JPH04337431A - Detector for power, acceleration, magnetism relating to three-dimensional direction - Google Patents

Detector for power, acceleration, magnetism relating to three-dimensional direction

Info

Publication number
JPH04337431A
JPH04337431A JP3138191A JP13819191A JPH04337431A JP H04337431 A JPH04337431 A JP H04337431A JP 3138191 A JP3138191 A JP 3138191A JP 13819191 A JP13819191 A JP 13819191A JP H04337431 A JPH04337431 A JP H04337431A
Authority
JP
Japan
Prior art keywords
force
displacement
electrode
electrodes
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3138191A
Other languages
Japanese (ja)
Other versions
JP2999291B2 (en
Inventor
Kazuhiro Okada
和廣 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP3138191A priority Critical patent/JP2999291B2/en
Publication of JPH04337431A publication Critical patent/JPH04337431A/en
Application granted granted Critical
Publication of JP2999291B2 publication Critical patent/JP2999291B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/084Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass the mass being suspended at more than one of its sides, e.g. membrane-type suspension, so as to permit multi-axis movement of the mass

Abstract

PURPOSE:To equalize detection sensitivity of X, Y, Z-axes directional components in an acceleration detector relating to three-dimensional direction, using a capacity device. CONSTITUTION:A fixed substrate 10 is fixed to a device box 40, and the periphery of a flexible substrate 20 is fixed to the device box 40. When acceleration works on a work 30, deformation is generated on the flexible substrate. Displacement is generated on a displacement substrate 81 as a result through a connection member 70. Capacity devices C1, C3, C5 are formed by fixed electrodes 11, 13, 15 formed on the under surface of the fixed substrate 10, as well as displacement electrodes 21, 23, 25 formed on the upper surface of the displacement substrate 81 in an opposed manner to the fixed electrodes. The acceleration in X-axis direction is detected by variation in the capacity values of the capacity devices C1, C3, while the acceleration in Z-axis direction is detected by the variation in the capacity value of the capacity device C5. The periphery of the displacement substrate 81 is tilted, while inter-electrode distance of C1 and C3, and inter-electrode distance of C5 are changed, and the detection sensitivity in each axial direction is thus adjusted.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は力・加速度・磁気の検出
装置、特に三次元の各成分ごとに検出値を得ることがで
きる検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a force/acceleration/magnetism detection device, and more particularly to a detection device capable of obtaining detected values for each three-dimensional component.

【0002】0002

【従来の技術】自動車産業や機械産業などでは、力、加
速度、磁気といった物理量を正確に検出できる検出装置
の需要が高まっている。特に、三次元の各成分ごとにこ
れらの物理量を検出しうる小型の装置が望まれている。
2. Description of the Related Art In the automobile industry, machinery industry, etc., there is an increasing demand for detection devices that can accurately detect physical quantities such as force, acceleration, and magnetism. In particular, a compact device that can detect these physical quantities for each three-dimensional component is desired.

【0003】このような需要に応えるため、シリコンな
どの半導体基板にゲージ抵抗を形成し、外部から加わる
力に基づいて基板に生じる機械的な歪みを、ピエゾ抵抗
効果を利用して電気信号に変換する力・加速度・磁気の
検出装置が提案されている。ただ、このようなゲージ抵
抗を用いた検出装置は、製造コストが高く、温度補償が
必要であるという問題がある。そこで、特願平2−27
4299号明細書において、静電容量の変化を利用した
新規な検出装置が提案されている。この新規な検出装置
では、固定基板上に形成された固定電極と、力の作用に
より変位を生じる変位電極と、によって容量素子が構成
され、この容量素子の静電容量の変化に基づいて、作用
した力の三次元成分のそれぞれが検出できる。また、特
願平2−416188号明細書には、この新規な検出装
置の製造方法が開示され、特許協力条約に基づく国際出
願に係るPCT/JP91/00428号明細書には、
この新規な検出装置の検査方法が開示されている。
In order to meet these demands, a gauge resistor is formed on a semiconductor substrate such as silicon, and the mechanical strain that occurs in the substrate due to an external force is converted into an electrical signal using the piezoresistive effect. Force, acceleration, and magnetism detection devices have been proposed. However, a detection device using such a gauge resistor has problems in that it is expensive to manufacture and requires temperature compensation. Therefore, the patent application No. 2-27
No. 4,299 proposes a novel detection device that utilizes changes in capacitance. In this new detection device, a capacitive element is composed of a fixed electrode formed on a fixed substrate and a displacement electrode that generates displacement due to the action of force. Each of the three-dimensional components of the applied force can be detected. In addition, Japanese Patent Application No. 2-416188 discloses a manufacturing method for this new detection device, and PCT/JP91/00428, an international application based on the Patent Cooperation Treaty, discloses the following:
A method of testing this novel detection device is disclosed.

【0004】0004

【発明が解決しようとする課題】しかしながら、上述し
た静電容量の変化を利用した新規な力・加速度・磁気の
検出装置には、三次元の各軸方向に関する検出感度にば
らつきが生じるという問題がある。より具体的には、固
定基板および変位基板の基板面に平行なXY平面をもつ
三次元座標系を定義し、固定基板上に形成された固定電
極と、変位基板上に形成された変位電極と、によって構
成される容量素子の静電容量の変化に基づいて、作用し
た力のXYZ各軸方向成分を検出すると、X軸方向の検
出感度とY軸方向の検出感度とは同じになるが、これら
とZ軸方向の検出感度との間には相違が生じる。このよ
うに、検出感度に差が生じると、電気信号として取り出
した各軸方向成分の検出値に対して、感度補正を行う必
要がある。したがって、検出信号を処理する電気回路が
複雑になるという弊害が生じる。
[Problems to be Solved by the Invention] However, the above-mentioned novel force/acceleration/magnetism detection device that utilizes changes in capacitance has the problem of variations in detection sensitivity in each three-dimensional axis direction. be. More specifically, a three-dimensional coordinate system with an XY plane parallel to the substrate surfaces of the fixed substrate and the displacement substrate is defined, and the fixed electrode formed on the fixed substrate, the displacement electrode formed on the displacement substrate, and the When detecting the X, Y, and Z axis components of the applied force based on changes in the capacitance of the capacitive element configured by , the detection sensitivity in the X-axis direction and the detection sensitivity in the Y-axis direction are the same, but There is a difference between these and the detection sensitivity in the Z-axis direction. When a difference in detection sensitivity occurs in this way, it is necessary to perform sensitivity correction on the detection value of each axial component extracted as an electrical signal. Therefore, a disadvantage arises in that the electric circuit that processes the detection signal becomes complicated.

【0005】そこで本発明は、三次元の各軸方向に関す
る検出感度を所望の値に調整した三次元方向に関する力
・加速度・磁気の検出装置を提供することを目的とする
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a three-dimensional force/acceleration/magnetism detection device in which the detection sensitivity in each three-dimensional axis direction is adjusted to a desired value.

