JPS61204305A - Production of amorphous alloy powder - Google Patents

Production of amorphous alloy powder

Info

Publication number
JPS61204305A
JPS61204305A JP29132985A JP29132985A JPS61204305A JP S61204305 A JPS61204305 A JP S61204305A JP 29132985 A JP29132985 A JP 29132985A JP 29132985 A JP29132985 A JP 29132985A JP S61204305 A JPS61204305 A JP S61204305A
Authority
JP
Japan
Prior art keywords
powder
amorphous
molten metal
alloy
suction pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29132985A
Other languages
Japanese (ja)
Other versions
JPH0368922B2 (en
Inventor
Hiroshi Kumai
浩 熊井
Tatsuhiko Noda
野田 龍彦
Tadashi Ichiyama
市山 正
Takashi Sato
隆 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kinzoku Co Ltd
Original Assignee
Nippon Kinzoku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kinzoku Co Ltd filed Critical Nippon Kinzoku Co Ltd
Priority to JP29132985A priority Critical patent/JPS61204305A/en
Publication of JPS61204305A publication Critical patent/JPS61204305A/en
Publication of JPH0368922B2 publication Critical patent/JPH0368922B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To produce stably amorphous powder having irregular shapes by dropping the melt of an alloy to be made amorphous, blowing high-velocity fluid thereto pulverize the molten metal in a suction pipe having an adequate differential pressure and solidifying quickly the powder. CONSTITUTION:The suction pipe 4 is disposed to around the part for pulverizing the molten metal to suck the molten metal by the pressure difference of 20-200mm H2O and a powder receiving body 5 is disposed right under the above-mentioned suction pipe 4 in a method for producing the amorphous alloy powder by dropping the melt of the alloy to be made amorphous from the fine hole of a crucible 2, blowing water at a high speed thereto from a spraying nozzle 3 to pulverize the molten metal in a spraying tank 1 and cooling quicly the molten metal to solidify. The pulverized alloy powder is forcibly pushed out downward by the evacuation effect of the suction pipe 4 by which the shearing force of the high-velocity water is strongly acted on the powder and the powder shapes are made irredular; at the same time the vapor film formed around the powder is destructed. The cooling rate of the powder is thus considerably increased and the alloy powder is made thoroughly amorphous.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、流下する合金溶湯に高速液体を吹きつけて非
晶質合金粉末を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing amorphous alloy powder by spraying a high-velocity liquid onto a flowing molten alloy.

〔従来技術〕[Prior art]

従来非晶質合金は、その形状にょシ種々の方法で製造さ
れている。例えば薄片の非晶質合金を製造する場合、ガ
ン法、ピストン・アンビル法、トーション・°カタパル
ト法などが使用される。また薄帯t一連続的に製造する
場合、遠心法。
Conventionally, amorphous alloys have been manufactured by various methods depending on their shape. For example, when producing thin flakes of amorphous alloys, the gun method, piston/anvil method, torsion/catapult method, etc. are used. In addition, when manufacturing thin strips continuously, centrifugation method is used.

単ロール法、双ロール法などが使用される。更に細線を
製造する場合、水流中紡糸法1回転液中紡糸法などが使
用式れている。しかしこれらの方伝で得られる非晶質合
金は、形状が特定され、任意形状の部品等を作製するこ
とが大変困難である。
Single roll method, double roll method, etc. are used. Furthermore, when producing fine wires, methods such as water spinning method and one-rotation fluid spinning method are used. However, the amorphous alloys obtained by these methods have a specific shape, and it is very difficult to manufacture parts with arbitrary shapes.

これに対し複雑な形状の部品を製造する方法として、粉
末をプレスなどを用いて圧粉成形する粉末冶金法が知ら
れている。また非晶質の合金粉末を製造する方法として
、スプレー法、キャビテーシ冒ン法1回転液中噴出法、
アトマイズ法などが知られている。
On the other hand, a powder metallurgy method in which powder is compacted using a press or the like is known as a method for manufacturing parts with complex shapes. In addition, methods for producing amorphous alloy powder include spray method, cavity blowing method, single rotation injection method,
The atomization method is known.

