane, and XY
An acceleration sensor is also characterized in that three electrodes are arranged on a coordinate system plane on a circumference of a required radius centered on the Z axis and divided into three equal parts, and three electrode pairs are arranged facing each other in the Z axis direction. To suggest.

【0024】さらに、発明者は、ビームによる支持構造
を有する可撓基板の可動部下面に重錘体を設けて上面を
固定基板と対向配置し、該可動部上面に電極を対向配置
した可動電極を有するガラス板及び/又は半導体基板の
積層構造からなり、可動電極の傾きを含めた初期位置か
らの相対位置を検出する手段を有し、電極の該位置情報
より3軸方向の加速度Ax、Ay、Azを求めることを
特徴とする加速度センサを併せて提案する。
Further, the inventor of the present invention has proposed a movable electrode in which a weight is provided on the lower surface of a movable portion of a flexible substrate having a beam-supporting structure, the upper surface is arranged to face the fixed substrate, and the electrode is arranged on the upper surface of the movable portion. A means for detecting the relative position from the initial position including the inclination of the movable electrode, and the accelerations Ax and Ay in the three axial directions based on the position information of the electrodes. , Az are also proposed.

【0025】また、発明者らは、上記と同様の積層構造
を静電容量型となした加速度センサにおいて、ガラス層
下面にメタル電極が所要パターンで3電極分が成膜され
た固定電極層と、周囲をビームで支持された半導体基板
にパターンニングにより支持構造を設けて形成する可動
部の厚みを相対的に厚くした重錘体を有する可撓基板層
と、可撓基板層が載置され重錘体が過負荷時に当接して
ストッパーとなるシリコン層との3層構造からなる静電
容量型加速度センサを併せて提案する。
In addition, the present inventors, in an acceleration sensor in which the same laminated structure as described above is of a capacitance type, a fixed electrode layer in which three metal electrodes are formed in a required pattern on the lower surface of a glass layer. A flexible substrate layer having a weight body with a relatively thick movable portion formed by providing a supporting structure by patterning on a semiconductor substrate supported by a beam around the flexible substrate layer, and a flexible substrate layer are mounted thereon. The present invention also proposes a capacitance type acceleration sensor having a three-layer structure including a silicon layer serving as a stopper when a weight body comes into contact when overloaded.

【0026】また、発明者は、上記の静電容量型加速度
センサにおいて、ガラス層が所要パターンで設けた円錐
や角錐状の貫通孔を有し、下面のメタル電極の導通が貫
通孔を介して行われる構成、所要パターンで設けた円錐
や角錐状の貫通孔を有するガラス基板と半導体基板が貫
通孔の円錐頂部側で接合された複合板の両面に所要パタ
ーンで設けた電極同士が上記貫通孔で半導体を介して導
通した構成の複合板層を可撓基板層の上面に電極を対向
配置して接合され、内部が密閉された構成の静電容量型
加速度センサを併せて提案する。
In addition, in the above-mentioned capacitance type acceleration sensor, the inventor has stated that the glass layer has a conical or pyramid-shaped through hole provided in a required pattern, and the conduction of the metal electrode on the lower surface is performed through the through hole. The configuration to be performed, a glass substrate having a conical or pyramid-shaped through-hole provided in a required pattern and a semiconductor substrate are joined together on both sides of a composite plate on the conical top side of the through-hole. In addition, the present invention proposes a capacitance type acceleration sensor having a configuration in which a composite plate layer having a configuration in which electric conduction is carried out via a semiconductor is joined to an upper surface of a flexible substrate layer by bonding electrodes so as to face each other and the inside of which is sealed.

【0027】さらに、発明者は、ガラス層下面にメタル
電極が所要パターンで3電極分が成膜された固定電極層
と、周囲をビームで支持されて上面が前記電極に対して
所定空隙を介して対向配置されて上下動可能に共通電極
を構成するシリコン製の可動電極層と、可動電極の下に
陽極接合にて接合された錘並びに可動電極層の周囲を支
持する台座層と、可動電極層と接合された錘が過負荷時
に当接してストッパーとなるシリコン層との4層構造か
らなる静電容量型加速度センサを併せて提案する。
Further, the inventor has found that a fixed electrode layer in which metal electrodes are formed in a required pattern on the lower surface of the glass layer for three electrodes, and that the upper surface is supported by a beam and the upper surface is spaced from the electrode by a predetermined gap. A movable electrode layer made of silicon, which is disposed to face and is movable up and down so as to form a common electrode; a pedestal layer which supports the periphery of the movable electrode layer and a weight joined by anodic bonding below the movable electrode; The present invention also proposes a capacitance type acceleration sensor having a four-layer structure including a silicon layer serving as a stopper when a weight joined to a layer comes into contact with an overload.

【0028】[0028]

【発明の実施の形態】この発明による3軸加速度センサ
は、従来の4個又は5個の固定電極からの信号の差又は
和を取ることによりX、Y、Zの出力を得ていた方式に
対して、各電極からの信号をデジタル演算することを前
提として、3個の固定電極を持つセンサヘッドを使って
X、Y、Zの直交した3軸方向の加速度の検出すること
を特徴としている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A three-axis acceleration sensor according to the present invention employs a conventional method of obtaining the X, Y, and Z outputs by taking the difference or sum of signals from four or five fixed electrodes. On the other hand, on the premise that signals from the respective electrodes are digitally operated, acceleration is detected in directions of three axes orthogonal to X, Y, and Z using a sensor head having three fixed electrodes. .