【0006】[0006]

【課題を解決するための手段】(1)   本願第1の
発明は、XYZ三次元座標系における力の各軸方向成分
を検出する装置において、ほぼXY平面に沿って延びる
固定面を有する固定基板と、この固定面に対向し、ほぼ
XY平面に沿って延びる変位面を有する変位基板と、を
設け、固定面上に形成された固定電極と、変位面上に形
成された変位電極と、を対向させてなる電極対を、少な
くとも3対構成し、変位基板を変位させうる所定の作用
点に、X軸方向の力が加わったときには、3対の電極対
のうちの第1の電極対についての電極間距離の変化に基
づいて、加わったX軸方向の力を検出できるように構成
し、作用点に、Y軸方向の力が加わったときには、3対
の電極対のうちの第2の電極対についての電極間距離の
変化に基づいて、加わったY軸方向の力を検出できるよ
うに構成し、作用点に、Z軸方向の力が加わったときに
は、3対の電極対のうちの第3の電極対についての電極
間距離の変化に基づいて、加わったZ軸方向の力を検出
できるように構成し、かつ、第3の電極対における平均
電極間距離を、第1の電極対あるいは第2の電極対にお
ける平均電極間距離と異ならせるようにしたものである
[Means for Solving the Problems] (1) The first invention of the present application provides a device for detecting axial components of force in an XYZ three-dimensional coordinate system, in which a fixed substrate having a fixed surface extending approximately along an XY plane is used. and a displacement substrate having a displacement surface facing the fixed surface and extending approximately along the XY plane, a fixed electrode formed on the fixed surface, and a displacement electrode formed on the displacement surface. At least three pairs of electrodes are configured to face each other, and when a force in the X-axis direction is applied to a predetermined point of action that can displace the displacement substrate, the first electrode pair of the three pairs of electrodes is The structure is configured so that the applied force in the X-axis direction can be detected based on the change in the distance between the electrodes, and when the force in the Y-axis direction is applied to the point of action, the second of the three electrode pairs The structure is configured so that the applied force in the Y-axis direction can be detected based on the change in the distance between the electrode pairs, and when the force in the Z-axis direction is applied to the point of application, the force in the Z-axis direction The structure is configured such that the applied force in the Z-axis direction can be detected based on a change in the inter-electrode distance for the third electrode pair, and the average inter-electrode distance for the third electrode pair is calculated based on the change in the inter-electrode distance for the third electrode pair. Alternatively, the distance between the electrodes may be different from the average inter-electrode distance in the second electrode pair.

【0007】(2)   本願第2の発明は、上述の第
1の発明に係る検出装置において、装置筐体に固定され
る固定部と、外部からの力が伝達される作用部と、固定
部と作用部との間に形成され可撓性をもった可撓部と、
を有する可撓基板と、外部からの力を受け、この力を可
撓基板の作用部に伝達する作用体と、を設け、作用部に
生じる変位に基づいて、変位基板を変位させるように構
成したものである。
(2) The second invention of the present application is the detection device according to the first invention, which includes a fixed part fixed to the device housing, an action part to which external force is transmitted, and a fixed part. and a flexible part formed between the action part and the action part;
and an effecting body that receives an external force and transmits this force to the acting part of the flexible substrate, and is configured to displace the displacement board based on the displacement generated in the acting part. This is what I did.

【0008】(3)   本願第3の発明は、上述の第
1または第2の発明に係る検出装置において、第1の電
極対を構成する電極および第2の電極対を構成する電極
の形成面を、第3の電極対を構成する電極の形成面に対
して傾斜させることにより、平均電極間距離を異ならせ
るようにしたものである。
(3) A third invention of the present application is a detection device according to the above-mentioned first or second invention, in which a surface on which the electrodes forming the first electrode pair and the electrodes forming the second electrode pair are formed. The average inter-electrode distance is made different by making the electrodes inclined with respect to the formation surface of the electrodes constituting the third electrode pair.

【0009】(4)   本願第4の発明は、上述の第
1または第2の発明に係る検出装置において、第1の電
極対を構成する電極および第2の電極対を構成する電極
の形成面を、第3の電極対を構成する電極の形成面に対
して段差をもたせることにより、平均電極間距離を異な
らせるようにしたものである。
(4) A fourth invention of the present application is a detection device according to the first or second invention, in which a surface on which the electrodes forming the first electrode pair and the electrodes forming the second electrode pair are formed. The average inter-electrode distance is made different by providing a step on the surface on which the electrodes constituting the third electrode pair are formed.

【0010】(5)   本願第5の発明は、上述の第
1〜第4の発明に係る検出装置において、加速度に起因
して発生する力により変位基板を変位させ、加速度の検
出を行い得るようにしたものである。
(5) A fifth invention of the present application is such that in the detection device according to the first to fourth inventions described above, the displacement substrate is displaced by a force generated due to acceleration, and acceleration can be detected. This is what I did.

【0011】(6)   本願第6の発明は、上述の第
1〜第4の発明に係る検出装置において、磁気に起因し
て発生する力により変位基板を変位させ、磁気の検出を
行い得るようにしたものである。
(6) The sixth invention of the present application is such that in the detection device according to the first to fourth inventions described above, the displacement substrate is displaced by a force generated due to magnetism to detect magnetism. This is what I did.

【0012】0012

【作  用】本発明によれば、X軸方向の力を検出する
電極対およびY軸方向の力を検出する電極対の平均電極
間距離と、Z軸方向の力を検出する電極対の平均電極間
距離と、が異なるように各電極が形成される。この発明
では、電極間距離の変化Δdを、静電容量の変化ΔCと
して検出することになるが、電極対の平均電極間距離が
異なると、同じΔdに対して得られるΔCの値が異なる
。 したがって、平均電極間距離を調整することにより、感
度の調整を行うことができる。
[Operation] According to the present invention, the average inter-electrode distance of the electrode pair that detects the force in the X-axis direction and the electrode pair that detects the force in the Y-axis direction, and the average inter-electrode distance of the electrode pair that detects the force in the Z-axis direction. Each electrode is formed so that the distance between the electrodes is different. In this invention, the change Δd in the inter-electrode distance is detected as the change ΔC in capacitance, but if the average inter-electrode distance of the electrode pair differs, the value of ΔC obtained for the same Δd differs. Therefore, sensitivity can be adjusted by adjusting the average inter-electrode distance.