しかしこの方法は、冷却速度が十分でなく。However, this method does not provide sufficient cooling speed.

細かい粒子のものしか非晶質化せず1歩留シが悪いとと
もに、非晶質化の程度も不均一である。
Only fine particles become amorphous, resulting in poor yield, and the degree of amorphization is non-uniform.

しかも得られた非晶質合金粉末の形状が球状あるいはフ
レーク状であるため、圧粉成形しても粉末相互のからみ
合いが少なく、結合剤を用いなけれは半成素材、部品等
を製作することができない。従ってこれらの方法で得ら
れた粉末を工業的に粉末冶金法に利用することは困難で
ある。
Moreover, since the shape of the obtained amorphous alloy powder is spherical or flake-like, there is little entanglement between the powders even when compacted, making it difficult to manufacture semi-finished materials, parts, etc. without using a binder. I can't. Therefore, it is difficult to industrially utilize powders obtained by these methods in powder metallurgy.

本発明者は、この問題を解消すべく研究を重ねた結果、
以下の知見を得た。
As a result of repeated research to solve this problem, the inventor found that
The following findings were obtained.

溶湯を粉化して得られる粉末の形状は、溶湯流に対する
高速液体の剪断力などによって決まる粉化特性と、粉化
後の凝固、冷却に至る過程とに大きく影響される。とく
に凝固、冷却に至るまでの過程は、溶湯の物理的性質と
密接な関係があシ、冷却過程における粘性1表面張力な
どによって粉末の形状が影響を受ける。またこれら物理
的性質と冷却速度との相対的な諸因子が粉末の非晶質化
にも大きな影響を与える。
The shape of the powder obtained by pulverizing molten metal is greatly influenced by the pulverization characteristics determined by the shearing force of the high-speed liquid against the molten metal flow, and the processes leading to solidification and cooling after pulverization. In particular, the processes leading to solidification and cooling are closely related to the physical properties of the molten metal, and the shape of the powder is affected by viscosity, surface tension, etc. during the cooling process. Moreover, the relative factors between these physical properties and the cooling rate have a great influence on the amorphization of the powder.

〔発明が解決しようとする技術的課題〕本発明は、この
知見にもとづいてなされたもので、溶湯粉化後の粉末が
吸引されることにより粉末周囲の蒸気膜を破壊し冷却速
度を高め。
[Technical problem to be solved by the invention] The present invention was made based on this knowledge, and the powder after molten metal powder is sucked to destroy the vapor film around the powder and increase the cooling rate.

このことによって圧粉成形が可能なほど不規則形状化さ
せるとともに完全に非晶質化した粉末を安定してかつ効
率よく得ることを目的とする。
The purpose of this is to stably and efficiently obtain a powder that is irregularly shaped to the extent that it can be compacted and is completely amorphous.

〔技術的課題を解決する手段〕[Means to solve technical problems]

すなわち、この発明は、非晶質化する合金の溶湯を細孔
から流下して高速液体を吹きつけ。
That is, in this invention, a molten metal of an alloy that becomes amorphous is caused to flow down through pores and a high-velocity liquid is sprayed.

溶湯を粉化するとともに急冷凝固して非晶質合金粉末を
製造する方法において、溶湯を粉化する個所の周囲に吸
引管を配置し20mH,O乃至200鵡H,Oの圧力差
で吸引し、更に吸引管の下方に粉末量は体を配置するこ
とを特徴とする。
In the method of manufacturing amorphous alloy powder by pulverizing molten metal and rapidly solidifying it, a suction pipe is placed around the point where the molten metal is pulverized, and suction is carried out at a pressure difference of 20 mH, O to 200 mH, O. , further characterized in that the powder body is placed below the suction tube.

