JPS61206261A - High withstanding-voltage planar type semiconductor device - Google Patents

High withstanding-voltage planar type semiconductor device

Info

Publication number
JPS61206261A
JPS61206261A JP4646785A JP4646785A JPS61206261A JP S61206261 A JPS61206261 A JP S61206261A JP 4646785 A JP4646785 A JP 4646785A JP 4646785 A JP4646785 A JP 4646785A JP S61206261 A JPS61206261 A JP S61206261A
Authority
JP
Japan
Prior art keywords
base
collector
guard ring
layer
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4646785A
Other languages
Japanese (ja)
Inventor
Mitsugi Tanaka
貢 田中
Katsunori Ichikawa
市川 且典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd filed Critical Shindengen Electric Manufacturing Co Ltd
Priority to JP4646785A priority Critical patent/JPS61206261A/en
Publication of JPS61206261A publication Critical patent/JPS61206261A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0638Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for preventing surface leakage due to surface inversion layer, e.g. with channel stopper

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To prevent the lowering of withstanding voltage between a base and a collector on low currents by surrounding a plurality of base regions each encircled by high-resistance isolation layers in common and forming guard ring layers so as to isolate several base region. CONSTITUTION:Guard ring layers 4 are shaped to the facing surfaces and peripheries of base regions 2, 3 in pre- and post-step transistors surrounded separately insularly by high-resistance isolation layers 10. Accordingly, the concentration of an electric field in the vicinity of the corner sections of the base regions 2, 3 is relaxed, and withstanding voltage between the base 2 and a collector 1 is kept constant regardless of the magnitude of currents when bias voltage is applied between the base 2 and the collector 1 or the base 3 and the collector 1.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は高耐圧プレーナ型半導体装置におけるベース・
コレクタ間耐圧の向上に関するものである。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Field of Application) The present invention is directed to the base and
This relates to improving collector-collector breakdown voltage.

(従来技術およびその問題点) 2以上のベース領域をもつ高耐圧プレーナ型半導体装置
として、例えば第1図(a)(b)l二本す上面図およ
びA−A部断面図の如く、N型基板上に選択的C:N型
不純物を拡散してコレクタ層(1)を形成し、次(二P
型不純物を選択的に拡散してベース領域(2)(3)と
、1乃至複数箇のガードリング領域(4)(51(6)
を形成する。そして更にN型不純物を選択的に拡散して
エミッタ領域(7)(8)と、チャンネルストッパ領域
(9)を形成した前段トランジスタAと、後段トランジ
スタBとからなる高耐圧プレーナ型ダーリントントラン
ジスタがよく知られている。
(Prior art and its problems) As a high voltage planar semiconductor device having two or more base regions, for example, as shown in FIGS. A collector layer (1) is formed by selectively diffusing C:N type impurities on the type substrate, and then a collector layer (1) is formed on the type substrate.
Type impurities are selectively diffused to form base regions (2) (3) and one or more guard ring regions (4) (51 (6).
form. A high breakdown voltage planar Darlington transistor consisting of a front-stage transistor A and a rear-stage transistor B, in which emitter regions (7) and (8) and a channel stopper region (9) are formed by selectively diffusing N-type impurities, is often used. Are known.

しかし以上のようにベース領域を高抵抗領域(高抵抗分
離層)finにより分離して、前・後段トランジスタA
、  Bを形成したものでは、空乏層の拡がりを示す第
2図のように、前・後段トランジスタA、  Hのそれ
ぞれのベース領域(2)(3)間の分離用高抵抗分離層
(10a)と、これが対面するガードリング(4)間の
高抵抗領域顛中に空乏層の拡がりにくい部分(a)を生
じて電界の集中を招く。従ってダーリントントランジス
タの電流対電圧特性を示す第3図中の実線図示のように
、ベース・コレクタ間耐圧が低電流領域において急激に
低下する所謂2段落特性にな番)、図中点線図示のよう
に電流に対して一定にならない。その結果ベース・コレ
クタ間の耐圧が低電流時において低下する欠点がある。
However, as described above, the base region is separated by the high resistance region (high resistance separation layer) fin, and the front and rear transistors A
, B, as shown in Figure 2, which shows the expansion of the depletion layer, there is a high-resistance isolation layer (10a) for isolation between the base regions (2) and (3) of the front and rear transistors A and H, respectively. This creates a portion (a) in which the depletion layer is difficult to expand in the high resistance region between the opposing guard rings (4), leading to concentration of the electric field. Therefore, as shown by the solid line in Figure 3, which shows the current vs. voltage characteristics of the Darlington transistor, the base-collector breakdown voltage rapidly decreases in the low current region, resulting in a so-called two-stage characteristic (number), as shown by the dotted line in the figure. The current is not constant. As a result, there is a drawback that the withstand voltage between the base and the collector decreases at low current.

