JPS60138008A - Production of metallic powder - Google Patents

Production of metallic powder

Info

Publication number
JPS60138008A
JPS60138008A JP24452083A JP24452083A JPS60138008A JP S60138008 A JPS60138008 A JP S60138008A JP 24452083 A JP24452083 A JP 24452083A JP 24452083 A JP24452083 A JP 24452083A JP S60138008 A JPS60138008 A JP S60138008A
Authority
JP
Japan
Prior art keywords
liquid
powder
gas
molten metal
atomization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24452083A
Other languages
Japanese (ja)
Inventor
Toshihiko Kubo
敏彦 久保
Mayumi Yoshinaga
吉永 真弓
Minoru Ichidate
一伊達 稔
Yoji Tozawa
戸沢 洋二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP24452083A priority Critical patent/JPS60138008A/en
Publication of JPS60138008A publication Critical patent/JPS60138008A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To reduce metallic powder which is less oxidized and has an excellent grain size distribution and particle shape by blowing an inert gas in the form of liquid to the molten metal flowing in an inert atmosphere at a specific ratio and recovering the molten metal in the powder state. CONSTITUTION:The molten metal 2 contained in a melting furnace 1 is dropped through the central hole of an atomizer nozzle 3 into an atomizing tank 4. The molten metal is pulverized by the jet 5 of a liquid gas (>=one kind among liquid nitrogen, liquid argon and liquid helium) ejected from the same nozzle 3 in the mid-way of said dropping. The weight ratio of the liquid gas with respect to the metal 2 is made >=0.3%. The pulverized particles are quickly cooled and solidified and dropped into a cooling medium 6 (water, oil, etc.) in the tank 4. The liquefied gas is separated from the powder by a solid-liquid separator 7 after cooling and the powder is contained in a product tank 8. The metallic powder contg. less impurities is thus obtd.

Description

【発明の詳細な説明】 (発明の分野) 本発明は、液体噴霧法による金B粉末の製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing gold B powder by liquid atomization.

(従来技術) 従来、溶融金属流に噴霧媒として気体、水、油のジェッ
トを衝突させて金属粉末を製造する技術はいわゆるアト
マイズ法として周知である。
(Prior Art) Conventionally, a technique for producing metal powder by impinging a jet of gas, water, or oil as an atomizing medium on a molten metal stream is well known as the so-called atomization method.

気体によるアトマイズ法(以下、ガスアトマイズ法とい
う)は、噴霧媒として気体をもちいるが、その場合不活
性ガスまたは還元性ガスを噴霧媒として用いれば酸素含
有量の低い粉末を製造することができる。しかし、気体
による冷却では冷却速度が小さいため、溶融金属から回
収粉末になるまで冷却されるのに、比較的時間がかかり
、得られるわ)末は必然的に球状でしかも粒子内の結晶
粒も大きなものとなる。また噴霧媒が気体であって単位
面積当りの質量カ小さいので1ilI[粉ができにくい
A gas atomization method (hereinafter referred to as a gas atomization method) uses a gas as an atomization medium, and in that case, if an inert gas or a reducing gas is used as an atomization medium, powder with a low oxygen content can be produced. However, since the cooling rate with gas cooling is slow, it takes a relatively long time for the molten metal to cool down to the recovered powder. It becomes something big. In addition, since the spray medium is a gas and has a small mass per unit area, it is difficult to form powder.

一方、水を噴霧媒とする水アトマイズ法では、冷却速度
が大きく粉末は圧粉成形に好ましい不規則形状のものに
なり、結晶粒も細かいが、アトマイズ処理時の粉末の酸
化は避けられず、後の還元工程が必須である。特に、C
r、 Mn、 Ti、 Nb、 V等易酸化性の金属を
含む粉末の場合、その還元は困難である。
On the other hand, in the water atomization method using water as the atomizing medium, the cooling rate is high, the powder has an irregular shape suitable for powder compaction, and the crystal grains are fine, but oxidation of the powder during atomization treatment is unavoidable. A subsequent reduction step is essential. In particular, C
In the case of powders containing easily oxidizable metals such as r, Mn, Ti, Nb, and V, it is difficult to reduce them.

ところで、最近、油を噴霧媒とする油アトマイズ法が提
案されている。この方法は油を噴霧媒として使用するた
め冷却速度が大きく、得られる粒子形状も不規則形状で
、酸素含有量も低いが、II、r、 I怜、■、Ti等
の浸炭性金属、つまり炭化物をつくりやすい金属を含む
場合、炭化物を生成しやすく、後工程でのその炭素除去
はやはり困難となる。
Incidentally, recently, an oil atomization method using oil as a spray medium has been proposed. This method uses oil as a spray medium, so the cooling rate is high, the particle shape obtained is irregular, and the oxygen content is low. When metals that tend to form carbides are included, carbides are likely to be formed, making it difficult to remove the carbon in subsequent steps.