以下本発明を図示する実施例を参照して説明する。図面
は、非晶質合金の製造装置の一例を示す。この装置は、
’rJxsタンク1上にルツボ2を配置し、ルツボ2の
下方に噴霧ノズル3.吸引管4及び粉末量は体5を順に
配置し、更に噴霧タンク1に取付けたオーバーフロー管
6を排出タンク7に接続している。
The present invention will be described below with reference to illustrative embodiments. The drawing shows an example of an amorphous alloy manufacturing apparatus. This device is
Place the crucible 2 on the 'rJxs tank 1, and install the spray nozzle 3 below the crucible 2. A suction pipe 4 and a powder body 5 are arranged in this order, and an overflow pipe 6 attached to the spray tank 1 is connected to a discharge tank 7.

ルツボ2は、非晶質化する合金の溶湯を入れるもので、
下部に細孔を形成している。この合金としては、主とし
て遷移金属元素に約15〜35原子チの半金属元素(B
 、 C、8i 、P、Geなど)を加えた非晶合金型
及び遷移金属−遷移金属系、遷移金属−金属系、金属−
金属系、金属−希土類系の金属間化合物合金型などが挙
げられる。
Crucible 2 is for containing the molten alloy that will become amorphous.
Pores are formed at the bottom. This alloy mainly consists of transition metal elements and about 15 to 35 atoms of metalloid elements (B
, C, 8i, P, Ge, etc.) and transition metal-transition metal systems, transition metal-metal systems, metal-
Examples include metal-based and metal-rare earth intermetallic compound alloy types.

噴霧ノズル3は、水等の高速液体を噴出する例えば環状
りングノズルで、a点で高速液体の焦点を結ぶようにな
っている。この高速液体の交角は、噴霧ノズル開口径、
高速液体の速さ。
The spray nozzle 3 is, for example, an annular ring nozzle that spouts high-speed liquid such as water, and focuses the high-speed liquid at point a. The intersection angle of this high-speed liquid is the spray nozzle opening diameter,
High speed of liquid.

吸引管4の径及び長さによって異なるが30″〜100
″′が好適である。また高速液体の速さは。
It varies depending on the diameter and length of the suction tube 4, but it is 30" to 100".
″′ is preferable.Also, the speed of high-speed liquid is .

噴霧圧Pに依存し、  80に9f/♂以上が望ましい
It depends on the spray pressure P, preferably 80 to 9 f/♂ or more.

更に吸引管4は、a点を囲うように設けられ。Furthermore, the suction tube 4 is provided so as to surround point a.

オーバーフロー管6より上方に位置している。It is located above the overflow pipe 6.

この吸引管4は直径が小さい方が冷却速度を大きくとれ
るが、あまシ小さいと粉化後の粉末が吸引管4の内壁に
付着し、粉化の継続が困難になるため、その直径が噴霧
ノズル開口部直径の0.2〜3.0倍程度が好ましい、
また長さは、あま)短いと吸引効果が小さくなるため1
0(1m以上とする必要がある。また形状は、どのよう
な形状でもよいが2円筒状のものが好ましい、更に噴霧
タンク1の上チェンバ8と下チェンバ9の圧力差が20
18H,O〜200111H,O好ましくは4Offi
lH,O〜200鵡H,Oとなるようにする。この理由
は、圧力差が小さすぎると吸引効果が小さく所期の目的
を達成できないが、大きすぎると液体と粉末とが接触し
にくくなり所望の冷却速度が得られなくなって完全な非
晶質とすることが困難となるためである。
The smaller the diameter of this suction tube 4, the faster the cooling rate can be achieved, but if the diameter is too small, the powder after pulverization will adhere to the inner wall of the suction tube 4, making it difficult to continue pulverization. It is preferably about 0.2 to 3.0 times the nozzle opening diameter.
Also, if the length is too short, the suction effect will be small, so
0 (need to be 1 m or more.Although the shape may be any shape, a cylindrical one is preferable. Furthermore, the pressure difference between the upper chamber 8 and lower chamber 9 of the spray tank 1 is 20 m or more.
18H,O to 200111H,O preferably 4Offi
It should be 1H,O to 200H,O. The reason for this is that if the pressure difference is too small, the suction effect will be too small and the desired purpose cannot be achieved, but if the pressure difference is too large, it will be difficult to contact the liquid and the powder, making it impossible to obtain the desired cooling rate, resulting in complete amorphous formation. This is because it becomes difficult to do so.