本発明は上記の如き従来の高耐圧プレーナ型半導体装置
が持つ欠点の除去を目的としてなされたものであって、
次に図面を用いてその詳細を説明する。
The present invention was made for the purpose of eliminating the drawbacks of the conventional high voltage planar semiconductor device as described above.
Next, the details will be explained using the drawings.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 第4図(aOb)は本発明の一実施例を示す上面図、そ
のA−A部矢視断面図(第1図と同一符号部分は同等部
分を示す)であって、本発明の特徴とするところは次の
点(=ある。即ち本発明においては前段トランジスタA
のベース領域(2)と、後段トランジスタBのベース領
域(3)とをそれぞれ高抵抗分離層aαを介して島状に
囲む8の字形のガードリング層(4)を設け、その外側
に共通のガードリング層(5)(61を設けて、前段ト
ランジスタAと後段トランジスタBとがガードリング層
(4)(=よって分離される構造にしたことを特徴とす
るものである。
(Means for Solving the Problems) Fig. 4 (aOb) is a top view showing an embodiment of the present invention, and a cross-sectional view taken along the line A-A (the same reference numerals as in Fig. 1 indicate the same parts). ), and the present invention is characterized by the following points (=).In other words, in the present invention, the front stage transistor A
A figure-8 guard ring layer (4) is provided which surrounds the base region (2) of the transistor B and the base region (3) of the subsequent transistor B in an island shape through a high-resistance isolation layer aα. The structure is characterized in that a guard ring layer (5) (61) is provided so that the front-stage transistor A and the rear-stage transistor B are separated by the guard ring layer (4).

(作用および効果) 以上のように高抵抗分離層ααにより、それぞれ独立に
島状に囲まれた前・後段トランジスタのベース領域(2
)(3)の対向面およびその周囲に、ガードリング層(
4)を設けた構造にすれば、前記第1図で説明した従来
構造のように、ベース領域(21f3)間の高抵抗分離
層(10a)の端部がこれと直角に交わる高抵抗分離層
αlを介してガードリング層(4)と対面する部分がな
い。従って第2図で前記したような空乏層の拡がりにく
いデルタ状部分(a)を生ずることがないので、ベース
領域(2)(3)の角部付近における電界の集中は緩和
される。その結果ベース(2)とコレクタ(1)、或い
はベース(3)とコレクタ(1)間にバイアス電圧を印
加したとき、第3図中に点線によって図示するように、
ベース・コレクタ間の耐圧は電流の大小にか\わりなく
一定になり、第1図で前記した従来構造のように2段落
ちになることがない。従って本発明によれば従来構造の
欠点を一掃して低電流時においても、ベース・コレクタ
間耐圧の低下を招くおそれのないダーリントントランジ
スタを提供しつる。
(Functions and Effects) As described above, the base regions (2
)(3) and its surroundings, a guard ring layer (
4), as in the conventional structure explained in FIG. There is no portion facing the guard ring layer (4) via αl. Therefore, since the delta-shaped portion (a) in which the depletion layer is difficult to spread as described above in FIG. 2 is not generated, the concentration of the electric field near the corners of the base regions (2) and (3) is alleviated. As a result, when a bias voltage is applied between the base (2) and the collector (1) or between the base (3) and the collector (1), as shown by the dotted line in FIG.
The withstand voltage between the base and the collector remains constant regardless of the magnitude of the current, and there is no drop in two stages as in the conventional structure described above in FIG. Therefore, according to the present invention, it is possible to eliminate the drawbacks of the conventional structure and provide a Darlington transistor that does not cause a drop in the base-collector breakdown voltage even at low currents.

(変形例) 以上はベース領域に最も近く設けられたガードリング層
(4)によI)、前段と後段トランジスタA。
(Modification) The above is based on the guard ring layer (4) provided closest to the base region (I), front stage and rear stage transistors A.

Bとを分離した例について説明した。しかしガードリン
グ層を複数箇備えた場合には、例えば第5図のように最
内側の第1番目のガードリング層(4a) (4b)に
よってベース領域(2H31をそれぞれ独立に囲むよう
にし、2番目のガードリング層(5)により分離するよ
うにしてもよい。また第6図に示すように第1.第2番
目のガードリング層(4)(5)により、それぞれベー
ス領域(2)(3)を独立に囲んだものを、第3番目の
ガードリング層(6)により)分離するようにしてもよ
い。
An example in which B is separated has been explained. However, when a plurality of guard ring layers are provided, for example, as shown in FIG. They may be separated by the first and second guard ring layers (5).Also, as shown in FIG. 3) may be separated by a third guard ring layer (6).