このように従来の各種アトマイズ法は必ずしも満足のゆ
くものではなく、今日、当業界にあっては次のような利
点を有する金属粉末の製造方法が希求されている。
As described above, the various conventional atomization methods are not necessarily satisfactory, and today, there is a need in the industry for a method for producing metal powder that has the following advantages.

(1)不純物として酸素、炭素が混入しない製造方法。(1) A manufacturing method that does not contain oxygen or carbon as impurities.

これは、アトマイズ処理時に粉末成形後の最終製品の強
度を特にさげるような不純物が混入しないようにするた
めである。なお、N2、Ar、lle等の不活性成分の
少量の混入は、上記元素に比べて問題が少ないので、少
量の混入は止むを得ないができるかぎり少ない方が望ま
しい。
This is to prevent impurities from being mixed in during the atomization process that would particularly reduce the strength of the final product after powder molding. Incidentally, the inclusion of small amounts of inert components such as N2, Ar, and lle poses fewer problems than the above-mentioned elements, so although small amounts of inert components are unavoidable, it is desirable that they be as small as possible.

(2)少なくともガスアトマイズ法以上の冷却速度を有
し、好ましくは、現在の水アトマイズ法、油アトマイズ
法程度の冷却速度をもった製造方法。
(2) A manufacturing method having a cooling rate at least higher than the gas atomization method, preferably at a cooling rate comparable to the current water atomization method or oil atomization method.

金属成形法の一種である粉末法の1つの特徴としての急
冷凝固による析出物の均−分散等が充分に活かせるよう
冷却速度は速い方がよいからである。
This is because the cooling rate should be fast so that the uniform dispersion of precipitates due to rapid solidification, which is one of the characteristics of the powder method, which is a type of metal forming method, can be fully utilized.

(3)現在の水アトマイズ法、油アトマイズ法により製
造される程度の微粉からガスアトマイズ法により製造さ
れる程度の粒度の粉末まで製造できる製造方法。
(3) A manufacturing method capable of producing powders ranging from fine powders as fine as those produced by the current water atomization method and oil atomization method to powders as fine as those produced by gas atomization methods.

粒度分布は粗いものから微粉まで製造範囲が広いことが
、各種用途に対応するために必要であり、それが可能で
あることがその製造方法の経済性を高めるのに有効であ
るからである。
This is because it is necessary to have a wide range of particle size distribution, from coarse to fine, in order to accommodate various uses, and being able to do so is effective in increasing the economic efficiency of the manufacturing method.

(4)アトマイズ条件により球状から不規則形状まで広
範囲のわ)末を製造することのできる製造方法。
(4) A manufacturing method that can produce a wide range of powders from spherical to irregular shapes depending on the atomization conditions.

形状は用途により不規則形状から球状まで必要であるの
で不規則形状、球状粉の両方が製造できることは、その
製造方法の経済性を高めるのに不可欠である。
Since the shape may range from irregular to spherical depending on the purpose, it is essential to be able to produce both irregularly shaped and spherical powders in order to increase the economic efficiency of the production method.

(発明の目的) かくして、本発明の目的とす企ところは、上述の(1)
〜(4)のいずれの要求をも満足し得る金属粉末の製造
方法を提供することである。
(Object of the invention) Thus, the object and intention of the present invention is to achieve the above-mentioned (1).
An object of the present invention is to provide a method for producing metal powder that can satisfy all of the requirements in (4).

本発明の別の目的は、噴霧媒として従来使用されている
水、油または各種気体とは全く性質の異なるものを使用
し、酸化が少なく、かつ粒度分布および粒子形状の優れ
た金属15)末を製造する方法を提供することである。
Another object of the present invention is to use a spray medium that has completely different properties from water, oil, or various gases conventionally used, and to produce metal 15) powder that is less oxidized and has an excellent particle size distribution and particle shape. An object of the present invention is to provide a method for manufacturing.