【0013】[0013]

【実施例】以下、本発明を図示する実施例に基づいて説
明する。はじめに、本発明の適用対象となる検出装置の
基本構造およびその基本原理について簡単に述べておく
。図1は、本発明の適用対象となる加速度検出装置の基
本構造を示す側断面図である。この検出装置の主たる構
成要素は、固定基板10、可撓基板20、作用体30、
そして装置筐体40である。図2に、固定基板10の下
面図を示す。図2の固定基板10をX軸に沿って切断し
た断面が図1に示されている。固定基板10は、図示の
とおり円盤状の基板であり、周囲は装置筐体40に固定
されている。この下面には、扇状の固定電極11〜14
および円盤状の固定電極15が図のように形成されてい
る。一方、図3に可撓基板20の上面図を示す。図3の
可撓基板20をX軸に沿って切断した断面が図1に示さ
れている。可撓基板20も、図示のとおり円盤状の基板
であり、周囲は装置筐体40に固定されている。この上
面には、扇状の変位電極21〜24および円盤状の変位
電極25が図のように形成されている。作用体30は、
その上面が図3に破線で示されているように、円柱状を
しており、可撓基板20の下面に、同軸接合されている
。装置筐体40は、円筒状をしており、固定基板10お
よび可撓基板20の周囲を固着支持している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be explained below based on illustrative embodiments. First, the basic structure and basic principle of a detection device to which the present invention is applied will be briefly described. FIG. 1 is a side sectional view showing the basic structure of an acceleration detection device to which the present invention is applied. The main components of this detection device are a fixed substrate 10, a flexible substrate 20, an effecting body 30,
And there is a device housing 40. FIG. 2 shows a bottom view of the fixed substrate 10. FIG. 1 shows a cross section of the fixed substrate 10 of FIG. 2 taken along the X axis. The fixed substrate 10 is a disk-shaped substrate as shown in the figure, and the periphery thereof is fixed to the device casing 40. On this lower surface, fan-shaped fixed electrodes 11 to 14 are provided.
A disk-shaped fixed electrode 15 is formed as shown in the figure. On the other hand, FIG. 3 shows a top view of the flexible substrate 20. A cross section of the flexible substrate 20 of FIG. 3 taken along the X-axis is shown in FIG. The flexible substrate 20 is also a disk-shaped substrate as shown in the figure, and its periphery is fixed to the device casing 40. On this upper surface, fan-shaped displacement electrodes 21 to 24 and a disc-shaped displacement electrode 25 are formed as shown in the figure. The effecting body 30 is
As shown by the broken line in FIG. 3, the upper surface thereof has a cylindrical shape, and is coaxially joined to the lower surface of the flexible substrate 20. The device housing 40 has a cylindrical shape and firmly supports the fixed substrate 10 and the flexible substrate 20 around the fixed substrate 10 and the flexible substrate 20.

【0014】固定基板10および可撓基板20は、互い
に平行な位置に所定間隔をおいて配設されている。いず
れも円盤状の基板であるが、固定基板10は剛性が高く
撓みを生じにくい基板であるのに対し、可撓基板20は
可撓性をもち、力が加わると撓みを生じる基板となって
いる。図1に示す例では、固定基板10は厚みを厚くす
ることにより剛性を高めており、可撓基板20は厚みを
薄くすることにより可撓性をもたせているが、材質を変
えることにより、剛性および可撓性をもたせるようにし
てもかまわない。あるいは、基板に溝を形成したり、貫
通孔を形成したりして可撓性をもたせることもできる。 固定基板10、可撓基板20、作用体30は、本来の機
能を果たすことができるのであれば、どのような材質で
構成してもよい。たとえば、半導体やガラスなどで構成
することもできるし、金属で構成することもできる。た
だし、固定基板10および可撓基板20を金属で構成し
た場合は、各電極が短絡しないように、電極との間に絶
縁層を形成するなどの方法を講じる必要がある。また、
各電極層も導電性をもったものであれば、どのような材
質で構成してもよい。なお、固定基板10、可撓基板2
0、作用体30を半導体基板あるいはガラス基板で構成
した場合、これらの形状は円盤状でなく四角形の板状に
するのが、組み立てを容易にする上で好ましい。
The fixed substrate 10 and the flexible substrate 20 are arranged parallel to each other at a predetermined interval. Both are disk-shaped substrates, but the fixed substrate 10 is highly rigid and does not easily bend, while the flexible substrate 20 is flexible and bends when force is applied. There is. In the example shown in FIG. 1, the rigidity of the fixed substrate 10 is increased by increasing the thickness, and the flexibility is imparted to the flexible substrate 20 by decreasing the thickness. Also, it may be made to have flexibility. Alternatively, flexibility can be imparted by forming grooves or through holes in the substrate. The fixed substrate 10, the flexible substrate 20, and the action body 30 may be made of any material as long as they can perform their original functions. For example, it can be made of semiconductor, glass, etc., or it can be made of metal. However, when the fixed substrate 10 and the flexible substrate 20 are made of metal, it is necessary to take measures such as forming an insulating layer between the electrodes so that the electrodes do not short-circuit. Also,
Each electrode layer may be made of any material as long as it has conductivity. Note that the fixed substrate 10 and the flexible substrate 2
0. When the effecting body 30 is composed of a semiconductor substrate or a glass substrate, it is preferable that the shape thereof is not a disk shape but a rectangular plate shape in order to facilitate assembly.