(適用例) なお以上においては2つのベース領域をもつダーリント
ントランジスタを例にとって説明したが、3箇以上のベ
ース領域をもつこの種高耐圧ブレーナ型半導体装置に適
用して、前記本発明の効果を得ることができる。
(Application example) Although the explanation has been given above using a Darlington transistor having two base regions as an example, it is possible to apply the effects of the present invention to this type of high-voltage Brehner type semiconductor device having three or more base regions. Obtainable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)(b)は従来のダーリントントランジスタ
の上面図およびそのA−A部矢視断面図、第2図はその
空乏層の拡がり図、第3図は電流−電圧特性図、第4図
(a)(b)は本発明の一実施例を示す上面図、そのA
−A部矢視断面図、第5図および第6図はそれぞれ本発
明の変形例を示す上面図である。 Ao・−前段トランジスタ、 B・・・・後段トランジスタ、 (1)・・・・コレク
タ、(2)(3)・・・・ベース、 (4)(51(6
)・・・・ガードリング、(7)(8)・・・・エミッ
タ、(9)・・0チヤンネルストツパ。 θl) (10a)・・・・高抵抗分離層、(al・・
・・空乏層の拡がっていない部分(高抵抗層)。
Figures 1 (a) and (b) are a top view of a conventional Darlington transistor and a sectional view taken along the line A-A, Figure 2 is a diagram showing the spread of its depletion layer, Figure 3 is a current-voltage characteristic diagram, and 4 (a) and (b) are top views showing one embodiment of the present invention, and its A
5 and 6 are top views showing modified examples of the present invention, respectively. Ao - front stage transistor, B... rear stage transistor, (1)... collector, (2) (3)... base, (4) (51 (6)
)...Guard ring, (7) (8)...Emitter, (9)...0 channel stopper. θl) (10a)... High resistance separation layer, (al...
...The part where the depletion layer has not expanded (high resistance layer).

Claims (1)

【特許請求の範囲】[Claims]  コレクタ層となる第1導電型半導体基板に、第2導電
型の複数箇のベース領域を備えると共に、これらのベー
ス領域を囲むように第2導電型のガードリング層を備え
た高耐圧プレーナ型半導体装置において、それぞれ高抵
抗分離層により囲まれた上記複数箇のベース領域を共通
に包囲し、かつ各ベース領域間が分離されるようにガー
ドリング層を設けたことを特徴とする高耐圧プレーナ型
半導体装置。
A high-voltage planar semiconductor comprising a first conductivity type semiconductor substrate serving as a collector layer, a plurality of base regions of a second conductivity type, and a guard ring layer of a second conductivity type surrounding these base regions. A high-voltage planar type device, characterized in that a guard ring layer is provided to commonly surround the plurality of base regions each surrounded by a high-resistance separation layer and to isolate each base region. Semiconductor equipment.
JP4646785A 1985-03-11 1985-03-11 High withstanding-voltage planar type semiconductor device Pending JPS61206261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4646785A JPS61206261A (en) 1985-03-11 1985-03-11 High withstanding-voltage planar type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4646785A JPS61206261A (en) 1985-03-11 1985-03-11 High withstanding-voltage planar type semiconductor device

Publications (1)

Publication Number Publication Date
JPS61206261A true JPS61206261A (en) 1986-09-12

Family

ID=12747973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4646785A Pending JPS61206261A (en) 1985-03-11 1985-03-11 High withstanding-voltage planar type semiconductor device

Country Status (1)

Country Link
JP (1) JPS61206261A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60119770A (en) * 1983-12-01 1985-06-27 Fuji Electric Co Ltd Semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60119770A (en) * 1983-12-01 1985-06-27 Fuji Electric Co Ltd Semiconductor device

Similar Documents

Publication Publication Date Title
JPH02275675A (en) Mos type semiconductor device
JPH07312370A (en) Semiconductor device
JP2946750B2 (en) Semiconductor device
US4969024A (en) Metal-oxide-semiconductor device
JPS61206261A (en) High withstanding-voltage planar type semiconductor device
JPS61206262A (en) High withstanding-voltage planar type semiconductor device
US3736478A (en) Radio frequency transistor employing high and low-conductivity base grids
JPH05283622A (en) Semiconductor device
JP2903452B2 (en) Field effect transistor
JPS6257250A (en) Semiconductor device
JPS61206260A (en) High withstanding-voltage planar type semiconductor device
JPS63288064A (en) Composite thyristor
JPS6060753A (en) Semiconductor device
JPS6123666B2 (en)
JPS627160A (en) Semiconductor device
JPH06326300A (en) Semiconductor device and its manufacture
KR0163929B1 (en) A semiconductor device with zener diode
JPS62104068A (en) Semiconductor integrated circuit device
JPH0645592A (en) Composite type semiconductor device
JPH0738081A (en) Composite semiconductor device
JPH04214662A (en) Input-end protective device for integrated circuit use
JP2940377B2 (en) Two-way two-terminal thyristor
JPH02260538A (en) Semiconductor device
JPS58222569A (en) Composite semiconductor device
JPH0382162A (en) P channel insulated gate bipolar transistor