(発明の要約) 、ここに本発明者らは永年の研究の結果、噴霧媒として
、液体窒素、液体アルゴン、液体ヘリウム等の液体状態
の不乱性ガス(本明細書ではこれらを総称して「液化ガ
ス」という)を液体状態で利用、適当量を溶融金属流に
向ってジェット流で吹きつけ、さらに不純物の入らない
ようにして粉末を回収することにより、上述の各要求が
いずれも満足されることを見い出して本発明を完成した
(Summary of the Invention) As a result of many years of research, the present inventors have hereby found that liquid nitrogen, liquid argon, liquid helium, and other undisturbed gases in a liquid state (these are collectively referred to herein as All of the above requirements are met by using liquefied gas (called "liquefied gas") in a liquid state, spraying an appropriate amount of it in a jet stream toward the molten metal stream, and recovering the powder without introducing any impurities. The present invention was completed by discovering that

かくして、本発明は、不活性雰囲気下を流下する溶融金
属の流れに向かって、液体窒素、液体アルゴンおよび液
体ヘリウムからなる群から選んだ少なくとも1種を、前
記溶融金属の流量に対し重量比で0.3以上の液化ガス
流量比率で、ジェット状に噴霧して、上記溶融金属を粉
末状態で回収することを特徴とする金属粉末の製造方法
である。
Thus, the present invention provides at least one member selected from the group consisting of liquid nitrogen, liquid argon, and liquid helium toward the flow of molten metal flowing down under an inert atmosphere in a weight ratio relative to the flow rate of the molten metal. This method of producing metal powder is characterized in that the molten metal is recovered in a powder state by spraying in a jet form at a liquefied gas flow rate ratio of 0.3 or more.

溶融金属としては単体金属あるいは合金、たとえば鋼な
どがあり、特に制限されない。
The molten metal may be a single metal or an alloy, such as steel, and is not particularly limited.

このように本発明により粉化された金属を大気から遮断
された容器内で噴霧媒と同一の冷却剤で冷却してもよく
、あるいは水または油類で冷却してもよい。
The metal thus powdered according to the present invention may be cooled in a container isolated from the atmosphere using the same coolant as the spray medium, or may be cooled with water or oil.

さらに別法として、本発明により粉化された金属は大気
から遮断された容器内で水で冷却してから、真空脱水法
または溶媒洗浄法により水分を分離するごとく処理して
もよい。さらには、水の代わりに油類で冷却後、固液分
離機で必要に応じて脱油後、溶媒洗浄および非酸化性雰
囲気加熱により脱脂するごとく処理してもよい。
As a further alternative, the metal powdered according to the invention may be cooled with water in a container isolated from the atmosphere and then treated to remove water by vacuum dehydration or solvent washing. Furthermore, the product may be cooled with oil instead of water, deoiled if necessary in a solid-liquid separator, and then treated to be degreased by solvent washing and heating in a non-oxidizing atmosphere.

(発明の態様) 本発明において各処理工程を以上の如く限定した理由は
次の通り。
(Aspects of the Invention) The reasons for limiting each treatment step in the present invention as described above are as follows.

本発明にあっては、噴霧媒として液体窒素、液体アール
ボンおよび液体ヘリウムから成る群から選んだ少なくと
も1種を用いるが、その理由は、これらはいずれも不活
性な元素でありかつ液体であることによる。
In the present invention, at least one selected from the group consisting of liquid nitrogen, liquid Arbon, and liquid helium is used as the atomizing medium, because all of these are inert elements and liquids. by.

まず不活性であるためアトマイス時に製品の強度を特に
低下・u・シめるような不純物が混入しない。水アトマ
イズ法、油アトマイズ法のように酸素や炭素が混入しな
いことは勿論、ガスアトマイズ法に比しても、その冷却
速度が速いため、同一粒径においては噴霧媒自体のN2
、計、lieガス等の混入は極めて少ない。
First, since it is inert, there are no impurities mixed in that would particularly reduce the strength of the product during atomization. Unlike the water atomization method and oil atomization method, oxygen and carbon are not mixed in, and the cooling rate is faster than the gas atomization method.
, total, lie gas, etc. are extremely rare.

さらに液体であるため、単位体積当りの質量、比熱がガ
スに比べてはるかに大きいうえ、粉化時に発生ずる蒸発
に伴う蒸発潜熱による抜熱効果も加わって、その冷却速
度は、ガスアトマイズ法の場合に比して著しく速くなる
Furthermore, since it is a liquid, its mass per unit volume and specific heat are much larger than those of gas, and in addition, there is also the heat removal effect due to the latent heat of vaporization accompanying evaporation that occurs during powdering, and the cooling rate is lower than that of the gas atomization method. is significantly faster than.

冷却速度に関して水アトマイズ法、油アトマイズ法と本
発明方法とを比較すると、各方法の噴霧媒は質量、比熱
がほぼ同程度である。本発明の場合、噴霧媒の液体の温
度自体低いが、蒸発潜熱が小さいので同じアトマイズ条
件下では同程度の冷却速度となる。
Comparing the water atomization method, oil atomization method, and the method of the present invention with respect to the cooling rate, the mass and specific heat of the spray media of each method are approximately the same. In the case of the present invention, although the temperature of the liquid of the spray medium itself is low, the latent heat of vaporization is small, so the cooling rate is about the same under the same atomization conditions.