【0029】固定電極の構造以外は、従来の3軸加速度
センサと同じであり、同一平面内に配置された固定電極
と、その固定電極とほぼ平行に配置された可動電極から
なる。その可動電極には重錘体が形成されており、重心
がずれた位置に配置されている。固定電極は、面重心が
電極平面内の同一直線上にない3個で構成されている。
全方向に対して均一な感度、精度を得るためには、12
0°間隔で配置された同じ大きさの扇型電極が望まし
い。
The structure of the conventional three-axis acceleration sensor is the same as that of the conventional three-axis acceleration sensor except for the structure of the fixed electrode, and includes a fixed electrode arranged in the same plane and a movable electrode arranged substantially parallel to the fixed electrode. A weight body is formed on the movable electrode, and is disposed at a position where the center of gravity is shifted. The fixed electrode is composed of three pieces whose surface centroids are not on the same straight line in the electrode plane.
In order to obtain uniform sensitivity and accuracy in all directions, 12
It is desirable to use sector electrodes of the same size arranged at 0 ° intervals.

【0030】以下では、同一形状、等間隔配置ではない
図1に示すごとく一般化した電極構造の場合について考
える。図ではC1,C2,C3の3個の電極、固定電極ま
たは可動電極を同一平面内で配置した一例を示す。各電
極容量、ただしアライメントずれを考慮しない場合は以
下の式で表される。
In the following, a case of a generalized electrode structure as shown in FIG. 1 which is not the same shape and is not arranged at equal intervals will be considered. The figure shows an example in which three electrodes C 1 , C 2 and C 3 , a fixed electrode or a movable electrode are arranged in the same plane. Each electrode capacitance, however, when not considering the misalignment, is represented by the following equation.

【0031】[0031]

【数4】 (Equation 4)

【0032】[0032]

【数5】 (Equation 5)

【0033】ここで ε : 誘電率 Sj : 各電極の面積 doj : 各電極の面重心での初期電極間
距離 Ax、Ay、Az : 各軸方向の加速度の大きさ Kz : Z方向加速度に対する電極変位
感度 Kxj、Kyj : X又はY方向加速度に対する電
極変位感度 αj : 各電極中心の位置を極座標で表
した時の角度(正のX軸を0°とし、CCW方向の角
度) Cpj : 浮遊容量
Here, ε: dielectric constant S j : area of each electrode do j : initial electrode distance at the center of gravity of each electrode Ax, Ay, Az: magnitude of acceleration in each axial direction Kz: acceleration in the Z direction Electrode displacement sensitivity Kx j , Ky j : Electrode displacement sensitivity to X or Y direction acceleration α j : Angle when the position of each electrode center is expressed in polar coordinates (positive X axis is 0 °, angle in CCW direction) Cp j : Stray capacitance

【0034】次に、アライメントずれ及びCV変換ゲイ
ンのばらつきを考慮したときの出力電圧をj、電極のC
V変換ゲインをGjとし、アライメントずれによる変換
行列をKlm(l、m=x、y、z)とすると、下記V
j式となり、j=1、2、3で、係数を整理して下記の
(4)式、すなわち、加わった加速度に対するセンサの
出力電圧の関係式が得られた。
Next, the output voltage when the misalignment and the variation in the CV conversion gain are considered is j,
Assuming that the V conversion gain is Gj and the conversion matrix due to misalignment is Klm (l, m = x, y, z), the following V
The following equation (4), that is, the relational equation of the output voltage of the sensor with respect to the applied acceleration was obtained by rearranging the coefficients when j = 1, 2, and 3, and j = 1.

【0035】Vj=Gj{εS1/(do1+Kz*(K
zxAx+KzyAy+KzzAz)+Kx1(Kxx
Ax+KxyAy+Kxzaz)*cosαj+Kyj
(KyxAx+KyyAy+KyzAz)*sin
αj)+Cpj} (j=1、2、3)
[0035] Vj = G j {εS 1 / (do 1 + Kz * (K
zxAx + KzyAy + KzzAz) + Kx 1 (Kxx
Ax + KxyAy + Kxzaz) * cosα j + Ky j *
(KxxAx + KyyAy + KyzAz) * sin
α j ) + Cp j } (j = 1, 2, 3)

【0036】[0036]

【数6】 (Equation 6)

【0037】また、各電極の出力電圧から速度を得る方
法として、式(4)を変形すると次の式が得られる。 ajAz+bjAx+ejAy=fj ・・・(5) ここで、fj=cj/(Vj−dj) と置いた。・・・(6)
As a method of obtaining the speed from the output voltage of each electrode, the following equation is obtained by modifying equation (4). a j Az + b j Ax + e j Ay = f j ··· (5) where placed and f j = c j / (V j -d j). ... (6)

【0038】出力電圧から加速度を知るというのは、代
数的には(5)式の(Ax、Ay、Az)に関する三元
一次方程式を3つ連立して解くということである。従っ
て、未知数3つに対し、3つの式で、解くことができる
のであるから、電極は3つで十分であることがわかる。
To know the acceleration from the output voltage means to solve three ternary linear equations for (Ax, Ay, Az) in equation (5) algebraically. Accordingly, three unknowns can be solved by three equations, and it is understood that three electrodes are sufficient.