【0015】いま、図1に示すように、作用体30の重
心に作用点Pを定義し、この作用点Pを原点とするXY
Z三次元座標系を図のように定義する。すなわち、図1
の右方向にX軸、上方向にZ軸、紙面に対して垂直に紙
面裏側へ向かう方向にY軸、をそれぞれ定義する。可撓
基板20のうち、作用体30が接合された中心部を作用
部、装置筐体40によって固着された周囲部を固定部、
これらの間の部分を可撓部、と呼ぶことにすれば、作用
体30に加速度が作用すると、可撓部に撓みが生じ、作
用部が固定部に対して変位を生じることになる。ここで
、この検出装置全体をたとえば自動車に搭載したとする
と、自動車の走行に基づき作用体30に加速度が加わる
ことになる。この加速度により、作用点Pに外力が作用
する。作用点Pに力が作用していない状態では、図1に
示すように、固定電極11〜15と変位電極21〜25
とは所定間隔をおいて平行な状態を保っている。いま、
固定電極11〜15と、このそれぞれに対向する変位電
極21〜25との組み合わせを、それぞれ容量素子C1
〜C5と呼ぶことにする。ここで、たとえば、作用点P
にX軸方向の力Fxが作用すると、この力Fxは可撓基
板20に対してモーメント力を生じさせ、図4に示すよ
うに、可撓基板20に撓みが生じることになる。この撓
みにより、変位電極21と固定電極11との間隔は大き
くなるが、変位電極23と固定電極13との間隔は小さ
くなる。作用点Pに作用した力が逆向きの−Fxであっ
たとすると、これと逆の関係の撓みが生じることになる
。このように力Fxまたは−Fxが作用したとき、容量
素子C1およびC3の静電容量に変化が表れることにな
り、これを検出することにより力Fxまたは−Fxを検
出することができる。このとき、変位電極22,24,
25のそれぞれと固定電極12,14,15のそれぞれ
の間隔は、部分的に大きくなったり小さくなったりする
が、全体としては変化しないと考えてよい。一方、Y方
向の力Fyまたは−Fyが作用した場合は、変位電極2
2と固定電極12との間隔、および変位電極24と固定
電極14との間隔、についてのみ同様の変化が生じる。 また、Z軸方向の力Fzが作用した場合は、図5に示す
ように、変位電極25と固定電極15との間隔が小さく
なり、逆向きの力−Fzが作用した場合は、この間隔は
大きくなる。このとき、変位電極21〜24と固定電極
11〜14との間隔も、小さくあるいは大きくなるが、
変位電極25と固定電極15との間隔の変化が最も顕著
である。そこで、この容量素子C5の静電容量の変化を
検出することにより力Fzまたは−Fzを検出すること
ができる。
Now, as shown in FIG. 1, a point of action P is defined at the center of gravity of the effecting body 30, and XY
Define the Z three-dimensional coordinate system as shown in the figure. That is, Figure 1
The X-axis is defined to the right, the Z-axis is upward, and the Y-axis is perpendicular to the paper and toward the back of the paper. The central part of the flexible substrate 20 to which the action body 30 is joined is called an action part, and the peripheral part fixed by the device casing 40 is called a fixed part.
If the part between these parts is called a flexible part, when acceleration acts on the effecting body 30, the flexible part is bent, and the acting part is displaced with respect to the fixed part. Here, if this entire detection device is mounted on, for example, a car, acceleration will be applied to the effecting body 30 based on the running of the car. This acceleration causes an external force to act on the point of application P. When no force is applied to the point of application P, as shown in FIG.
and remain parallel to each other with a predetermined interval. now,
A combination of fixed electrodes 11 to 15 and displacement electrodes 21 to 25 facing each other is a capacitive element C1.
I will call it ~C5. Here, for example, the point of action P
When a force Fx in the X-axis direction is applied to the flexible substrate 20, this force Fx generates a moment force on the flexible substrate 20, causing the flexible substrate 20 to bend as shown in FIG. Due to this bending, the distance between the displacement electrode 21 and the fixed electrode 11 increases, but the distance between the displacement electrode 23 and the fixed electrode 13 decreases. If the force acting on the point of application P is -Fx in the opposite direction, a deflection in the opposite relationship will occur. When the force Fx or -Fx acts in this manner, a change appears in the capacitance of the capacitive elements C1 and C3, and by detecting this, the force Fx or -Fx can be detected. At this time, the displacement electrodes 22, 24,
Although the distance between each of the electrodes 25 and the fixed electrodes 12, 14, and 15 may partially increase or decrease, it may be considered that the distance does not change as a whole. On the other hand, when force Fy or -Fy in the Y direction is applied, the displacement electrode 2
Similar changes occur only in the distance between the displacement electrode 24 and the fixed electrode 12 and the distance between the displacement electrode 24 and the fixed electrode 14. Furthermore, when a force Fz in the Z-axis direction is applied, the distance between the displacement electrode 25 and the fixed electrode 15 becomes smaller, as shown in FIG. growing. At this time, the distance between the displacement electrodes 21 to 24 and the fixed electrodes 11 to 14 also becomes smaller or larger;
The change in the distance between the displacement electrode 25 and the fixed electrode 15 is most remarkable. Therefore, force Fz or -Fz can be detected by detecting a change in the capacitance of this capacitive element C5.

【0016】一般に、容量素子の静電容量Cは、電極面
積をS、電極間隔をd、誘電率をεとすると、C=εS
/dで定まる。したがって、対向する電極間隔が接近す
ると静電容量Cは大きくなり、遠ざかると静電容量Cは
小さくなる。本検出装置は、この原理を利用し、各電極
間の静電容量の変化を測定し、この測定値に基づいて作
用点Pに作用した外力、別言すれば作用した加速度を検
出するものである。すなわち、X軸方向の加速度は容量
素子C1,C3の間の容量変化に基づき、Y軸方向の加
速度は容量素子C2,C4の容量変化に基づき、Z軸方
向の加速度は容量素子C5の容量変化に基づき、それぞ
れ検出が行われる。
In general, the capacitance C of a capacitive element is expressed as C=εS, where S is the electrode area, d is the electrode spacing, and ε is the dielectric constant.
/d. Therefore, as the distance between the opposing electrodes approaches, the capacitance C increases, and as the distance between the opposing electrodes approaches, the capacitance C decreases. This detection device utilizes this principle to measure the change in capacitance between each electrode, and based on this measurement value, detects the external force acting on the point of action P, or in other words, the applied acceleration. be. That is, acceleration in the X-axis direction is based on the capacitance change between capacitive elements C1 and C3, acceleration in the Y-axis direction is based on the capacitance change in capacitive elements C2 and C4, and acceleration in the Z-axis direction is based on the capacitance change in capacitive element C5. Detection is performed based on each.

【0017】実際には、図6に示すような検出回路によ
り、各軸方向の加速度成分が検出される。すなわち、容
量素子C1〜C5の静電容量値を、それぞれCV変換回
路51〜55によって電圧値V1〜V5に変換する。そ
して、X軸方向の加速度は、減算器61によって(V1
−V3)なる演算を行った差電圧として端子Txに得ら
れ、Y軸方向の加速度は、減算器62によって(V2−
V4)なる演算を行った差電圧として端子Tyに得られ
、Z軸方向の加速度は、そのまま電圧V5として端子T
zに得られる。
Actually, acceleration components in each axis direction are detected by a detection circuit as shown in FIG. That is, the capacitance values of the capacitive elements C1 to C5 are converted into voltage values V1 to V5 by the CV conversion circuits 51 to 55, respectively. Then, the acceleration in the X-axis direction is calculated by the subtracter 61 (V1
−V3) is obtained at the terminal Tx as a differential voltage calculated as (V2−
V4) is obtained at the terminal Ty as a differential voltage after performing the calculation, and the acceleration in the Z-axis direction is obtained as a voltage V5 at the terminal T.
can be obtained by z.

【0018】以上がこの加速度検出装置の基本構造およ
びその動作原理であるが、より実用的な構造の断面を図
7に示す。この図7に示す装置では、装置筐体40に固
定された固定基板10に、固定電極11〜15が形成さ
れている点は前述の基本的な装置と同様であるが、変位
電極21〜25の形成位置が若干異なる。すなわち、可
撓基板20の上面中心部(作用部)に円柱状の接合部材
70の底面が固着されており、この接合部材70の上面
には円盤状の変位基板80の中心部が固着されている。 そして、変位電極21〜25は、この変位基板80の上
面に形成されている。この変位電極21〜25の配置は
、図3に示すものと同じである。この図7に示す構造は
、図1に示した基本構造に比べ、より高感度の動作が期
待できる。すなわち、図1に示す構造では、作用体30
に作用した力に基づく変位は、可撓基板20の外周部分
(固定部)にまでは十分に伝達されない。この外周部分
は装置筐体40に固定されているため、大きく変位する
ことができないためである。したがって、変位電極21
〜24の外周部分には効率良く変位が生じない。これに
対して、図7に示す構造によれば、変位基板80は、そ
の中心部において接合部材70によって可撓基板20の
中心部(作用部)に接合されているだけであり、装置筐
体40による変位の制限は何ら受けることがない。した
がって、変位電極21〜25には効率良く変位が生じる
ことになる。
The basic structure and operating principle of this acceleration detecting device have been described above, and a cross section of a more practical structure is shown in FIG. The device shown in FIG. 7 is similar to the basic device described above in that fixed electrodes 11 to 15 are formed on a fixed substrate 10 fixed to a device housing 40, but displacement electrodes 21 to 25 are formed on a fixed substrate 10 fixed to a device housing 40. The formation position is slightly different. That is, the bottom surface of a cylindrical joining member 70 is fixed to the center part (acting part) of the upper surface of the flexible substrate 20, and the center part of a disc-shaped displacement board 80 is fixed to the upper surface of this joining member 70. There is. The displacement electrodes 21 to 25 are formed on the upper surface of this displacement substrate 80. The arrangement of the displacement electrodes 21 to 25 is the same as that shown in FIG. The structure shown in FIG. 7 can be expected to operate with higher sensitivity than the basic structure shown in FIG. That is, in the structure shown in FIG.
The displacement based on the force acting on the flexible substrate 20 is not sufficiently transmitted to the outer peripheral portion (fixed portion) of the flexible substrate 20. This is because this outer circumferential portion is fixed to the device housing 40 and therefore cannot be significantly displaced. Therefore, the displacement electrode 21
No displacement occurs efficiently in the outer circumferential portion of .about.24. On the other hand, according to the structure shown in FIG. 7, the displacement board 80 is only joined at its center to the center (action part) of the flexible board 20 by the joining member 70, and the The displacement is not limited in any way by 40. Therefore, displacement occurs efficiently in the displacement electrodes 21 to 25.