また粉末量は体5は、吸引管4の直下で、オーバーフロ
ー管6よシ上方に設ける。粉末量は体5の構造は特に限
定したものでなく、吸引管4と一体となったものでも分
離したものでもよい。
Further, the powder volume body 5 is provided directly below the suction pipe 4 and above the overflow pipe 6. The amount of powder is not particularly limited depending on the structure of the body 5, and it may be integrated with the suction tube 4 or separated.

〔発明の作用、効果〕[Action and effect of the invention]

しかして本発明方法は、ルツボ2の細孔から溶湯を流下
し、流下する溶湯を噴霧ノズル3から噴出する高速液体
によシ粉化する。この時粉化した合金粉末を、吸引管4
の減圧作用で強制的に下方に押し出す。このことによ)
高速液体 ′が合金粉末によシ強く作用して粉末を不規
則化する。更に粉末周囲に発生する蒸気膜を破壊して粉
末の冷却速度をも著しく上昇する。そして粉末を粉末受
は体5に当ててから噴霧タンク1又は排出タンク7で捕
捉し、その後付着流体の除去という工程を経て、非晶質
合金粉末を得る。
According to the method of the present invention, the molten metal flows down from the pores of the crucible 2, and the flowing molten metal is pulverized by the high-speed liquid jetted from the spray nozzle 3. At this time, the powdered alloy powder is transferred to the suction tube 4
It is forcibly pushed downward by the decompression effect. Because of this)
The high-speed liquid ′ strongly acts on the alloy powder and makes it irregular. Furthermore, it destroys the vapor film generated around the powder and significantly increases the cooling rate of the powder. Then, the powder is applied to the powder receiver body 5, and then captured in the spray tank 1 or the discharge tank 7, and then the adhering fluid is removed to obtain an amorphous alloy powder.

この場合、一旦粉末受は体5に当てるので噴霧タンク1
内の水面のゆれを抑えて上下チャンバ間の差圧変動を防
ぎ、その結果常に所望の圧力差を得ることができ粉末化
を安定しておこなうことができる。
In this case, since the powder receiver is first applied to the body 5, the spray tank 1
Fluctuations in the pressure difference between the upper and lower chambers are prevented by suppressing fluctuations in the water surface within the chamber, and as a result, a desired pressure difference can always be obtained and powdering can be performed stably.

〔実施例〕〔Example〕

次に本発明の実施例につき説明する。 Next, examples of the present invention will be described.

実施例1 peso原子%、P13原子%、C7原子g。Example 1 peso atom%, P13 atom%, C7 atom g.

組成の合金5kgを溶解し溶湯温度1400℃でノズル
から流下せしめた。この流下溶湯に噴霧圧力125kg
、流量290ノ/m in s噴霧交角65°で水を噴
出し、更に吸引管で吸引し、粒子骨は体に当てて非晶質
合金粉末(瓜1)を得た。この場合、吸引管は、内径5
Qmψ、長さ4QQm、上下チェンバ間の差圧11Qs
sH,Qとした。
5 kg of an alloy of the same composition was melted and allowed to flow down from a nozzle at a molten metal temperature of 1400°C. A spray pressure of 125 kg is applied to this flowing molten metal.
Water was ejected at a flow rate of 290 rpm and a spray intersection angle of 65°, and the particles were further suctioned with a suction tube, and the bone particles were applied to the body to obtain an amorphous alloy powder (Melon 1). In this case, the suction tube has an inner diameter of 5
Qmψ, length 4QQm, differential pressure between upper and lower chambers 11Qs
sH,Q.