【0039】以下の連立方程式の解を求める。 a1Az+b1Ax+e1Ay=f1・・・(7) a2Az+b2Ax+e2Ay=f2・・・(8) a3Az+b3Ax+e3Ay=f3・・・(9)The solution of the following simultaneous equations is obtained. a 1 Az + b 1 Ax + e 1 Ay = f 1 (7) a 2 Az + b 2 Ax + e 2 Ay = f 2 (8) a 3 Az + b 3 Ax + e 3 Ay = f 3 (9)

【0040】(7)、(8)、(9)式より解を求め
(解の公式より)、(6)式でVjの式に戻すと、下記
式を得る。 Ax={(a23−a32)(c1/(V1−d1))+(a13−a31)(c2 /(V2−d2))+(a21−a12)(c3/(V3−d3))−(a32−a23+a13−a31+a21−a12)}/D・・・(10) Ay={(a23−a32)(c1/(V1−d1))+(a31−a13)(c2 /(V2−d2))+(a12−a21)(c3/(V3−d3))−(a23−a32+a31−a13+a12−a21)}/D・・・(11) Az={(b23−b32)(c1/(V1−d1))+(b31−b13)(c2 /(V2−d2))+(b12−b21)(c3/(V3−d3))−(b23−b32+b31−b13+b12−b21)}/D・・・(12)
When the solution is obtained from the formulas (7), (8) and (9) (from the formula of the solution) and the formula is returned to the formula of Vj in the formula (6), the following formula is obtained. Ax = {(a 2 b 3 −a 3 b 2 ) (c 1 / (V 1 −d 1 )) + (a 1 e 3 −a 3 e 1 ) (c 2 / (V 2 −d 2 )) + (a 2 e 1 -a 1 e 2) (c 3 / (V 3 -d 3)) - (a 3 e 2 -a 2 e 3 + a 1 e 3 -a 3 e 1 + a 2 e 1 -a 1 e 2 )} / D (10) Ay = {(a 2 b 3 -a 3 b 2 ) (c 1 / (V 1 -d 1 )) + (a 3 b 1 -a 1 b 3) ) (C 2 / (V 2 −d 2 )) + (a 1 b 2 −a 2 b 1 ) (c 3 / (V 3 −d 3 )) − (a 2 b 3 −a 3 b 2 + a 3) b 1 −a 1 b 3 + a 1 b 2 −a 2 b 1 )} / D (11) Az = {(b 2 e 3 −b 3 e 2 ) (c 1 / (V 1 −d 1) )) + (b 3 e 1 -b 1 e 3) (c 2 / (V 2 -d 2)) + (b 1 e 2 -b 2 e 1) (c 3 / (V 3 -d 3)) − (B 2 e 3 −b 3 e 2 + b 3 e 1 −b 1 e 3 + b 1 e 2 −b 2 e 1 )} / D (12)

【0041】[0041]

【数7】 (Equation 7)

【0042】加速度算出に際して、式(10)、(1
1)、(12)より係数をまとめると、下記式を得る。
各センサ毎に、15個の係数を予め決めてやることによ
り、出力電圧を上式で演算することで、3軸の加速度を
得ることができる。
In calculating the acceleration, equations (10) and (1)
When the coefficients are put together from 1) and (12), the following equation is obtained.
By predetermining 15 coefficients for each sensor, the output voltage is calculated by the above equation, whereby three-axis acceleration can be obtained.

【0043】[0043]

【数8】 (Equation 8)

【0044】この3軸加速度センサは、可動電極の位
置、すなわち、傾きを含めた初期位置からの相対位置が
任意の加速度ベクトル(X、Y、Z軸加速度)に対し一
義的に決まることから、その可動電極の位置を検出する
ことにより逆に加速度を得ようとするものである。可動
電極の位置は、一直線上にない3点からの距離が決まれ
ば決定できるので、このように3つの電極で十分である
ことがわかる。
In this three-axis acceleration sensor, the position of the movable electrode, that is, the relative position from the initial position including the inclination is uniquely determined with respect to an arbitrary acceleration vector (X, Y, Z-axis acceleration). By detecting the position of the movable electrode, an acceleration is to be obtained. Since the position of the movable electrode can be determined if the distance from three points that are not on a straight line is determined, it can be seen that three electrodes are sufficient as described above.

【0045】従って、この発明による速度センサは、可
動電極の位置を決定できる情報さえ得られれば良いこと
になる。可動電極の傾きを含めた初期位置からの相対位
置を検出する手段としては、レーザー干渉法によるもの
や、近接させたプローブからのトンネル電流を検出する
方法、あるいは可動電極を支持するビーム上に設けた圧
電材料やピエゾ抵抗の変化を検出する方法等が適宜採用
できる。
Therefore, the speed sensor according to the present invention only needs to obtain information that can determine the position of the movable electrode. The means for detecting the relative position from the initial position including the tilt of the movable electrode is based on laser interferometry, a method for detecting the tunnel current from a probe that has come close, or provided on a beam that supports the movable electrode. For example, a method of detecting a change in the piezoelectric material or the piezoresistance may be employed.

【0046】また、可動電極の位置を3点で決定する場
合、各電極の平面形状の図心がX−Y座標系平面にZ軸
中心を通る同一直線上にないことが必要であり、さらに
好ましくは、実施例の図3のごとく、各電極の平面形状
の図心がX−Y座標系平面にZ軸中心に3等分された位
置にそれぞれある構成であり、最も誤差の少ないのは3
点がなるべく等間隔で配置されている場合であり、12
0°間隔で配置するのが望ましい。
When the position of the movable electrode is determined by three points, the centroid of the plane shape of each electrode must not be on the same straight line passing through the center of the Z axis on the XY coordinate system plane. Preferably, as shown in FIG. 3 of the embodiment, the centroid of the planar shape of each electrode is located at a position equally divided into three on the Z-axis center on the XY coordinate system plane. 3
This is the case where the points are arranged at equal intervals as much as possible.
It is desirable to arrange them at 0 ° intervals.