上述の通り、本発明6ごおいて利用する液体ガスは質量
が油、水に近いので、微粉を得るだめの所要の質量流量
を簡単に得ることができる。形状については、本発明の
場合、噴霧媒の質■、冷j、11性能ともに水、油アト
マイズ法に近くなるので、不規則形状わ〕から球状4′
5)まで型造することができる。
As mentioned above, since the liquid gas used in the sixth aspect of the present invention has a mass close to that of oil and water, the required mass flow rate for obtaining fine powder can be easily obtained. Regarding the shape, in the case of the present invention, the quality of the spray medium, cold performance, and 11 performance are both close to those of the water and oil atomization methods.
5) can be molded.

なお、ここに、アトマイズ処理時の液体ガス流量/溶融
金属流量を重量比で0.3以上として理由は次の通りで
ある。
The reason for setting the liquid gas flow rate/molten metal flow rate at the time of atomization to a weight ratio of 0.3 or more is as follows.

溶融金属流を液化ガスにより粉化するに際し、まず必要
なことは液化ガス流量が溶融金属流量に比して余り小さ
いと粉化が不充分なうえ、一度粉化した粒子同志が付着
してしまうことである。その条件として液化ガス流N/
溶融金属流量を重量比で0.3以上必要であることを実
験的に見い出した。一般には0.3以上であれば良く、
目的とする粉末の粒径の分布に応じて適宜選ぶことがで
きる。以下この液体ガス対溶融金属の流量比(重量)を
便宜上単に゛アトマイズ比”という。
When pulverizing a molten metal flow with liquefied gas, the first thing that needs to be done is that if the liquefied gas flow rate is too small compared to the molten metal flow rate, not only will the pulverization be insufficient, but the particles that have been pulverized will stick to each other. That's true. The condition is that the liquefied gas flow N/
It has been experimentally found that a molten metal flow rate of 0.3 or more by weight is required. Generally, it is sufficient if it is 0.3 or more,
It can be appropriately selected depending on the particle size distribution of the target powder. Hereinafter, this flow rate ratio (weight) of liquid gas to molten metal will be simply referred to as the "atomization ratio" for convenience.

次に図面に関連させて本発明をさらに説明する。The invention will now be further explained in connection with the drawings.

第1図は本発明に係る方法の基本工程を示すフローチャ
ー1・である。
FIG. 1 is a flowchart 1 showing the basic steps of the method according to the present invention.

第2図は本発明に利用する装置の1例を模型的に示す説
明図である。
FIG. 2 is an explanatory diagram schematically showing an example of a device used in the present invention.

本発明方法は、一般的には液体ガス流量/溶融金属流量
比(重l)0.3以上で液体ガス7トマイズを実施する
液化ガスアトマイズ工程および!vJ:11 シた粉末
を冷却する冷却工程さらには冷却に用いた冷却媒の分離
工程からなる。
The method of the present invention generally includes a liquefied gas atomization step in which the liquid gas is atomized at a liquid gas flow rate/molten metal flow rate ratio (gravity 1) of 0.3 or more; vJ:11 It consists of a cooling process of cooling the shattered powder and a separation process of the coolant used for cooling.

これを詳述すると、第1図に示す如く原料熔解精錬段階
Iで目的成分に開裂された溶融金属は、次いで、液化ガ
スアトマイズ段階■に送られ、アトマイズ比0.3以上
、好ましくは0.8以上の条件下で流下流に液化ガスの
ジェフト流を衝突させて、溶融金属を粉化する。このよ
うにして粉化した金属は、最終成品の形状、粒度分布、
含有成分等を考広して液化ガス中冷却段階■、水中冷却
段階■あるいは油中冷却段階■のいずれかに送られる。
To explain this in detail, as shown in Fig. 1, the molten metal that has been cleaved into the target components in the raw material melting and refining stage I is then sent to the liquefied gas atomizing stage II, where the atomization ratio is 0.3 or more, preferably 0.8. Under the above conditions, a jet flow of liquefied gas collides downstream to powder the molten metal. The shape and particle size distribution of the final product of the metal powdered in this way
Depending on the ingredients contained, etc., the product is sent to either the liquefied gas cooling stage (2), the water cooling stage (2), or the oil cooling stage (2).

このように、冷却手段としては液化ガスによる冷却およ
び水、油による冷却方法がある。各冷却方法に対応して
真空脱気法、溶媒洗浄法、非酸化性雰囲気での加熱法等
がある。
As described above, cooling means include cooling methods using liquefied gas and cooling methods using water and oil. There are vacuum degassing methods, solvent cleaning methods, heating methods in a non-oxidizing atmosphere, etc. corresponding to each cooling method.