【0019】さて、ここで本願発明の主題に触れること
にする。図7に示す実用的な構造の加速度検出装置にお
いて、X軸方向の加速度、Y軸方向の加速度、そしてZ
軸方向の加速度、についての検出感度を考えてみる。各
電極が図2および図3に示すように配置されていること
を考慮すれば、X軸方向の検出感度とY軸方向の検出感
度とは同じになることが理解できよう。X軸とY軸とは
同一平面内で直交する軸であり、検出に関する幾何学的
な条件は全く同じである。すなわち、電極対11,21
と、電極対13,23とにおける静電容量の変化に基づ
いてX軸方向の加速度検出がなされるのに対して、電極
対12,22と、電極対14,24とにおける静電容量
の変化に基づいてY軸方向の加速度検出がなされるだけ
であり、理論的には両者の検出感度は全く等しくなる。 これに対して、Z軸方向の加速度検出は、電極対15,
25における静電容量の変化に基づいてなされるもので
あり、X軸あるいはY軸方向の加速度検出とは幾何学的
な条件が異なってくる。そのため、一般に、Z軸方向の
検出感度は、X軸あるいはY軸方向の検出感度に比べて
感度が低下する。このように、三次元の各軸方向につい
ての検出感度にばらつきが生じると、感度補正のための
処理回路が必要になるため好ましくない。本発明は、こ
のような各軸方向についての検出感度を調整するために
有用な技術を提示するものである。
Now, let us touch upon the subject matter of the present invention. In the acceleration detection device with the practical structure shown in FIG. 7, acceleration in the X-axis direction, acceleration in the Y-axis direction, and Z
Let's consider the detection sensitivity for acceleration in the axial direction. Considering that the electrodes are arranged as shown in FIGS. 2 and 3, it will be understood that the detection sensitivity in the X-axis direction and the detection sensitivity in the Y-axis direction are the same. The X-axis and the Y-axis are orthogonal axes within the same plane, and the geometrical conditions regarding detection are exactly the same. That is, the electrode pair 11, 21
The acceleration in the X-axis direction is detected based on the change in capacitance between the electrode pair 12 and 22 and the electrode pair 14 and 24. The acceleration in the Y-axis direction is only detected based on this, and theoretically the detection sensitivities of both are completely equal. On the other hand, acceleration detection in the Z-axis direction is performed using the electrode pair 15,
This is done based on the change in capacitance at 25, and the geometric conditions are different from those for detecting acceleration in the X-axis or Y-axis direction. Therefore, the detection sensitivity in the Z-axis direction is generally lower than the detection sensitivity in the X-axis or Y-axis directions. In this way, if the detection sensitivity varies in each three-dimensional axis direction, a processing circuit for sensitivity correction becomes necessary, which is not preferable. The present invention presents a technique useful for adjusting the detection sensitivity in each axial direction.

【0020】図8は、本発明の一実施例に係る加速度検
出装置の側断面図である。図7に示す装置と比較すると
、その構造の特徴が明瞭になる。図7に示す装置では、
平らな円盤状の変位基板80の上面に変位電極21〜2
5を形成していたのに対し、図8に示す装置では、周面
に傾斜がついた皿状の変位基板81の上面に変位電極2
1〜25を形成している。変位電極25は中心部の平坦
面に形成されているが、変位電極21〜24はその周囲
の傾斜面に形成されている。前述したように、電極11
〜15のそれぞれと、これに向かい合う電極21〜25
のそれぞれと、によって構成される容量素子をそれぞれ
C1〜C5と表わすと、図7に示す構造では、各容量素
子C1〜C5の平均電極間距離はすべて等しい。これに
対し、図8に示す構造では、容量素子C5の平均電極間
距離に比べて、容量素子C1〜C4の平均電極間距離が
大きくなる。
FIG. 8 is a side sectional view of an acceleration detection device according to an embodiment of the present invention. When compared with the device shown in FIG. 7, the features of its structure become clear. In the device shown in FIG.
Displacement electrodes 21 to 2 are provided on the upper surface of a flat disk-shaped displacement substrate 80.
In contrast, in the device shown in FIG. 8, a displacement electrode 2 is formed on the upper surface of a dish-shaped displacement substrate 81 with an inclined peripheral surface.
1 to 25 are formed. The displacement electrode 25 is formed on a flat surface at the center, while the displacement electrodes 21 to 24 are formed on inclined surfaces around it. As mentioned above, the electrode 11
-15 and electrodes 21-25 facing each other
When the capacitive elements constituted by and are respectively represented as C1 to C5, in the structure shown in FIG. 7, the average inter-electrode distances of the capacitive elements C1 to C5 are all equal. On the other hand, in the structure shown in FIG. 8, the average inter-electrode distance of capacitive elements C1 to C4 is larger than the average inter-electrode distance of capacitive element C5.