【0047】以下に、この発明による静電容量型加速度
センサの種々の構成を図面に基づいて詳述する。図2、
図3に示すごとく、ガラス基板の片面にメタル電極を成
膜して固定電極層20となし、X−Y座標系平面にZ軸
を中心にした所要半径の円周上に3等分して3電極を配
置して、Z軸方向に3つの電極対を対向配置した構成か
らなる静電容量素子C1〜C3を形成するため、シリコン
基板をバルク・マイクロマシニーング技術で加工して4
本ビームで可動電極を支持する可撓基板層21の構造と
なした。さらに、可動電極の下に陽極接合にて重錘体2
3を接合し、重錘体23の移動空間を確保するための台
座層22と過負荷時のストッパーとなるシリコン基板層
24を積層した4層構造からなる静電容量型加速度セン
サを作製した。
Hereinafter, various configurations of the capacitive acceleration sensor according to the present invention will be described in detail with reference to the drawings. FIG.
As shown in FIG. 3, a metal electrode is formed on one surface of a glass substrate to form a fixed electrode layer 20, which is divided into three equal parts on a circumference of a required radius centered on the Z axis on the XY coordinate system plane. 3 the electrodes are arranged, to form an electrostatic capacitance element C 1 -C 3 having the structure disposed facing the three electrode pairs in the Z-axis direction, by processing the silicon substrate in bulk micromachines knee packaging technology 4
The structure of the flexible substrate layer 21 for supporting the movable electrode by this beam was adopted. Further, the weight body 2 is formed under the movable electrode by anodic bonding.
3 to form a capacitance type acceleration sensor having a four-layer structure in which a pedestal layer 22 for securing a moving space for the weight body 23 and a silicon substrate layer 24 serving as an overload stopper are laminated.

【0048】なお、図2に示す電極配置で、各静電容量
素子C1〜C3の電極の平面形状における図心P1〜P
3は、X−Y座標系平面にZ軸中心を通る同一直線上に
なく、かつZ軸中心に3等分された位置にそれぞれ位置
する構成である。
In the electrode arrangement shown in FIG. 2, the centroids P 1 to P 3 in the planar shape of the electrodes of the respective capacitance elements C 1 to C 3 are shown.
Reference numeral 3 denotes a configuration that is not located on the same straight line passing through the center of the Z axis on the XY coordinate system plane, and is located at a position equally divided into three parts around the center of the Z axis.

【0049】また、可撓基板層21との各対向面に配置
したガラス板の固定電極層20は、対向面の電極より外
部へリードするために、ここでは、周辺に設けた切り欠
き隙間より可撓基板層21上に電極取り出しパット25
を設けてリード26を接続可能にしてある。
The fixed electrode layer 20 made of a glass plate disposed on each of the opposing surfaces of the flexible substrate layer 21 is connected to a notch gap provided on the periphery in order to lead outside from the electrode on the opposing surface. An electrode extraction pad 25 on the flexible substrate layer 21
Are provided so that the leads 26 can be connected.

【0050】図4に示す静電容量型加速度センサは、ス
トッパーとなるシリコン基板層24上に、シリコン基板
厚みを利用して相対的に形成した重錘体23を付設した
可撓基板層21と、所要半径の円周上に3等分して3電
極20a,20b(図示は2電極分のみ)を設けたガラ
ス基板からなる固定電極層20を順次積層した3層構造
からなる。
The capacitance type acceleration sensor shown in FIG. 4 has a flexible substrate layer 21 having a weight body 23 formed relatively on the silicon substrate layer 24 serving as a stopper by utilizing the thickness of the silicon substrate. A fixed electrode layer 20 composed of a glass substrate provided with three electrodes 20a and 20b (only two electrodes are shown in the figure) divided into three equal parts on a circumference of a required radius.

【0051】図5に示す静電容量型加速度センサは、図
4の3層構成を4層となして内部を密封可能にした構成
であり、以下に製造過程を説明する。サンドブラスト加
工などにて所要パターンで設けた円錐や角錐状の貫通孔
を設けたガラス基板からなる固定電極層20)と半導体
基板30を、貫通孔の円錐頂部側で陽極接合し、半導体
基板30の上面の全面に外部電極31、固定電極層20
には所要パターンで電極20a,20bを設ける。すな
わち、低抵抗のBドープドシリコン基板などの半導体基
板30の上面全面には、Al,Au,Cuなどの全面メ
タル形成、蒸着やめっき法により外部電極31を設ける
ことができ、下面のガラス基板側にはメタルマスク等を
用いた蒸着パターニング等の手法により形成することが
できる。
The capacitance type acceleration sensor shown in FIG. 5 has a structure in which the three-layer structure of FIG. 4 is made into four layers so that the inside can be sealed. The manufacturing process will be described below. The fixed electrode layer 20 composed of a glass substrate provided with a conical or pyramid-shaped through-hole provided in a required pattern by sandblasting or the like and the semiconductor substrate 30 are anodically bonded at the conical top side of the through-hole. The external electrode 31 and the fixed electrode layer 20 are formed on the entire upper surface.
Are provided with electrodes 20a and 20b in a required pattern. That is, an external electrode 31 can be provided on the entire upper surface of a semiconductor substrate 30 such as a low-resistance B-doped silicon substrate by forming a metal such as Al, Au, or Cu, by vapor deposition or plating. On the side, it can be formed by a technique such as vapor deposition patterning using a metal mask or the like.