真空脱気法は、わ)末にイ」着した冷却媒を室温または
若干加熱しながら真空に吸引することにより除去するも
のであり、酸化させずに水分を除去することを目的とす
る。溶媒洗浄法は、冷却媒をより沸点の低い、かつ悪影
響のない溶媒で洗浄することにより冷却媒を除去する方
法であり、具体的実施態様では付着水分(沸点100℃
)をまずベンセンC6I16 (沸点80 、5℃)で
洗浄後、さらにエチルエーテル(02H5)20(沸点
34.6°C)で洗浄し、最後の付着エチルエーテルは
、自然蒸発、脱気蒸発で除去する方法である。非酸化性
雰囲気中で加熱する方法は、不活性ガス、還元性ガス雰
囲気中で付着冷却媒の沸点以上に粉末を加熱することに
より冷却媒を除去する方法である。
The vacuum degassing method is a method in which the coolant deposited at the end of the process is removed by vacuum suction at room temperature or while being slightly heated, and the purpose is to remove moisture without oxidizing it. The solvent cleaning method is a method of removing the coolant by washing the coolant with a solvent that has a lower boiling point and has no adverse effects.
) was first washed with benzene C6I16 (boiling point 80°C, 5°C), and then washed with ethyl ether (02H5)20 (boiling point 34.6°C), and the last adhering ethyl ether was removed by natural evaporation and degassing evaporation. This is the way to do it. The method of heating in a non-oxidizing atmosphere is a method of removing the coolant by heating the powder to a temperature higher than the boiling point of the attached coolant in an inert gas or reducing gas atmosphere.

かくして、第1図にも示すように、液化ガス中冷却段階
■を経た15)未はぞのままあるいは真空脱気段階■を
経て成品とする。水中冷却段階■を経た粉末は必要に応
じ固液分離段階■を経てからそのまままたは前記の真空
脱気段階■あるいは溶媒洗浄段階■を経て成品とする。
In this way, as shown in FIG. 1, the product is made into a finished product after passing through the cooling step (1) in liquefied gas and then leaving it as it is or going through the vacuum degassing step (15). The powder that has passed through the underwater cooling step (2) may be made into a finished product after passing through the solid-liquid separation step (2) as needed or by passing through the vacuum degassing step (2) or the solvent washing step (2) as described above.

さらに油中冷却段階■を経た粉末は必要に応じ固液分離
段階■を経てからそのままあるいは前述の溶媒洗浄段階
■あるいは非酸化性雰囲気加熱段階■を経て成品と1−
る。
Furthermore, the powder that has passed through the oil cooling step (■) may be processed as a finished product after passing through a solid-liquid separation step (■) as required, or after passing through the aforementioned solvent washing step (■) or non-oxidizing atmosphere heating step (■).
Ru.

第2図は本発明に係る方法を実施する装置の1例を模型
的に示すものである。
FIG. 2 schematically shows an example of an apparatus for carrying out the method according to the present invention.

図示のように溶解炉またはタンデソシュ−1に収容され
た溶融金属2はアトマイザ−ノズル3の中心孔を通して
流下してアトマイズタンク4に落下するが、その途中で
同じくアトマイザ−ノズル3から噴出される液化ガスジ
ェット5によって粉化される。ごの粉化粒子は、急速に
冷却固化してアトマイズタンク4中の冷却媒6の中に落
丁する。
As shown in the figure, the molten metal 2 accommodated in the melting furnace or tumbler 1 flows down through the center hole of the atomizer nozzle 3 and falls into the atomizing tank 4. On the way, the molten metal 2 is also liquefied which is spouted from the atomizer nozzle 3. It is pulverized by the gas jet 5. The powdered particles are rapidly cooled and solidified and fall into the cooling medium 6 in the atomization tank 4.

この冷却媒6は、噴霧媒と同じ物質すなわちltX化ガ
スであってもよく、さらには、水、油であってもよい。
This cooling medium 6 may be the same substance as the spray medium, that is, ltX gas, or may also be water or oil.

あるいは粉化する金属の種類によっては冷却媒なしでも
よい。この冷却媒の選択は、処理すべき金属の融点、目
的わ)末の要求される性状等より行われる。図示例は噴
霧媒と同じ液化ガスを冷却媒として用いた例である。
Alternatively, depending on the type of metal to be powdered, no cooling medium may be used. This cooling medium is selected based on the melting point of the metal to be treated, the desired properties of the metal, etc. The illustrated example is an example in which the same liquefied gas as the spray medium is used as the coolant.