このようにして得られた非晶質合金粉末の粒度分布を調
べ、その結果を第1表に示す、また比較のため吸引管、
粉末受は体を用いず他の条件を同じとして非晶質合金粉
末(Fo、2 )を製造し、その粒度分布を調べた。そ
の結果を第1表に併記する。
The particle size distribution of the amorphous alloy powder obtained in this way was investigated, and the results are shown in Table 1.
Amorphous alloy powder (Fo, 2) was produced under the same conditions without using a powder receiver, and its particle size distribution was investigated. The results are also listed in Table 1.

次に本発明に係る粉末(fLl)のうち+100メツシ
エ、−100〜+300メツシエ及び−350メツシユ
のものをX線回折して非晶質化しているか否かを調べた
。その結果を第2図@) (+100メツシエ)及び同
図(ロ)(−350メツシユ)に示す。また従来の粉末
(ム2)についても同様にX線回折して非晶質化してい
るか否かを調べた。その結果を第3図(イ)(+100
メツシエ)及び同図(ロ)(−350メツシユ)に示す
。第2図及び第3図から本発明のものは、結晶質の回折
パターンが見られず、ブロードになっておシ、非晶質化
していることがわかる。なお−100〜+350メツシ
エについては、図示していないが、同様のX線回折によ
シ本発明のものが非晶質化し、従来のものが結晶質であ
ることがわかった。
Next, among the powders (fLl) according to the present invention, powders of +100 mesh, -100 to +300 mesh, and -350 mesh were subjected to X-ray diffraction to determine whether or not they had become amorphous. The results are shown in Figure 2 @) (+100 mesh) and Figure 2 (b) (-350 mesh). Furthermore, the conventional powder (Mu2) was similarly subjected to X-ray diffraction to determine whether it had become amorphous or not. The results are shown in Figure 3 (a) (+100
(-350 mesh) and the same figure (b) (-350 mesh). From FIG. 2 and FIG. 3, it can be seen that in the case of the present invention, no crystalline diffraction pattern is observed, and the diffraction pattern is broad and amorphous. Regarding the -100 to +350 Messier, although not shown, similar X-ray diffraction revealed that the one of the present invention was amorphous, while the conventional one was crystalline.

次に各非晶質合金粉末の非晶質化度を示差熱分析によシ
調ぺた。その結果を第2表に示す。
Next, the degree of amorphization of each amorphous alloy powder was determined by differential thermal analysis. The results are shown in Table 2.

第   2   表 第2表から本発明方法で完全に非晶質化できることがわ
かる。
Table 2 It can be seen from Table 2 that complete amorphization can be achieved by the method of the present invention.

また各非晶質合金粉末(g 1 s fO,’ 2 )
の形状を顕微鏡で調べ、その模式図を第4図(イ)(本
発明粉末)及び同図(ロ)(従来粉末)に示す。第4図
から本発明合金粉末が不規則形状となっていることがわ
かる。
Also, each amorphous alloy powder (g 1 s fO,' 2 )
The shape of the powder was examined using a microscope, and its schematic diagrams are shown in FIG. 4 (A) (invention powder) and FIG. 4 (B) (conventional powder). It can be seen from FIG. 4 that the alloy powder of the present invention has an irregular shape.

次に本発明に係る粉末(處1)と従来の粉末(厖2)と
の見掛密k(A、D、)と流動度(F、几、)とを調べ
たその結果を第3表に示す。
Next, Table 3 shows the results of examining the apparent density k (A, D,) and fluidity (F, 几,) of the powder according to the present invention (No. 1) and the conventional powder (No. 2). Shown below.