【0052】別途、シリコン基板などの半導体基板に乾
式又は湿式のエッチング技術にてビーム21aによる支
持構造を設けて形成する可動部21bの厚みを相対的に
厚くして重錘体を設けた可撓基板層21を作製する。可
撓基板層21上に前記のガラス複合板の固定電極層20
の対向電極20a,20bを対向させて積層して陽極接
合する。図5に示すごとくいわゆるザグリを形成したシ
リコン基板層24上に、この可撓基板層21を積層し陽
極接合するが、この際、接合時の雰囲気調整を行うこと
により、積層体内部のガスを制御しておくことができ
る。
Separately, a movable portion 21b formed by providing a support structure with a beam 21a on a semiconductor substrate such as a silicon substrate by a dry or wet etching technique is relatively thick to provide a flexible body having a weight. The substrate layer 21 is manufactured. The fixed electrode layer 20 of the above-mentioned glass composite plate is provided on the flexible substrate layer 21.
Are laminated and anodically bonded. As shown in FIG. 5, the flexible substrate layer 21 is laminated on the silicon substrate layer 24 on which a so-called counterbore is formed, and anodically bonded. At this time, by adjusting the atmosphere at the time of bonding, the gas inside the laminated body is reduced. Can be controlled.

【0053】一体化された積層体の上面の外部電極31
および半導体基板30の厚みに相当する深さで、例えば
ダイシングソーなどにて、図5に示すごとく絶縁溝32
を所要パターンで形成して、対向電極20a,20bと
接続されている半導体基板30部分を電気的に分離し
て、分離された半導体基板30部分に設けられた上面の
外部電極31より対向電極20a,20bとの導通を確
保する。
External electrode 31 on the upper surface of the integrated laminate
And a depth corresponding to the thickness of the semiconductor substrate 30, for example, using a dicing saw or the like, as shown in FIG.
Is formed in a required pattern to electrically separate the portion of the semiconductor substrate 30 connected to the counter electrodes 20a and 20b, and the external electrode 31 on the upper surface provided on the separated semiconductor substrate 30 is used to form the counter electrode 20a. , 20b.

【0054】図4、図5の静電容量型加速度センサにお
ける可撓基板層21は、1枚の半導体基板より作製した
が、図6に示すごとく、2枚の半導体基板を接合した基
板あるいは半導体基板21とガラス基板27を接合した
基板よりエッチング技術にてビーム21aによる支持構
造を設けて形成するに際し、半導体あるいはガラス基板
1枚分の厚みを重錘体とすることも可能である。
The flexible substrate layer 21 in the capacitance type acceleration sensor shown in FIGS. 4 and 5 is made of one semiconductor substrate, but as shown in FIG. When a substrate 21 and a glass substrate 27 are bonded to each other to form a support structure using a beam 21a by an etching technique, the thickness of one semiconductor or one glass substrate may be used as a weight body.

【0055】[0055]

【実施例】上述の図2と同様の製造方法で、図7に示す
異形の電極を、その電極の平面形状における図心P1
3がX−Y座標系平面にZ軸中心を通る同一直線上に
なく、かつZ軸中心に3等分された位置にそれぞれ配置
して、静電容量素子C1〜C3を有する4層構造からなる
静電容量型加速度センサを作製した。
In EXAMPLES described above in FIG. 2 and same manufacturing method, the electrode of the variant shown in Figure 7, the centroid P 1 ~ in the plane shape of the electrode
P 3 is not on the same straight line passing through the Z axis center onto the X-Y coordinate system plane, and respectively placed in 3 equally divided positions in the Z-axis center 4 having a capacitance element C 1 -C 3 A capacitance type acceleration sensor having a layer structure was manufactured.

【0056】この発明による静電容量型加速度センサを
使用し、前述した演算方法にて、設定したX−Y−Z座
標系の各軸回りにセンサの姿勢を変化させた時の重力の
加速度を測定した。図8〜図10に軸回転角と測定電圧
との関係を示すが、図8はX軸回転、図9はY軸回転、
図10はZ軸回転を示す。なお、グラフ中、□印は静電
容量素子C1、◇印は静電容量素子C2、△印は静電容量
素子C3の測定電圧を示す。
Using the capacitance type acceleration sensor according to the present invention, the acceleration of gravity when the attitude of the sensor is changed around each axis of the set XYZ coordinate system by the above-described calculation method is calculated. It was measured. 8 to 10 show the relationship between the axis rotation angle and the measured voltage. FIG. 8 shows the X axis rotation, FIG. 9 shows the Y axis rotation,
FIG. 10 shows the Z-axis rotation. In the graph, □ indicates the measured voltage of the capacitance element C 1 , Δ indicates the measured voltage of the capacitance element C 2 , and Δ indicates the measured voltage of the capacitance element C 3 .

【0057】入力した加速度の計算値と測定値との誤差
は、各軸回りとも±1%以下であった。また、演算後の
出力(加速度)を軸回転角との関係を図11、補正演算
後の出力(加速度)を実際の加速度との関係を図12に
示すが、入出力のリニアリティが極めてすぐれており、
Z軸加速度のx,y出力感度への影響も全く観測され
ず、他軸感度もほとんど発生していないことが分かる。
The error between the input acceleration calculated value and the measured value was ± 1% or less around each axis. FIG. 11 shows the relationship between the output (acceleration) after the calculation and the shaft rotation angle, and FIG. 12 shows the relationship between the output (acceleration) after the correction calculation and the actual acceleration. The input / output linearity is extremely excellent. Yes,
No effect of the Z-axis acceleration on the x and y output sensitivities is observed at all, and it can be seen that the other-axis sensitivities hardly occur.

【0058】[0058]

【発明の効果】この発明による3電極構成の静電容量型
加速度センサは、可動電極の相対位置が任意のX、Y、
Z軸加速度に対し一義的に決まるため、可動電極の位置
を検出することにより加速度を得ることができる構成で
あり、この前提条件が崩れない範囲であれば、電極配
置、面積、初期電極間距離及びアライメントの誤差は、
性能には全く影響しない利点がある。
According to the three-electrode capacitive acceleration sensor of the present invention, the relative position of the movable electrode can be set to any of X, Y,
Since it is uniquely determined with respect to the Z-axis acceleration, the acceleration can be obtained by detecting the position of the movable electrode. The electrode arrangement, the area, and the initial inter-electrode distance can be obtained as long as the prerequisites are maintained. And the alignment error is
It has the advantage of not affecting performance at all.