冷却後、粉末は一部の液化ガスとともに固液分離装置7
で液化ガスと分離されて成品タンク8に収容される。さ
らにアトマイズ中に蒸発した液化ガスとともに排ガス系
統に流れた微粉はサイクロン9を通して成品タンク8に
収容される。アトマイズ中、オーバフローした液化ガス
と共にオーバーフロータンク10に流入した粉末は状況
に対応して固液分離装置7を通しであるいはそのまま成
品タンク8に収容される。
After cooling, the powder is transferred to solid-liquid separator 7 along with some liquefied gas.
It is separated from the liquefied gas and stored in the product tank 8. Further, the fine powder flowing into the exhaust gas system together with the liquefied gas evaporated during atomization is stored in the product tank 8 through the cyclone 9. During atomization, the powder flowing into the overflow tank 10 together with the overflowing liquefied gas is stored in the product tank 8 either through the solid-liquid separator 7 or as it is, depending on the situation.

図示例における液体ガスの流れは次のとおり。The flow of liquid gas in the illustrated example is as follows.

液体ガス用高圧ポンプにより高圧(10〜500気圧)
にされた液化ガスは、アトマイザ−ノズル3を通して、
アトマイズタンク4内に流下する。次いで、予らかしめ
同じ配管を通してアトマイズタンク4に流入、収容され
ている同じ液化ガスである冷却媒6と混合され、オーバ
ーフロータンク10に流出する分とタンク内に残り固液
分離装置7に回収される分とさらにはアI・マイズ処理
時ガスとなり排ガス系統を通してサイクロン9を通過後
圧縮機11を通してガス液化システム12へと送られる
分とに分けられる。
High pressure (10 to 500 atmospheres) by high pressure pump for liquid gas
The liquefied gas passes through the atomizer nozzle 3,
It flows down into the atomization tank 4. Next, it flows into the atomization tank 4 through the same pre-caulked pipe and is mixed with the coolant 6 which is the same liquefied gas stored therein, and the part that flows out to the overflow tank 10 and the part that remains in the tank are collected by the solid-liquid separator 7. It is further divided into a portion that becomes a gas during the Amize treatment and is sent to a gas liquefaction system 12 through a compressor 11 after passing through a cyclone 9 through an exhaust gas system.

オーバーフロータンク10および固液分離タンク7から
排出された液化ガスは、ポンプ13を通してやはりガス
液化システム12に送り込まれる。液化システム12に
おいて液体状態にリザイクルされるとともに不純物を除
去された液化ガスは補給用の新しい液化ガスとともに高
圧ポンプ14により再び噴霧媒としてアトマイザ−ノズ
ル3に送り込まれる。図中、符号“Q”で示すのは粉末
切出装置である。
The liquefied gas discharged from the overflow tank 10 and the solid-liquid separation tank 7 is also sent to the gas liquefaction system 12 through the pump 13. The liquefied gas, which is recycled into a liquid state in the liquefaction system 12 and from which impurities have been removed, is sent together with new liquefied gas for replenishment to the atomizer nozzle 3 again as an atomizing medium by a high-pressure pump 14. In the figure, the symbol "Q" indicates a powder cutting device.

次に本発明を実施例に関連させてさらに説明する。Next, the present invention will be further explained in connection with examples.

ス崖孤1 本発明の方法に従って以下に示す条件でインコオル71
8組成の合金粉末を第2図に示すと同様の5kg/ch
規模実験設備を使い製造した。使用液化ガスとしては液
体窒素を第1表に示す口だけ使用した。
Inkool 71 according to the method of the present invention under the conditions shown below.
8 composition alloy powder is shown in Figure 2, the same 5 kg/ch
Manufactured using large-scale experimental equipment. As the liquefied gas used, liquid nitrogen was used only as shown in Table 1.

第1表 冷却媒は噴霧媒と同じ液体窒素を使用し、粉末への付着
液体窒素および水分はベンゼンおよびエチルエーテルを
使用する溶媒洗浄法によって除去した。
The same liquid nitrogen as the spray medium in Table 1 was used as the cooling medium, and liquid nitrogen and moisture adhering to the powder were removed by a solvent cleaning method using benzene and ethyl ether.

本例により得た粉末の性状は第2表および第3表に示す
。第2表は合金組成を、第3表は粒径分布をそれぞれ示
す。
The properties of the powder obtained in this example are shown in Tables 2 and 3. Table 2 shows the alloy composition, and Table 3 shows the particle size distribution.

第2表 第3表 ■ inられた全屈15)末の顕微鏡攻察結果によれば、形
状は油アトマイズ法により得られる粉末に近いやや不規
則形状に近いものが得られた。凝固組織についても冷却
速度102〜103°C/secに相当するものが得ら
れている。なお、冷却速度はガスアトマイズ法では通常
10°C/secである。
Table 2 Table 3 ■ According to the results of microscopic examination of the injected powder 15), a slightly irregular shape similar to that of powder obtained by oil atomization was obtained. A solidification structure corresponding to a cooling rate of 102 to 103°C/sec was also obtained. Note that the cooling rate in the gas atomization method is usually 10°C/sec.

以上の結果からも明らかなように本発明によれば以下の
条件をいずれも満足させることが出来る。
As is clear from the above results, according to the present invention, all of the following conditions can be satisfied.

(i)不純物の混入が少ない。(i) Less contamination of impurities.

(11)冷却速度は充分速い。(11) The cooling rate is sufficiently fast.

(iii )粒径分布ば水アトマイズ法、ガスアトマイ
ズ法で得られる粉末並めで、ガスアトマイズ法による粉
末に比して充分細かい。
(iii) Particle size distribution is comparable to powder obtained by water atomization method or gas atomization method, and is sufficiently finer than powder obtained by gas atomization method.

(1v)形状も不規則なものを得ることができる。(1v) Irregular shapes can also be obtained.

実韮■童 本例では、50Cr−5ONi合金の粉末を実施例1に
準じて製造した。
In this example, 50Cr-5ONi alloy powder was produced according to Example 1.

使用液化ガスは液体アルゴンを第4表に示す量だけ使用
した。
The liquefied gas used was liquid argon in the amount shown in Table 4.

第4表 冷却媒は低融点の有機溶媒を使用、イ」着溶媒の除去は
真空脱気法によって行った。
As the cooling medium in Table 4, an organic solvent with a low melting point was used, and the removal of the adsorbed solvent was carried out by a vacuum degassing method.

本例により得た粉末性状を第5表および第6表に示す。The powder properties obtained in this example are shown in Tables 5 and 6.

第5表は合金組成を、第6表は粒径分布をそれぞれ示す
。溶湯組成と(Uられた各粉末の組成を比較すると、そ
れらはほとんど同一組成であって、これよりも本発明に
よればC,O,N等の混入が実質上みられないことは明
らかである。
Table 5 shows the alloy composition, and Table 6 shows the particle size distribution. Comparing the composition of the molten metal and the composition of each powder (U), they are almost the same composition, and it is clear that according to the present invention, there is virtually no contamination of C, O, N, etc. be.

第6表 得られた金属15)末の顕微鏡観察の結果によれば、形
状はケース1では、ガスアトマイズ法の場合と同様、球
状に近いものを得、ケース2では、不規則形状に近いも
のをiqだ。また凝固組織についても冷却速度10℃/
sec以上のものが得られている。
According to the results of microscopic observation of the obtained metal 15) powder in Table 6, in Case 1, the shape was close to spherical, as in the case of the gas atomization method, and in Case 2, the shape was close to irregular. It's iq. Also, regarding the solidification structure, the cooling rate is 10℃/
sec or more has been obtained.

以上の結果からも明らかなように本発明によれば以下の
条件を満足さゼることができる。
As is clear from the above results, according to the present invention, the following conditions can be satisfied.

(i)不純物の混入が少ない。(i) Less contamination of impurities.

(ii)冷却速度もガスアトマイズ法におけるそれ以上
のものがinられる。
(ii) The cooling rate is also higher than that of the gas atomization method.

(iii )粒径分布も液体アルゴン流量を変えること
によりコントロール可能となる。
(iii) Particle size distribution can also be controlled by changing the flow rate of liquid argon.

(1v)形状も不規則形状から球状粉のものまで得るこ
とができる。
(1v) Shapes can range from irregular shapes to spherical powders.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る方法のフローチャート;および 第2図は、本発明を実施する装置の略式説明図である。 1:溶解炉 2:溶融金属 3:アトマイザ−ノズル 4:アトマイズタンク5;液
体ガスジェット 6:冷却媒
1 is a flowchart of a method according to the invention; and FIG. 2 is a schematic illustration of an apparatus implementing the invention. 1: Melting furnace 2: Molten metal 3: Atomizer nozzle 4: Atomizing tank 5; Liquid gas jet 6: Coolant

Claims (1)

【特許請求の範囲】[Claims] 不活性雰囲気下を流下する溶融金属の流れに向かって、
液体窒素、液体アルゴンおよび液体ヘリウムからなる群
から選んだ少なくとも1種を、前記溶融金属の流量に対
し重量比で0.3以上の液化ガス流量比率で、ジェット
状に噴霧して、上記溶融金属を粉末状態で回収すること
を特徴とする金属粉末の製造方法。
towards the flow of molten metal flowing down under an inert atmosphere.
At least one selected from the group consisting of liquid nitrogen, liquid argon, and liquid helium is sprayed in a jet form at a liquefied gas flow rate ratio of 0.3 or more by weight to the flow rate of the molten metal, so as to produce the molten metal. A method for producing metal powder, which comprises recovering metal powder in a powdered state.
JP24452083A 1983-12-27 1983-12-27 Production of metallic powder Pending JPS60138008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24452083A JPS60138008A (en) 1983-12-27 1983-12-27 Production of metallic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24452083A JPS60138008A (en) 1983-12-27 1983-12-27 Production of metallic powder