第  3  表 上表から本発明粉末は、見掛密度が従来に比べ著しく低
く、流動度が悪いため、従来のものに比べて著しく不規
則であることがわかる。
From Table 3, it can be seen that the powder of the present invention has a significantly lower apparent density than the conventional powder, poor flowability, and is significantly irregular compared to the conventional powder.

実施例2 鉄75原子チ、5iio原子チ、B15原子チの合金5
 kgを溶解し、実施例1と同様の条件で非晶質合金粉
末を作製した。その非晶質化度を第4表に示す。
Example 2 Alloy 5 of 75 atoms of iron, 5io atoms, and 15 atoms of B
kg was dissolved to produce an amorphous alloy powder under the same conditions as in Example 1. Table 4 shows the degree of amorphization.

第  4  表 実施例3 鉄75原子チ、8115原子チ、B10原子チの合金5
kgを溶解し、実施例1と同様の条件で非晶質合金粉末
を作製した。その非晶質化度を第5表に示す。
Table 4 Example 3 Alloy 5 of 75 atoms of iron, 8115 atoms of iron, and 10 atoms of B
kg was dissolved to produce an amorphous alloy powder under the same conditions as in Example 1. Table 5 shows the degree of amorphization.

第   5   表 実施例4 鉄80原子チ、ボロン20原子俤の合金4.0に9を溶
解し、溶湯温度1400℃、噴霧圧力100 Icg/
an”、水の流量250ノ/min、噴霧交角40度、
吸引管は内径40襲ψ、長さ5QQIII、上下チェン
バーの圧力差70膓H20で粉末を作製した。その非晶
質化度を第6表に示す。
Table 5 Example 4 9 was dissolved in alloy 4.0 of 80 atoms of iron and 20 atoms of boron, the melt temperature was 1400°C, and the spray pressure was 100 Icg/
an”, water flow rate 250 rpm, spray intersection angle 40 degrees,
The suction tube had an inner diameter of 40 mm, a length of 5 QQIII, and a pressure difference between the upper and lower chambers of 70 mm to prepare powder. The degree of amorphization is shown in Table 6.

ig6表 実施例5 鉄40原子%、ニッケル40原子チ、ボロン20原子チ
の合金5.0に9を溶解し、溶湯温度1400℃、噴霧
圧力110#/crrL”、水の流量260ノ/min
、噴霧交角50度、吸引管は内径50m!1φ、長さ5
001m)、上下チェンノく−の圧力差85 wbH,
0で粉末を作製した。その非晶質化度を第7表に示す。
ig6 Table Example 5 9 was dissolved in alloy 5.0 of 40 at% iron, 40 at% nickel, and 20 atms boron, molten metal temperature 1400°C, spray pressure 110#/crrL'', water flow rate 260 rpm/min.
, the spray intersection angle is 50 degrees, and the suction pipe has an inner diameter of 50 m! 1φ, length 5
001 m), pressure difference between upper and lower chain 85 wbH,
A powder was prepared using 0. Table 7 shows the degree of amorphization.

第   7   表 実施例6 鉄68原子チ、クロム10原子チ、モリブデン2原子*
、’Jン13原子%、炭素7原子俤の合金5.OIcg
を溶解し、溶湯温度1400℃、噴霧圧力1201cy
/crn’、水の流t270ノ/min、噴霧交角68
度、吸引管は内径50鵡ψ、長さ450謁、上下チェン
バーの圧力差100mH,0で粉末を作製した。その非
晶質化度を第8表に示す。
Table 7 Example 6 68 atoms of iron, 10 atoms of chromium, 2 atoms of molybdenum *
, 13 atom % of 'J' and 7 atom of carbon 5. OIcg
melted, molten metal temperature 1400℃, spray pressure 1201cy
/crn', water flow t270 min/min, spray intersection angle 68
The suction tube had an inner diameter of 50 mm, a length of 450 mm, and a pressure difference between the upper and lower chambers of 100 mH. Table 8 shows the degree of amorphization.

第   8   表 以上説明したように本発明によれば、吸引管を設置して
冷却速度を上昇させることによプ。
Table 8 As explained above, according to the present invention, a suction pipe is installed to increase the cooling rate.

完全に非晶質化された合金粉末を得ることができるとと
もに、合金粉末を不規則形状化させることができる。こ
のため、この合金粉末を結合剤を用いることなく、圧粉
成形、ロール間での成形、押出し成形などができ、例え
ば複雑な形状の磁性材料、高耐食性材料など従来の非晶
質合金では作ることができなかった新しい用途に使用で
きる顕著な効果を奏する。又粉末受は体を設けることに
よル安定して粉末を製造することができる。しかも従来
装置に吸引管、粉末受は体を設けるという簡単な構造で
効率よく製造で龜る。
A completely amorphous alloy powder can be obtained, and the alloy powder can be made into an irregular shape. For this reason, this alloy powder can be compacted, formed between rolls, extruded, etc. without using a binder. For example, it can be used to create magnetic materials with complex shapes, highly corrosion-resistant materials, etc. that cannot be produced using conventional amorphous alloys. It has remarkable effects that can be used for new applications that were previously unavailable. Further, by providing a powder receiver with a body, powder can be produced stably. Moreover, the simple structure of adding a suction tube and a powder receiver to the conventional device facilitates efficient manufacturing.

なお本発明方法は、超急冷合金粉末の作製に利用°す;
′る′こともできる。
Note that the method of the present invention is used for producing ultra-quenched alloy powder;
You can also 'ru'.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法に係る非晶質合金粉末の製造装置の
一例を示す説明図、第2図(イ)及び同図←ンは本発明
合金粉末のXM回折結果を示す図。 第3図げ)及び同図(ロ)は従来合金粉末OXm回折結
果を示す図、第4図f1)は本発明合金粉末の模式図、
同図(ロ)は従来合金粉末の模式図である。 1・・・噴霧タンク、2・・・ルツボ、3・・・噴霧ノ
ズル、4・・・吸引管、5・・・粉末受は体、6・・・
オーバーフロー管% 2・・・排出タンク。 出願人代理人 弁理士 鈴 江 武 彦第1図 第2図 (イ)               (ロ)e26 第3図 (イ)               (ロ)t。 第4図
FIG. 1 is an explanatory diagram showing an example of an apparatus for manufacturing an amorphous alloy powder according to the method of the present invention, and FIG. Figure 3) and Figure (b) are diagrams showing the OXm diffraction results of conventional alloy powder, Figure 4 f1) is a schematic diagram of the alloy powder of the present invention,
Figure (b) is a schematic diagram of a conventional alloy powder. 1... Spray tank, 2... Crucible, 3... Spray nozzle, 4... Suction pipe, 5... Powder receiver body, 6...
Overflow pipe% 2...Discharge tank. Applicant's representative Patent attorney Takehiko Suzue Figure 1 Figure 2 (A) (B) e26 Figure 3 (A) (B) t. Figure 4

Claims (1)

【特許請求の範囲】[Claims] 非晶質化する合金の溶湯を細孔から流下して高速液体を
吹きつけ、溶湯を粉化するとともに急冷凝固して非晶質
合金粉末を製造する方法において、溶湯を粉化する個所
の周囲に吸引管を配置して20mmH_2O乃至200
mmH_2Oの圧力差で吸引し、かつ同吸引管の下方に
粉末受け体を配置することを特徴とする非晶質合金粉末
の製造方法。
The area around the area where the molten metal is pulverized in a method of producing amorphous alloy powder by flowing the molten alloy that is to be amorphous down through pores and spraying a high-speed liquid to pulverize the molten metal and rapidly solidify it. Place the suction tube to 20mmH_2O to 200
A method for producing amorphous alloy powder, which comprises suctioning with a pressure difference of mmH_2O and arranging a powder receiver below the suction tube.
JP29132985A 1985-12-24 1985-12-24 Production of amorphous alloy powder Granted JPS61204305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29132985A JPS61204305A (en) 1985-12-24 1985-12-24 Production of amorphous alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29132985A JPS61204305A (en) 1985-12-24 1985-12-24 Production of amorphous alloy powder

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP13138183A Division JPS6024302A (en) 1983-07-19 1983-07-19 Production of amorphous alloy powder

Publications (2)

Publication Number Publication Date
JPS61204305A true JPS61204305A (en) 1986-09-10
JPH0368922B2 JPH0368922B2 (en) 1991-10-30

Family

ID=17767500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29132985A Granted JPS61204305A (en) 1985-12-24 1985-12-24 Production of amorphous alloy powder

Country Status (1)

Country Link
JP (1) JPS61204305A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8012408B2 (en) 2006-04-25 2011-09-06 Seiko Epson Corporation Metal powder manufacturing device, metal powder, and molded body
WO2019111951A1 (en) 2017-12-07 2019-06-13 Jfeスチール株式会社 Method for producing atomized metal powder

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54114467A (en) * 1978-02-14 1979-09-06 Mannesmann Ag Method and apparatus for producing compression molding iron powder

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54114467A (en) * 1978-02-14 1979-09-06 Mannesmann Ag Method and apparatus for producing compression molding iron powder

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8012408B2 (en) 2006-04-25 2011-09-06 Seiko Epson Corporation Metal powder manufacturing device, metal powder, and molded body
US8118904B2 (en) 2006-04-25 2012-02-21 Seiko Epson Corporation Metal powder manufacturing device, metal powder, and molded body
WO2019111951A1 (en) 2017-12-07 2019-06-13 Jfeスチール株式会社 Method for producing atomized metal powder
KR20200078630A (en) 2017-12-07 2020-07-01 제이에프이 스틸 가부시키가이샤 Method for manufacturing atomized metal powder

Also Published As

Publication number Publication date
JPH0368922B2 (en) 1991-10-30

Similar Documents

Publication Publication Date Title
Lawley Atomization of specialty alloy powders
Yolton et al. Conventional titanium powder production
JPS621849A (en) Method and apparatus for producing flocculated product
CN107498060A (en) Preparation facilities and preparation method of a kind of low bulk than metal dust
CN107999778A (en) A kind of method for preparing AF1410 spherical powders
Goudar et al. Effect of atomization parameters on size and morphology of Al-17Si alloy powder produced by free fall atomizer
JP4264873B2 (en) Method for producing fine metal powder by gas atomization method
US4770718A (en) Method of preparing copper-dendritic composite alloys for mechanical reduction
GB2172825A (en) Metal matrix composite manufacture
CN106112000A (en) A kind of 3D prints the preparation method of metal dust
CN106938331B (en) Mesoporous dusty materials of NiAl and preparation method thereof
GB2154902A (en) Atomization nozzle with boron nitride surfaces
JPS61204305A (en) Production of amorphous alloy powder
Schade et al. Atomization
JPS63238230A (en) Conducting composite material and its production
JPH0366361B2 (en)
JPS6024303A (en) Production of amorphous alloy powder
JPH10503806A (en) Method for atomizing dispersible liquid material
Özbilen et al. Influence of superheat on particle shape and size of gas atomised copper powders
JPH0754019A (en) Production of powder by multistage fissure and quenching
Zdujić et al. Production of atomized metal and alloy powders by the rotating electrode process
JPH11323411A (en) Low melting point metal powder and its production
Agrawal et al. Processing of Cu–Al–Ni alloy by spray atomization and deposition process
Duszczyk et al. Properties of particles produced by different rapid solidification techniques
JPH03219035A (en) Titanium base alloy for high strength structural member, manufacture of titanium base alloy for high strength structural member and manufacture of high strength structural member made of titanium base alloy