【0059】従って、製造に際しての固定電極のパター
ニングでのメタルマスク方式の採用や陽極接合でのアラ
イメント精度の緩和等、プロセスの選択範囲が広がり、
製造性が良く、安価に提供できる利点がある。また、従
来の静電容量型に比較して電極数が少なく、チップサイ
ズのシュリンク及びパッケージングが容易になり、安定
した性能を有する加速度センサを安価に提供できる。
Therefore, the process selection range is widened, such as adoption of a metal mask method for patterning the fixed electrode during manufacturing and relaxation of alignment accuracy in anodic bonding.
It has the advantage of good manufacturability and low cost. Further, the number of electrodes is smaller than that of the conventional capacitance type, the chip size shrinkage and packaging become easy, and an acceleration sensor having stable performance can be provided at low cost.

【0060】特に、演算システムにデジタル演算を採用
する場合、従来の4個もしくは5個の電極で、差分出力
としてX、Y軸出力を得るという方法のメリットがなく
なるのに対して、この発明の加速度センサを採用するこ
とは極めて有効である。
In particular, when digital arithmetic is employed in the arithmetic system, the advantage of the conventional method of obtaining X and Y axis outputs as differential outputs with four or five electrodes is eliminated. It is extremely effective to use an acceleration sensor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明による3電極を有する加速度センサの
作動原理を説明するためのX−Y座標説明図である。
FIG. 1 is an XY coordinate explanatory diagram for explaining the operation principle of an acceleration sensor having three electrodes according to the present invention.

【図2】この発明による静電容量型加速度センサの電極
配置例を示すガラス基板の平面説明図である。
FIG. 2 is an explanatory plan view of a glass substrate showing an example of electrode arrangement of the capacitance type acceleration sensor according to the present invention.

【図3】この発明による静電容量型加速度センサの縦断
説明図である。
FIG. 3 is a vertical sectional view of the capacitance type acceleration sensor according to the present invention.

【図4】この発明による静電容量型加速度センサの他の
構成を示す縦断説明図である。
FIG. 4 is a vertical sectional view showing another configuration of the capacitance type acceleration sensor according to the present invention.

【図5】この発明による静電容量型加速度センサの他の
構成を示す縦断説明図である。
FIG. 5 is a longitudinal sectional view showing another configuration of the capacitance type acceleration sensor according to the present invention.

【図6】この発明による静電容量型加速度センサの他の
構成を示す縦断説明図である。
FIG. 6 is a longitudinal sectional view showing another configuration of the capacitance type acceleration sensor according to the present invention.

【図7】この発明による静電容量型加速度センサの他の
電極配置例を示すガラス基板の平面説明図である
FIG. 7 is an explanatory plan view of a glass substrate showing another electrode arrangement example of the capacitance type acceleration sensor according to the present invention.

【図8】この発明による静電容量型加速度センサの測定
電圧をX軸回転角との関係で示すグラフである。
FIG. 8 is a graph showing a measured voltage of the capacitive acceleration sensor according to the present invention in relation to an X-axis rotation angle.

【図9】この発明による静電容量型加速度センサの測定
電圧をY軸回転角との関係で示すグラフである。
FIG. 9 is a graph showing a measured voltage of the capacitance type acceleration sensor according to the present invention in relation to a Y-axis rotation angle.

【図10】この発明による静電容量型加速度センサの測
定電圧をZ軸回転角との関係で示すグラフである。
FIG. 10 is a graph showing a measured voltage of the capacitive acceleration sensor according to the present invention in relation to a Z-axis rotation angle.

【図11】この発明による静電容量型加速度センサの測
定に基づく演算後の出力(加速度)を軸回転角との関係
で示すグラフであり、AはX軸回転、BはY軸回転、C
はZ軸回を示す。なお、グラフ中、実線がX軸、破線が
Y軸、一点鎖線がZ軸の回転角を示す。
FIG. 11 is a graph showing the output (acceleration) after calculation based on the measurement of the capacitance type acceleration sensor according to the present invention in relation to the axis rotation angle, where A is the X axis rotation, B is the Y axis rotation, and C is
Indicates the Z-axis rotation. In the graph, the solid line indicates the rotation angle of the X axis, the broken line indicates the Y axis, and the dashed line indicates the rotation angle of the Z axis.

【図12】この発明による静電容量型加速度センサの測
定に基づく補正演算後の出力(加速度)を実際の加速度
との関係で示すグラフであり、AはX軸回転、BはY軸
回転、CはZ軸回を示す。
FIG. 12 is a graph showing an output (acceleration) after a correction operation based on the measurement of the capacitance type acceleration sensor according to the present invention in relation to an actual acceleration, where A is the X-axis rotation, B is the Y-axis rotation, C indicates the Z axis rotation.

【図13】Aは静電容量型加速度センサの固定基板の下
面を示す説明図であり、Bは静電容量型加速度センサの
縦断説明図である。
13A is an explanatory view showing the lower surface of a fixed substrate of the capacitive acceleration sensor, and FIG. 13B is a longitudinal sectional view of the capacitive acceleration sensor.

【図14】AはX軸方向の加速度が作用した状態を示す
静電容量型加速度センサの縦断説明図であり、BはZ軸
方向の加速度が作用した状態を示す静電容量型加速度セ
ンサの縦断説明図である。
FIG. 14A is a vertical cross-sectional view of a capacitive acceleration sensor showing a state in which acceleration in the X-axis direction is applied, and FIG. 14B is a longitudinal sectional view of the capacitive acceleration sensor showing a state in which acceleration in the Z-axis direction is applied. FIG.