【0021】ここで、一般に、容量素子の電極間距離d
と静電容量値Cとの関係を考えてみると、図9に示すグ
ラフに示すような関係が知られている。この関係によれ
ば、電極間距離d=d1を中心として幅Δdの変位が生
じた場合には、ΔC1なる大きな容量値変化が得られる
ことがわかる。ところが、電極間距離d=d2を中心と
して幅Δdの変位が生じた場合には、ΔC2なる小さな
容量値変化しか得られない。すなわち、同じ変位Δdを
静電容量の変化として検出する場合であっても、得られ
る容量値変化(すなわち検出感度)は、電極間距離dに
よって異なることになる。より詳しく言えば、電極間距
離dが小さいほど検出感度は高くなる。結局、図8に示
す構造では、容量素子C1〜C4の平均電極間距離を大
きくすることにより、X軸およびY軸方向の検出感度を
低下させ、Z軸方向の検出感度に揃えることができる。 実際には、電極面積によっても感度が異なるので、各電
極の面積および変位基板の傾斜度を総合的に勘案して、
XYZ各軸方向の感度が等しくなるような設計を行うこ
とになる。
Here, in general, the distance d between the electrodes of the capacitive element
Considering the relationship between C and capacitance value C, a relationship as shown in the graph shown in FIG. 9 is known. According to this relationship, it can be seen that when a displacement of the width Δd occurs around the inter-electrode distance d=d1, a large capacitance value change of ΔC1 is obtained. However, when a displacement of the width Δd occurs around the inter-electrode distance d=d2, only a small capacitance change of ΔC2 is obtained. That is, even when the same displacement Δd is detected as a change in capacitance, the obtained capacitance value change (that is, detection sensitivity) differs depending on the inter-electrode distance d. More specifically, the smaller the inter-electrode distance d, the higher the detection sensitivity. After all, in the structure shown in FIG. 8, by increasing the average distance between the electrodes of the capacitive elements C1 to C4, the detection sensitivity in the X-axis and Y-axis directions can be lowered to match the detection sensitivity in the Z-axis direction. In reality, the sensitivity differs depending on the electrode area, so the area of each electrode and the degree of inclination of the displacement substrate should be comprehensively taken into consideration.
The design will be such that the sensitivity in each of the X, Y, and Z axis directions is equal.

【0022】逆に、X軸およびY軸方向の検出感度を高
め、Z軸方向の検出感度との差を顕著にするためには、
図10に示すような構造にすればよい。ここでは、周囲
が上方に傾斜した皿状の変位基板82を用い、容量素子
C1〜C4の平均電極間距離を小さくしている。このた
め、X軸およびY軸方向の検出感度がより向上すること
になる。
On the other hand, in order to increase the detection sensitivity in the X-axis and Y-axis directions and make the difference with the detection sensitivity in the Z-axis direction noticeable,
A structure as shown in FIG. 10 may be used. Here, a dish-shaped displacement substrate 82 whose periphery is inclined upward is used to reduce the average distance between the electrodes of the capacitive elements C1 to C4. Therefore, the detection sensitivity in the X-axis and Y-axis directions is further improved.

【0023】変位基板に傾斜を設ける代わりに、段差を
設けることにより、平均電極間距離を変えることもでき
る。図11に示す構造は、中央部が上に凸となった変位
基板83を用い、中央部に形成された容量素子の電極間
距離を小さくしてZ軸方向の検出感度を向上させた実施
例である。また、図12に示す構造は、中央部が下に凸
となった変位基板84を用い、中央部に形成された容量
素子の電極間距離を大きくしてZ軸方向の検出感度を低
下させた実施例である。
[0023] Instead of providing an inclination to the displacement substrate, the average inter-electrode distance can also be changed by providing a step. The structure shown in FIG. 11 is an example in which a displacement substrate 83 with an upwardly convex central portion is used, and the distance between electrodes of a capacitive element formed in the central portion is reduced to improve detection sensitivity in the Z-axis direction. It is. Furthermore, the structure shown in FIG. 12 uses a displacement substrate 84 with a downwardly convex central portion, and increases the distance between the electrodes of the capacitive element formed in the central portion to reduce the detection sensitivity in the Z-axis direction. This is an example.

【0024】図13に示す実施例は、図11の実施例を
更に改良し、Z軸方向の検出精度を高めたものである。 可撓基板20と変位基板91とは、接続部材92によっ
て接続されており、この間に更に補助基板93が設けら
れている。この補助基板93の中央には貫通孔が形成さ
れており、この貫通孔に接続部材92が挿通している。 変位基板91の上面に形成された変位電極21〜25と
、固定基板10の下面に形成された固定電極11〜15
とによって、容量素子C1〜C5が構成される点は上述
の実施例と同様であるが、この実施例では更に、変位基
板91の下面に形成された変位電極26と、補助基板9
3の上面に形成された固定電極16とによって、容量素
子C6が構成されている。このような構成をもった検出
装置では、Z軸方向の検出値は図14に示す回路によっ
て得られる。すなわち、容量素子C5、C6の容量値を
、CV変換回路55,56によって電圧値V5,V6に
変換し、減算器63によりその差V5−V6を求め、こ
れをZ軸方向の検出値とする。このようにZ軸方向の検
出に関しても差を用いるようにすれば、誤差要因が相殺
され、より精度良い検出が可能になる。なお、この理由
については、特許協力条約に基づく国際出願PCT/J
P91/00428号明細書の§4に詳述されている。
The embodiment shown in FIG. 13 is a further improvement of the embodiment shown in FIG. 11 to improve the detection accuracy in the Z-axis direction. The flexible substrate 20 and the displacement substrate 91 are connected by a connecting member 92, and an auxiliary substrate 93 is further provided between them. A through hole is formed in the center of this auxiliary board 93, and the connecting member 92 is inserted into this through hole. Displacement electrodes 21 to 25 formed on the upper surface of the displacement substrate 91 and fixed electrodes 11 to 15 formed on the lower surface of the fixed substrate 10
The capacitive elements C1 to C5 are configured by the above-described embodiments, but in this embodiment, the displacement electrodes 26 formed on the lower surface of the displacement substrate 91 and the auxiliary substrate 9
3 and a fixed electrode 16 formed on the upper surface of the capacitive element C6. In a detection device having such a configuration, a detected value in the Z-axis direction is obtained by a circuit shown in FIG. That is, the capacitance values of the capacitive elements C5 and C6 are converted into voltage values V5 and V6 by the CV conversion circuits 55 and 56, and the difference V5-V6 is obtained by the subtracter 63, and this is used as the detected value in the Z-axis direction. . If the difference is also used for detection in the Z-axis direction in this way, error factors are canceled out and more accurate detection becomes possible. Regarding this reason, please refer to the international application PCT/J based on the Patent Cooperation Treaty.
It is detailed in §4 of specification P91/00428.

【0025】以上、本発明を三次元の加速度検出装置に
基づいて説明したが、本発明は加速度検出装置だけに限
定されるものではなく、力検出装置あるいは磁気検出装
置にも適用しうるものである。たとえば、図8に示す加
速度検出装置において、作用体30に接触子を取り付け
、この接触子の先端に作用した力に基づいて、可撓基板
20を変位させれば、三次元の力検出装置として利用す
ることができる。また、作用体30を磁性体で構成して
おけば、この検出装置が置かれた空間の磁界に基づいて
、作用体30が磁気力を受けることになるので、磁気検
出装置として利用することができる。
Although the present invention has been described above based on a three-dimensional acceleration detecting device, the present invention is not limited to only an acceleration detecting device, but can also be applied to a force detecting device or a magnetic detecting device. be. For example, in the acceleration detection device shown in FIG. 8, if a contactor is attached to the effecting body 30 and the flexible substrate 20 is displaced based on the force acting on the tip of the contactor, it can be used as a three-dimensional force detection device. can be used. Furthermore, if the effecting body 30 is made of a magnetic material, the effecting body 30 will receive magnetic force based on the magnetic field of the space in which the detection device is placed, so it can be used as a magnetic detection device. can.

【0026】上述の実施例では、変位基板を傾斜させた
り段差構造にしたりして、電極間距離を調節する例を示
したが、固定基板を傾斜させたり段差構造にしたりする
ことも可能である。また、その他の方法によって、電極
間距離を調節してもかまわない。更に、上述の実施例で
は、固定電極および変位電極をそれぞれ5枚ずつ設けて
いるが、一方の電極を共通の1枚の電極で構成すること
もできるし、より多数の電極を設けることもできる。
[0026] In the above embodiment, an example was shown in which the distance between the electrodes is adjusted by tilting the displacement substrate or forming a stepped structure, but it is also possible to tilt the fixed substrate or forming a stepped structure. . Further, the distance between the electrodes may be adjusted by other methods. Furthermore, in the above embodiment, five fixed electrodes and five displacement electrodes are provided, but one electrode may be composed of one common electrode, or a larger number of electrodes may be provided. .

【0027】[0027]

【発明の効果】以上のとおり本発明によれば、三次元方
向に関する力・加速度・磁気の検出装置において、X軸
方向の力を検出する電極対およびY軸方向の力を検出す
る電極対の平均電極間距離と、Z軸方向の力を検出する
電極対の平均電極間距離と、がそれぞれ所望の値となる
ように各電極を形成するようにしたため、三次元の各軸
方向に関する検出感度を所望の値に調整した検出装置を
提供することができる。
Effects of the Invention As described above, according to the present invention, in a force/acceleration/magnetism detection device in three-dimensional directions, an electrode pair for detecting a force in the X-axis direction and an electrode pair for detecting a force in the Y-axis direction can be used. Since each electrode is formed so that the average inter-electrode distance and the average inter-electrode distance of the electrode pair that detects the force in the Z-axis direction have desired values, the detection sensitivity in each three-dimensional axis direction is improved. It is possible to provide a detection device in which the value is adjusted to a desired value.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の適用対象となる加速度検出装置の基本
構造を示す側断面図である。
FIG. 1 is a side sectional view showing the basic structure of an acceleration detection device to which the present invention is applied.

【図2】図1に示す検出装置における固定基板10の下
面図である。
2 is a bottom view of the fixed substrate 10 in the detection device shown in FIG. 1. FIG.

【図3】図1に示す検出装置における可撓基板20の上
面図である。
3 is a top view of the flexible substrate 20 in the detection device shown in FIG. 1. FIG.

【図4】図1に示す検出装置に、X軸方向の力Fxが加
わった状態を示す側断面図である。
4 is a side sectional view showing a state where a force Fx in the X-axis direction is applied to the detection device shown in FIG. 1; FIG.

【図5】図1に示す検出装置に、Z軸方向の力Fzが加
わった状態を示す側断面図である。
5 is a side sectional view showing a state where a force Fz in the Z-axis direction is applied to the detection device shown in FIG. 1. FIG.

【図6】図1に示す検出装置に用いる信号処理回路を示
す回路図である。
6 is a circuit diagram showing a signal processing circuit used in the detection device shown in FIG. 1. FIG.

【図7】図1に示す検出装置のより実用的な構造を示す
側断面図である。
7 is a side sectional view showing a more practical structure of the detection device shown in FIG. 1. FIG.

【図8】傾斜面をもつ変位基板を用いてX軸およびY軸
方向の検出感度を低下させた本発明の一実施例に係る加
速度検出装置の側断面図である。
FIG. 8 is a side cross-sectional view of an acceleration detection device according to an embodiment of the present invention in which detection sensitivity in the X-axis and Y-axis directions is reduced by using a displacement substrate with an inclined surface.

【図9】容量素子における電極間距離と静電容量値との
関係を示すグラフである。
FIG. 9 is a graph showing the relationship between the distance between electrodes and the capacitance value in a capacitive element.

【図10】傾斜面をもつ変位基板を用いてX軸およびY
軸方向の検出感度を向上させた本発明の一実施例に係る
加速度検出装置の側断面図である。
[Figure 10] Using a displacement substrate with an inclined surface, the X-axis and Y-axis
FIG. 2 is a side sectional view of an acceleration detection device according to an embodiment of the present invention with improved detection sensitivity in the axial direction.

【図11】段差をもつ変位基板を用いてX軸およびY軸
方向の検出感度を低下させた本発明の一実施例に係る加
速度検出装置の側断面図である。
FIG. 11 is a side cross-sectional view of an acceleration detection device according to an embodiment of the present invention in which detection sensitivity in the X-axis and Y-axis directions is reduced by using a displacement substrate with steps.

【図12】段差をもつ変位基板を用いてX軸およびY軸
方向の検出感度を向上させた本発明の一実施例に係る加
速度検出装置の側断面図である。
FIG. 12 is a side sectional view of an acceleration detection device according to an embodiment of the present invention in which detection sensitivity in the X-axis and Y-axis directions is improved using a displacement substrate with steps.

【図13】図11に示す実施例に、Z軸方向の検出を精
度良く行うための改良を加えた実施例に係る加速度検出
装置の側断面図である。
13 is a side cross-sectional view of an acceleration detection device according to an embodiment shown in FIG. 11 with improvements for performing detection in the Z-axis direction with high accuracy; FIG.

【図14】図13に示す検出装置に用いる信号処理回路
の回路図である。
14 is a circuit diagram of a signal processing circuit used in the detection device shown in FIG. 13. FIG.

【符号の説明】[Explanation of symbols]

10…固定基板 11〜16…固定電極 20…可撓基板 21〜26…変位電極 30…作用体 40…装置筐体 51〜56…CV変換回路 61〜63…減算器 70…接合部材 80〜84…変位基板 91…変位基板 92…接合部材 93…補助基板 10...Fixed board 11-16...Fixed electrode 20...Flexible board 21-26...displacement electrode 30...Action body 40...Device housing 51-56...CV conversion circuit 61-63...Subtractor 70...Joining member 80-84...Displacement board 91...Displacement board 92...Joining member 93...Auxiliary board

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】  XYZ三次元座標系における力の各軸
方向成分を検出する装置であって、ほぼXY平面に沿っ
て延びる固定面を有する固定基板と、この固定面に対向
し、ほぼXY平面に沿って延びる変位面を有する変位基
板と、を備え、前記固定面上に形成された固定電極と、
前記変位面上に形成された変位電極と、を対向させてな
る電極対を、少なくとも3対構成し、前記変位基板を変
位させうる所定の作用点に、X軸方向の力が加わったと
きには、前記3対の電極対のうちの第1の電極対につい
ての電極間距離の変化に基づいて、加わったX軸方向の
力を検出できるように構成し、前記作用点に、Y軸方向
の力が加わったときには、前記3対の電極対のうちの第
2の電極対についての電極間距離の変化に基づいて、加
わったY軸方向の力を検出できるように構成し、前記作
用点に、Z軸方向の力が加わったときには、前記3対の
電極対のうちの第3の電極対についての電極間距離の変
化に基づいて、加わったZ軸方向の力を検出できるよう
に構成し、かつ、前記第3の電極対における平均電極間
距離を、前記第1の電極対あるいは前記第2の電極対に
おける平均電極間距離と異ならせるようにしたことを特
徴とする三次元方向に関する力検出装置。
1. A device for detecting each axial component of force in an XYZ three-dimensional coordinate system, comprising: a fixed substrate having a fixed surface extending approximately along the XY plane; a displacement substrate having a displacement surface extending along the fixed electrode formed on the fixed surface;
A displacement electrode formed on the displacement surface is configured with at least three pairs of electrodes facing each other, and when a force in the X-axis direction is applied to a predetermined point of action capable of displacing the displacement substrate, The structure is configured such that the applied force in the X-axis direction can be detected based on the change in the inter-electrode distance for the first electrode pair of the three pairs of electrodes, and the force in the Y-axis direction is applied to the point of application. is configured to be able to detect the applied force in the Y-axis direction based on a change in the inter-electrode distance for the second electrode pair of the three electrode pairs, and at the point of application, When a force in the Z-axis direction is applied, the applied force in the Z-axis direction can be detected based on a change in the distance between the electrodes of the third electrode pair of the three pairs of electrodes, The force detection in a three-dimensional direction is characterized in that the average inter-electrode distance in the third electrode pair is different from the average inter-electrode distance in the first electrode pair or the second electrode pair. Device.
【請求項2】  請求項1に記載の力検出装置において
、装置筐体に固定される固定部と、外部からの力が伝達
される作用部と、前記固定部と前記作用部との間に形成
され可撓性をもった可撓部と、を有する可撓基板と、外
部からの力を受け、この力を前記可撓基板の前記作用部
に伝達する作用体と、を設け、前記作用部に生じる変位
に基づいて、変位基板を変位させるように構成したこと
を特徴とする三次元方向に関する力検出装置。
2. The force detection device according to claim 1, wherein: a fixed part fixed to the device housing, an acting part to which external force is transmitted, and a space between the fixed part and the acting part. a flexible substrate having a formed flexible portion having flexibility; and an effecting body that receives an external force and transmits this force to the acting portion of the flexible substrate, 1. A force detection device in a three-dimensional direction, characterized in that the device is configured to displace a displacement substrate based on a displacement occurring in a portion.
【請求項3】  請求項1または2に記載の力検出装置
において、第1の電極対を構成する電極および第2の電
極対を構成する電極の形成面を、第3の電極対を構成す
る電極の形成面に対して傾斜させることにより、平均電
極間距離を異ならせるようにしたことを特徴とする三次
元方向に関する力検出装置。
3. The force detection device according to claim 1, wherein the forming surfaces of the electrodes forming the first electrode pair and the electrodes forming the second electrode pair form the third electrode pair. A force detection device in a three-dimensional direction, characterized in that the average inter-electrode distance is varied by tilting the electrodes with respect to the surface on which they are formed.
【請求項4】  請求項1または2に記載の力検出装置
において、第1の電極対を構成する電極および第2の電
極対を構成する電極の形成面を、第3の電極対を構成す
る電極の形成面に対して段差をもたせることにより、平
均電極間距離を異ならせるようにしたことを特徴とする
三次元方向に関する力検出装置。
4. The force detection device according to claim 1, wherein the forming surfaces of the electrodes forming the first electrode pair and the electrodes forming the second electrode pair form the third electrode pair. 1. A force detection device in a three-dimensional direction, characterized in that the average distance between the electrodes is varied by providing a step on the surface on which the electrodes are formed.
【請求項5】  請求項1〜4のいずれかに記載の検出
装置において、加速度に起因して発生する力により変位
基板を変位させ、加速度の検出を行い得るようにしたこ
とを特徴とする加速度検出装置。
5. The detection device according to claim 1, wherein the displacement substrate is displaced by a force generated due to acceleration, and acceleration can be detected. Detection device.
【請求項6】  請求項1〜4のいずれかに記載の検出
装置において、磁気に起因して発生する力により変位基
板を変位させ、磁気の検出を行い得るようにしたことを
特徴とする磁気検出装置。
6. The detection device according to claim 1, wherein the displacement substrate is displaced by a force generated due to magnetism to detect magnetism. Detection device.
JP3138191A 1991-05-14 1991-05-14 Force, acceleration, and magnetism detectors for multi-dimensional directions Expired - Lifetime JP2999291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3138191A JP2999291B2 (en) 1991-05-14 1991-05-14 Force, acceleration, and magnetism detectors for multi-dimensional directions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3138191A JP2999291B2 (en) 1991-05-14 1991-05-14 Force, acceleration, and magnetism detectors for multi-dimensional directions

Publications (2)

Publication Number Publication Date
JPH04337431A true JPH04337431A (en) 1992-11-25
JP2999291B2 JP2999291B2 (en) 2000-01-17

Family

ID=15216210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3138191A Expired - Lifetime JP2999291B2 (en) 1991-05-14 1991-05-14 Force, acceleration, and magnetism detectors for multi-dimensional directions

Country Status (1)

Country Link
JP (1) JP2999291B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08320343A (en) * 1995-05-25 1996-12-03 Nec Corp Acceleration sensor and its manufacture
EP1109182A2 (en) * 1999-12-13 2001-06-20 Wacoh Corporation Force sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08320343A (en) * 1995-05-25 1996-12-03 Nec Corp Acceleration sensor and its manufacture
EP1109182A2 (en) * 1999-12-13 2001-06-20 Wacoh Corporation Force sensor
EP1109182A3 (en) * 1999-12-13 2003-04-02 Wacoh Corporation Force sensor

Also Published As

Publication number Publication date
JP2999291B2 (en) 2000-01-17

Similar Documents

Publication Publication Date Title
JP3027457B2 (en) Force, acceleration, and magnetism detectors for multi-dimensional directions
JP3941694B2 (en) Acceleration sensor
JP3457037B2 (en) Integrated accelerometer
US7533582B2 (en) Force detector and acceleration detector and method of manufacturing the same
US7360455B2 (en) Force detector and acceleration detector and method of manufacturing the same
JPH05203667A (en) Capacitive three-axis acceleration sensor
US7501835B2 (en) Displacement sensor
JP2841240B2 (en) Force / acceleration / magnetism detection device
US20060086185A1 (en) Acceleration sensor
JPH1026571A (en) Detector for force, acceleration and magnetism
CN111071982B (en) Micromechanical inertial sensor
WO2009090841A1 (en) Electrostatic capacity type acceleration sensor
JPH04337431A (en) Detector for power, acceleration, magnetism relating to three-dimensional direction
JP3043477B2 (en) Sensor using change in capacitance
JP2004170145A (en) Capacitance-type dynamic quantity sensor
US10649000B2 (en) Connection assembly
JP2971610B2 (en) Force / acceleration / magnetism detecting device and method of manufacturing the same
JP2005195423A (en) Pressure sensor
JP2528329Y2 (en) Force detection device
JPH11248737A (en) Capacitance-type multi-axial acceleration sensor
JPH0584870B2 (en)
JPH06265569A (en) Acceleration sensor unit
JPH0582805A (en) Pressure detecting chip of semiconductor pressure detector
JP2538068Y2 (en) Acceleration detector
JP3242204B2 (en) Force detection device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081105

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111105

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111105

Year of fee payment: 12