Publications (1)

Publication Number Publication Date
JPS60138008A true JPS60138008A (en) 1985-07-22

Family

ID=17119901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24452083A Pending JPS60138008A (en) 1983-12-27 1983-12-27 Production of metallic powder

Country Status (1)

Country Link
JP (1) JPS60138008A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01100211A (en) * 1987-09-09 1989-04-18 Leybold Ag Method and apparatus for producing powder from molten substance
US5545360A (en) * 1993-06-08 1996-08-13 Industrial Technology Research Institute Process for preparing powders with superior homogeneity from aqueous solutions of metal nitrates
KR20010104990A (en) * 2000-05-17 2001-11-28 김영태 The method of preparing alloy powder using waste alloy products
WO2004082873A1 (en) * 2003-03-20 2004-09-30 'konstantin' Technologies Gmbh Method and device for producing high-purity powders and cast globular granules from chemically active metals or alloys
CN104057097A (en) * 2014-06-09 2014-09-24 浙江亚通焊材有限公司 Dual-ring supersonic atomizer
CN107900364A (en) * 2017-11-07 2018-04-13 常州大学 Cooling method prepares the device of amorphous metal powder to a kind of ultrasonic atomizatio again

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01100211A (en) * 1987-09-09 1989-04-18 Leybold Ag Method and apparatus for producing powder from molten substance
US5545360A (en) * 1993-06-08 1996-08-13 Industrial Technology Research Institute Process for preparing powders with superior homogeneity from aqueous solutions of metal nitrates
KR20010104990A (en) * 2000-05-17 2001-11-28 김영태 The method of preparing alloy powder using waste alloy products
WO2004082873A1 (en) * 2003-03-20 2004-09-30 'konstantin' Technologies Gmbh Method and device for producing high-purity powders and cast globular granules from chemically active metals or alloys
CN104057097A (en) * 2014-06-09 2014-09-24 浙江亚通焊材有限公司 Dual-ring supersonic atomizer
CN107900364A (en) * 2017-11-07 2018-04-13 常州大学 Cooling method prepares the device of amorphous metal powder to a kind of ultrasonic atomizatio again
CN107900364B (en) * 2017-11-07 2021-01-29 常州大学 Device for preparing metal amorphous powder by ultrasonic atomization recooling method

Similar Documents

Publication Publication Date Title
KR102639133B1 (en) Process for producing spheroidized powder from feedstock materials
US8518358B2 (en) High purity and free flowing metal oxides powder
US4690796A (en) Process for producing aluminum-titanium diboride composites
CN110480024B (en) Method for preparing CuCrZr spherical powder based on VIGA process
US4832741A (en) Powder-metallurgical process for the production of a green pressed article of high strength and of low relative density from a heat-resistant aluminum alloy
JPH06102824B2 (en) Method and apparatus for producing coagulated sprayed product
JPH0748609A (en) Forming method for particle by gas spray synthesis of heat-resistant compound or intermetallic compound and supersaturated solid solution
JPS63243212A (en) Wet metallurgical method for producing finely divided globular high melting point metal base powder
JPH10110206A (en) Production of fine-grained (chromium carbide)-(nickel chromium) powder
US4981512A (en) Methods are producing composite materials of metal matrix containing tungsten grain
JPS6317884B2 (en)
JPS60138008A (en) Production of metallic powder
CN116765380B (en) Shape memory high-entropy alloy powder for additive manufacturing and preparation method thereof
US5978432A (en) Dispersion fuel with spherical uranium alloy, and the fuel fabrication process
CN109694969B (en) Pre-alloyed powder, TiCN-based metal ceramic composite material added with pre-alloyed powder and preparation method of TiCN-based metal ceramic composite material
JP3627667B2 (en) Thermoelectric material and manufacturing method thereof
JPS63230806A (en) Gas atomizing apparatus for producing metal powder
KR100372226B1 (en) Making process of amorphous metallic powder by high pressure water atomization
US4735652A (en) Process for producing agglomerates of aluminum based material
KR100819534B1 (en) High-pressure water spray system and method for fabricating metallic powders having super small particle sizes using the same
US4743297A (en) Process for producing metal flakes
KR20210067740A (en) Method of producing titanium-based powder using transfer arc plasma
US4279843A (en) Process for making uniform size particles
JP3403360B2 (en) High density dispersed nuclear fuel using uranium alloy spherical powder rapidly solidified by spraying as a dispersant and its production method
WO2007119826A1 (en) PROCESS FOR PRODUCTION OF Ti POWDER