【符号の説明】[Explanation of symbols]

1,2,3,4,5 電極 10 円筒 11 固定基板 12 可撓基板 13 作動子 C1〜C5 静電容量素子 20 固定電極層 20a,20b 電極 21 可撓基板層 21a ビーム 21b 可動部 22 台座層 23 重錘体 24 シリコン基板層 25 電極取り出しパット 26 リード 27 ガラス基板 30 半導体基板 31 外部電極 32 絶縁溝1,2,3,4,5 electrode 10 cylindrical 11 fixed substrate 12 flexible substrate 13 operating element C 1 -C 5 capacitive element 20 fixed electrode layer 20a, 20b electrode 21 flexible substrate layer 21a beam 21b movable portion 22 Pedestal layer 23 Weight body 24 Silicon substrate layer 25 Electrode extraction pad 26 Lead 27 Glass substrate 30 Semiconductor substrate 31 External electrode 32 Insulating groove

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 センサ上に予め規定したX−Y−Z直交
座標系に作用する3軸方向の加速度Ax、Ay、Azに
対して、それぞれ個別に感度を有する少なくとも1組の
電極対をもつ、3組の電極対から構成される加速度セン
サ。
1. A sensor having at least one pair of electrodes individually sensitive to three-axis accelerations Ax, Ay, and Az acting on an XYZ rectangular coordinate system defined in advance on a sensor. An acceleration sensor including three pairs of electrodes.
【請求項2】 請求項1において、各電極の平面形状の
図心がX−Y座標系平面で同一直線上にない加速度セン
サ。
2. The acceleration sensor according to claim 1, wherein the centroid of the planar shape of each electrode is not on the same straight line in the XY coordinate system plane.
【請求項3】 請求項1において、各電極の平面形状の
図心がX−Y座標系平面にZ軸中心に3等分された位置
にそれぞれある加速度センサ。
3. The acceleration sensor according to claim 1, wherein the centroid of the planar shape of each electrode is divided into three equal parts about the Z axis center on the XY coordinate system plane.
【請求項4】 請求項1において、X−Y座標系平面に
Z軸を中心にした所要半径の円周上に3等分して3電極
を配置して、Z軸方向に3つの電極対を対向配置した構
成からなる加速度センサ。
4. The three-electrode pair in the Z-axis direction according to claim 1, wherein three electrodes are arranged on a XY coordinate system plane on a circumference of a required radius centered on the Z-axis and divided into three equal parts. An acceleration sensor having a configuration in which is opposed to each other.
【請求項5】 請求項1において、ビームによる支持構
造を有する可撓基板の可動部下面に重錘体を設けて上面
を固定基板と対向配置し、該可動部上面に電極を対向配
置した可動電極を有するガラス板及び/又は半導体基板
の積層構造からなり、可動電極の傾きを含めた初期位置
からの相対位置を検出する手段を有し、電極の該位置情
報より3軸方向の加速度Ax、Ay、Azを求める加速
度センサ。
5. A movable body according to claim 1, wherein a weight is provided on the lower surface of the movable portion of the flexible substrate having the support structure by the beam, the upper surface is arranged to face the fixed substrate, and the electrode is arranged on the upper surface of the movable portion. It has a laminated structure of a glass plate and / or a semiconductor substrate having an electrode, and has means for detecting a relative position from an initial position including a tilt of the movable electrode. The acceleration Ax in three axial directions is obtained from the position information of the electrode, An acceleration sensor for determining Ay and Az.
【請求項6】 請求項1において、ビームによる支持構
造を有する可撓基板の可動部下面に重錘体を設けて上面
に固定基板を対向配置し、該可動部上面に電極を対向配
置した可動電極を有するガラス板及び/又は半導体基板
の積層構造からなる静電容量型の加速度センサ。
6. The movable body according to claim 1, wherein a weight body is provided on the lower surface of the movable portion of the flexible substrate having the support structure by the beam, the fixed substrate is arranged on the upper surface, and the electrode is arranged on the upper surface of the movable portion. A capacitive acceleration sensor having a laminated structure of a glass plate having electrodes and / or a semiconductor substrate.
【請求項7】 請求項6において、ガラス層下面にメタ
ル電極が所要パターンで3電極分が成膜された固定電極
層と、周囲をビームで支持されて上面が前記電極に対し
て所定空隙を介して対向配置されて上下動可能に共通電
極を構成するシリコン製の可動電極層と、可動電極の下
に陽極接合にて接合された錘並びに可動電極層の周囲を
支持する台座層と、可動電極層と接合された錘が過負荷
時に当接してストッパーとなるシリコン層との4層構造
からなる静電容量型の加速度センサ。
7. The fixed electrode layer according to claim 6, wherein three metal electrodes are formed on the lower surface of the glass layer in a required pattern, and the periphery is supported by a beam, and the upper surface has a predetermined gap with respect to the electrode. A movable electrode layer made of silicon, which is arranged to face up and down so as to be movable up and down, and a pedestal layer which supports the periphery of the weight and the movable electrode layer joined by anodic bonding below the movable electrode; A capacitance type acceleration sensor having a four-layer structure including a silicon layer serving as a stopper when a weight joined to an electrode layer abuts upon overload.
【請求項8】 請求項6において、ガラス層下面にメタ
ル電極が所要パターンで3電極分が成膜された固定電極
層と、周囲をビームで支持された半導体基板にパターン
ニングにより支持構造を設けて形成する可動部の厚みを
相対的に厚くした重錘体を有する可撓基板層と、可撓基
板層が載置され重錘体が過負荷時に当接してストッパー
となるガラス層との3層構造からなる静電容量型の加速
度センサ。
8. The fixed electrode layer according to claim 6, wherein metal electrodes are formed on the lower surface of the glass layer in a required pattern for three electrodes, and a supporting structure is provided by patterning on a semiconductor substrate whose periphery is supported by a beam. A flexible substrate layer having a weight body in which the thickness of the movable portion formed is relatively thick, and a glass layer on which the flexible substrate layer is placed and which comes into contact with the weight body when the load is overloaded and serves as a stopper. A capacitance type acceleration sensor having a layer structure.
【請求項9】 請求項8において、ガラス層が所要パタ
ーンで設けた円錐や角錐状の貫通孔を有し、下面のメタ
ル電極の導通が貫通孔を介して行われる静電容量型の加
速度センサ。
9. The capacitance type acceleration sensor according to claim 8, wherein the glass layer has a conical or pyramid-shaped through hole provided in a required pattern, and conduction of the metal electrode on the lower surface is performed through the through hole. .
【請求項10】 請求項8において、所要パターンで設
けた円錐や角錐状の貫通孔を有するガラス基板と半導体
基板が貫通孔の円錐頂部側で接合された複合板の両面に
所要パターンで設けた電極同士が上記貫通孔で半導体を
介して導通した構成の複合板層を可撓基板層の上面に電
極を対向配置して接合され、内部が密閉された静電容量
型の加速度センサ。
10. A composite board according to claim 8, wherein a glass substrate having a conical or pyramid-shaped through hole provided in a required pattern and a semiconductor substrate are provided in a required pattern on both surfaces of a composite plate joined at the conical top side of the through hole. A capacitance type acceleration sensor in which a composite plate layer in which electrodes are electrically connected to each other via a semiconductor through the through hole is joined to an upper surface of a flexible substrate layer by disposing electrodes so as to face each other and hermetically sealed.
JP20853897A 1997-07-16 1997-07-16 Acceleration sensor Expired - Fee Related JP4056591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20853897A JP4056591B2 (en) 1997-07-16 1997-07-16 Acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20853897A JP4056591B2 (en) 1997-07-16 1997-07-16 Acceleration sensor

Publications (2)

Publication Number Publication Date
JPH1138038A true JPH1138038A (en) 1999-02-12
JP4056591B2 JP4056591B2 (en) 2008-03-05

Family

ID=16557853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20853897A Expired - Fee Related JP4056591B2 (en) 1997-07-16 1997-07-16 Acceleration sensor

Country Status (1)

Country Link
JP (1) JP4056591B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006517661A (en) * 2003-02-11 2006-07-27 ヴェーテーイー テクノロジーズ オサケユキチュア Capacitive acceleration sensor
JP2008096229A (en) * 2006-10-11 2008-04-24 Nitta Ind Corp Electrostatic capacitive sensor
JP2010169535A (en) * 2009-01-22 2010-08-05 Akebono Brake Ind Co Ltd Physical quantity sensor and method of manufacturing the same
US8033009B2 (en) 2006-08-24 2011-10-11 Honda Motor Co., Ltd Method for producing a force sensor
CN114839398A (en) * 2022-04-27 2022-08-02 东南大学 Capacitive flexible acceleration sensor and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006517661A (en) * 2003-02-11 2006-07-27 ヴェーテーイー テクノロジーズ オサケユキチュア Capacitive acceleration sensor
US8033009B2 (en) 2006-08-24 2011-10-11 Honda Motor Co., Ltd Method for producing a force sensor
JP2008096229A (en) * 2006-10-11 2008-04-24 Nitta Ind Corp Electrostatic capacitive sensor
JP2010169535A (en) * 2009-01-22 2010-08-05 Akebono Brake Ind Co Ltd Physical quantity sensor and method of manufacturing the same
CN114839398A (en) * 2022-04-27 2022-08-02 东南大学 Capacitive flexible acceleration sensor and preparation method thereof

Also Published As

Publication number Publication date
JP4056591B2 (en) 2008-03-05

Similar Documents

Publication Publication Date Title
US7360455B2 (en) Force detector and acceleration detector and method of manufacturing the same
US7533582B2 (en) Force detector and acceleration detector and method of manufacturing the same
JP3327595B2 (en) 3-axis accelerometer
JP3941694B2 (en) Acceleration sensor
JP2765316B2 (en) Capacitive three-axis acceleration sensor
JP5137404B2 (en) A flush proof mass that can be used to detect acceleration along three axes
JPH1151967A (en) Multi-axis acceleration sensor and its manufacture
WO1993002342A1 (en) Sensor for force, acceleration and magnetism using piezoelectric devices
JPH05118942A (en) Device for detecting force, acceleration, magnetism related with multidimensional direction
EP2026077B1 (en) Acceleration sensor
US7225675B2 (en) Capacitance type dynamic quantity sensor
JP4056591B2 (en) Acceleration sensor
WO2009090841A1 (en) Electrostatic capacity type acceleration sensor
JP3043477B2 (en) Sensor using change in capacitance
JPH06258340A (en) Multi-dimensional acceleration detector
JP4681701B2 (en) Acceleration sensor
JPH04127537U (en) force detection device
CN117054687A (en) Single-fulcrum monolithic integrated triaxial capacitive accelerometer chip
JPH04337431A (en) Detector for power, acceleration, magnetism relating to three-dimensional direction
JPH11242051A (en) Capacitance type multi-axes acceleration sensor
JPH09119944A (en) Capacitance type acceleration sensor
JP2010048785A (en) Electrode substrate, and capacitance type acceleration sensor using it
JPH08261850A (en) Detection apparatus of force, acceleration and magnetism regarding multidimensional direction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040407

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20051006

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20051012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071212

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees