JPH0754019A - Production of powder by multistage fissure and quenching - Google Patents

Production of powder by multistage fissure and quenching

Info

Publication number
JPH0754019A
JPH0754019A JP20332693A JP20332693A JPH0754019A JP H0754019 A JPH0754019 A JP H0754019A JP 20332693 A JP20332693 A JP 20332693A JP 20332693 A JP20332693 A JP 20332693A JP H0754019 A JPH0754019 A JP H0754019A
Authority
JP
Japan
Prior art keywords
powder
molten metal
droplets
atomized
divided
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20332693A
Other languages
Japanese (ja)
Inventor
Yoshinobu Yashima
芳信 八島
Kazuya Sato
和也 佐藤
Masami Murakami
正見 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sozai KK
Original Assignee
Nippon Sozai KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sozai KK filed Critical Nippon Sozai KK
Priority to JP20332693A priority Critical patent/JPH0754019A/en
Publication of JPH0754019A publication Critical patent/JPH0754019A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce the powder having a uniform particle diameter and high quality in a large amt. at a low production cost and produce the amorphous alloy powder particularly having excellent properties. CONSTITUTION:Molten metal 1 is fissured by an atomizing treatment using an inert gas 3 and the fissured liquid drops of the molten metal are brought into collision against a rotary disk 4, a rotary drum or rotary roll, by which the liquid drops are pulverized. The pulverized liquid drops are brought into contact with a cooling medium 6 and are quenched, by which the liquid drops are solidified into the powder.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、溶湯を多段階の分裂処
理によって微粒化された液滴を得、これを急冷凝固処理
することにより粉末を作製する方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a powder by obtaining droplets of a molten metal which are atomized by a multi-step splitting treatment, and rapidly cooling and solidifying the droplet.

【0002】[0002]

【従来の技術】従来、溶湯を急速冷却処理することによ
り粉末を作製する方法においては、一般的に熔融物の微
粒化処理が行われていたが、作製された粉末の粒径分布
が広範囲であって、大きい粒径の粒子の存在が避けられ
ないという問題点があった。
2. Description of the Related Art Conventionally, in a method for producing powder by rapidly cooling a molten metal, the atomization treatment of a melt is generally performed, but the produced powder has a wide particle size distribution. Therefore, there is a problem in that the existence of particles having a large particle diameter cannot be avoided.

【0003】又、熔融物粒子が冷却される速度はその粒
径が大きいほど小さくなるために、粒径の大きい非晶質
合金の粉末を製造する方法として急速冷却処理法を使用
した場合には均一な急速冷却が行われないので、非晶質
から成る単相の粉末が得られないという問題点があっ
た。
Further, since the cooling rate of the melt particles becomes smaller as the particle size becomes larger, when the rapid cooling treatment method is used as a method for producing the powder of the amorphous alloy having a large particle size, Since uniform rapid cooling is not performed, there is a problem that a single-phase powder made of amorphous cannot be obtained.

【0004】[0004]

【発明が解決しようとする課題】従来技術においては、
上記のとおり作製された粉末の粒径分布が広範囲のもの
で、大きな粒径の粒子の存在が避けられず、又非晶質か
ら成る単相の粉末が得られなかったので、本発明はかか
る問題点を解決することを目的として研究開発されたも
のである。即ち、本発明は、得られる粉末の粒径分布を
狭い範囲に維持して均一な粒径の粉末を作製すること、
又単相からなる非晶質の粉末を得ることを目的とするも
のである。
DISCLOSURE OF THE INVENTION In the prior art,
Since the powder prepared as described above has a wide particle size distribution, the existence of particles having a large particle size is unavoidable, and a single-phase powder composed of an amorphous material cannot be obtained. It was researched and developed for the purpose of solving problems. That is, the present invention is to maintain the particle size distribution of the obtained powder in a narrow range to produce a powder having a uniform particle size.
It is also intended to obtain an amorphous powder having a single phase.

【0005】[0005]

【課題を解決するための手段】本発明は、溶湯を多段階
で分裂処理することにより微粒化された液滴を得、この
液滴をガス、液体窒素、水及びオイルなどの冷却媒体と
接触させて急速に冷却凝固させて粉末を作製する方法で
ある。
According to the present invention, finely divided droplets are obtained by dividing a molten metal in multiple stages, and the droplets are brought into contact with a cooling medium such as gas, liquid nitrogen, water and oil. It is a method of producing powder by rapidly cooling and solidifying.

【0006】本発明は、噴霧分裂、衝突分裂、及び急冷
凝固等の工程における処理を適宜調整することにより、
得られる粉末の粒径及び粒形などを自由にコントロール
することができるので、高品質で且つ低製造コストの大
量の粉末を製造することができる。そして、本発明は、
特に優れた性質を持つ非晶質合金粉末を製造方法として
優れたものである。
According to the present invention, by appropriately adjusting the processes in processes such as spray splitting, collision splitting, and quench solidification,
Since the particle diameter and particle shape of the obtained powder can be freely controlled, a large amount of powder of high quality and low manufacturing cost can be manufactured. And the present invention is
This is an excellent method for producing an amorphous alloy powder having particularly excellent properties.

【0007】次に、本発明を図面に基づいて具体的に説
明する。
Next, the present invention will be specifically described with reference to the drawings.

【0008】本発明の装置の原理図を図1、図2及び図
3に示す。本発明の粉末作製工程は、溶湯のガス噴霧と
高速の回転ディスク、回転ドラム及び/又は回転ロール
とによる液滴の分裂微粒化工程、及び冷却媒体による微
粒化液滴の強制的急冷凝固工程の3工程を有する。
The principle of the device of the present invention is shown in FIGS. 1, 2 and 3. The powder production process of the present invention includes a process of atomizing the liquid droplets by a gas spray of a melt and a high-speed rotating disk, a rotating drum and / or a rotating roll, and a process of forcibly quenching and solidifying the atomized liquid droplets by a cooling medium. It has 3 steps.

【0009】前記ガス噴霧は、原料又は鋳塊を熔融し、
これを一旦タンディツシュに受けた後に、ノズル2を通
して細径の溶湯流とし、その流れにアルゴン又は窒素ガ
ス3を噴射衝突させて溶湯を噴霧化することにより溶湯
を液滴化する。本発明のガスによる溶湯の噴霧化段階に
おいては、液滴の凝固を防ぐために従来の噴霧法よりも
溶湯の温度を高く設定して過熱状態に保っておく。
The above gas spraying melts raw materials or ingots,
After this is once received by the tundish, a molten metal flow having a small diameter is made through the nozzle 2, and argon or nitrogen gas 3 is jet-collised against the flow to atomize the molten metal, thereby forming the molten metal into droplets. In the step of atomizing the molten metal with the gas of the present invention, the temperature of the molten metal is set higher than that in the conventional spraying method and kept in an overheated state in order to prevent the solidification of droplets.

【0010】この過熱温度(△Ts)及び噴霧点からデ
ィスクまでの距離(H)は、作製される粉末の粒径及び
粒形と強く関連する。この△Ts及びHには合金によっ
て最適な値が存在する。例えば、Al及びAl−Si合
金は△Tsが250−300Kであり、又Hが75−1
00mmである。
The superheat temperature (ΔTs) and the distance (H) from the spray point to the disk are strongly related to the particle size and shape of the powder to be produced. There are optimum values for ΔTs and H depending on the alloy. For example, Al and Al-Si alloys have ΔTs of 250-300K and H of 75-1.
It is 00 mm.

【0011】噴霧化されて液滴となった溶湯は、図1、
図2及び図3にそれぞれ示されるように高速回転してい
るディスク4、ドラム8及び/又はロール5に衝突させ
られ、液滴が更に分裂され飛散されて微細化される。こ
のような分裂飛散は、必要に応じて図2又は図3に示さ
れるように複数回行われ、最後に微粒化された液滴は表
面張力によって球状化されてから冷却媒体6によって急
速冷却され、得られた粉末は冷却媒体と共に取り出され
る。
The molten metal atomized into droplets is shown in FIG.
As shown in FIGS. 2 and 3, the disk 4, the drum 8 and / or the roll 5, which are rotating at a high speed, collide with each other, and the droplets are further divided and scattered to be atomized. Such fragmentation and scattering is carried out a plurality of times as required as shown in FIG. 2 or FIG. 3, and finally the atomized droplets are spheroidized by the surface tension and then rapidly cooled by the cooling medium 6. The obtained powder is taken out together with the cooling medium.

【0012】これに対し、ディスクを使用せずに、第1
段階のガス噴霧だけで作製される粉末の平均粒径は10
0−150μmであり、又その粉末の冷却速度は約10
2−103K/sであった。又、ガス噴霧を使用せずに、
ディスクとドラムとを回転させ、最初の分裂液滴化をデ
ィスクにより、次の分裂液滴化をドラムによる場合に
は、平均粒径10−15μmの粉末が得られ、その冷却
速度は105−106K/sであった。
On the other hand, without using a disc, the first
The average particle size of the powder produced only by the gas spraying of 10 is 10
0-150 μm, and the cooling rate of the powder is about 10
Was 2 -10 3 K / s. Also, without using gas atomization,
When the disc and the drum are rotated and the first split droplet formation is performed by the disc and the second split droplet formation is performed by the drum, powder having an average particle size of 10 to 15 μm is obtained, and the cooling rate is 10 5 −. It was 10 6 K / s.

【0013】本発明の図2におけるガス噴霧、回転ディ
スク及び回転ロールによる分裂微粒化の3工程を通して
作製した粉末の平均粒径は3−8μmであり、その冷却
速度は106−107k/sに達した。これに対し、図2
に示す装置の場合において、最後のディスクによる分裂
化を行わない場合には得られた粉末の平均粒径は30−
35μmであり、又ガス噴霧を行わず、回転ロール及び
ディスクを使用した場合には作製された粉末の平均粒径
は10−15μmであった。
The average particle size of the powder produced through the three steps of the gas atomization, the rotating disk and the rotating roll in FIG. 2 of the present invention is 3-8 μm, and the cooling rate is 10 6 -10 7 k / has reached s. In contrast, Figure 2
In the case of the device shown in Fig. 1, the average particle size of the powder obtained is 30- when the final disc disruption is not carried out.
The average particle size of the powder was 35 μm, and the average particle size of the produced powder was 10 to 15 μm when gas was not sprayed and a rotating roll and a disk were used.

【0014】[0014]

【実施例】次に本発明を実施例によって説明する。図1
に示す急冷による粉末作製装置を用いて、表1に示す合
金の粉末を作製した。△Tsは260Kで、Hは75m
mでアルゴンガス噴霧圧力は1MPaで、ノズルの口径
は2.5mmで、ディスクの回転速度は5000rpm
であった。
EXAMPLES The present invention will now be described with reference to examples. Figure 1
Powders of the alloys shown in Table 1 were produced using the powder production apparatus by rapid cooling shown in. △ Ts is 260K, H is 75m
m, argon gas spray pressure is 1 MPa, nozzle diameter is 2.5 mm, disk rotation speed is 5000 rpm
Met.

【0015】純粋なAlの場合は冷却媒体として水を使
し、その作製された粉末はその平均粒径が8μmで、良
好な球状の粒形であった。その比表面積は2400cm
2/gに達していた。又、Fe−Si−B合金の場合は
平均粒径は16μmであり、その形状は球状粒形のもの
であって、非晶質単相粉末のものが得られた。なお、そ
の他の特性は表1に記載されているとおりである。
In the case of pure Al, water was used as a cooling medium, and the produced powder had an average particle size of 8 μm and had a good spherical particle shape. Its specific surface area is 2400 cm
It reached 2 / g. Further, in the case of the Fe-Si-B alloy, the average particle diameter was 16 μm, and the shape was a spherical particle shape, and an amorphous single phase powder was obtained. The other characteristics are as shown in Table 1.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【発明の効果】従来、溶湯の急速冷却処理により粉末を
作製する方法においては、作製された粉末の粒径分布が
広範囲になって、大きい粒径の粒子が存在することが避
けられなかったが、本発明は、噴霧分裂、衝突分裂、及
び急冷凝固等の工程における処理を調整することによ
り、得られる粉末の粒径及び粒形などを自由にコントロ
ールすることができるので、高品質で且つ低製造コスト
の大量の粉末を製造することができる。そして、本発明
は、特に優れた性質を持つ非晶質合金粉末を製造方法と
して優れたものである。
In the conventional method for producing powder by rapid cooling of molten metal, it was unavoidable that the produced powder had a wide particle size distribution and large particles were present. In the present invention, the particle size and particle shape of the obtained powder can be freely controlled by adjusting the processes in the processes such as spray splitting, collision splitting, and quench solidification, so that the quality and the low It is possible to produce a large amount of powder at a manufacturing cost. The present invention is excellent as a method for producing an amorphous alloy powder having particularly excellent properties.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例であるガス噴霧機構と回転
ディスク及び回転ドラム分裂機構を備えた装置を示す図
である。
FIG. 1 is a diagram showing an apparatus including a gas atomizing mechanism, a rotary disk and a rotary drum splitting mechanism, which is an embodiment of the present invention.

【図2】 本発明の他の実施例であるガス噴霧機構と回
転ロール及び回転ディスク分裂機構とを備えた装置を示
す図である。
FIG. 2 is a view showing an apparatus including a gas atomizing mechanism, a rotating roll and a rotating disk splitting mechanism according to another embodiment of the present invention.

【図3】 本発明の他の実施例であるガス噴霧機構と3
本の回転ロールからなる分裂機構とを備えた装置を示す
図である。
FIG. 3 shows a gas atomizing mechanism according to another embodiment of the present invention and 3
FIG. 3 is a view showing an apparatus provided with a splitting mechanism composed of a rotating roll of a book.

【符号の説明】[Explanation of symbols]

1: 溶湯 2: ノズル 3: 不活性ガス 4: 回転ディスク 5: 回転ロール 6: 冷却媒体 7: 合金液滴 8: 回転ドラム 1: Molten metal 2: Nozzle 3: Inert gas 4: Rotating disk 5: Rotating roll 6: Cooling medium 7: Alloy droplets 8: Rotating drum

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 溶湯を多段階の分裂によって微粒化した
液滴を冷却媒体によって急冷凝固させる粉末作製方法。
1. A method for producing powder, in which droplets obtained by atomizing a molten metal by multi-step splitting are rapidly solidified by a cooling medium.
【請求項2】 溶湯を不活性ガスにより噴霧処理して分
裂させ、分裂された溶湯液滴を順次回転ディスク及び回
転ドラムに衝突分裂させて微粒化し、微粒化された液滴
を冷却媒体と接触させて急速冷却させることにより凝固
して粉末とすることを特徴とする粉末作製方法。
2. A molten metal is sprayed with an inert gas to be divided, and the divided molten metal droplets are successively collided and divided by a rotating disk and a rotating drum to be atomized, and the atomized droplets are brought into contact with a cooling medium. A method for producing a powder, characterized in that the powder is solidified by rapidly cooling it.
【請求項3】 溶湯を不活性ガスにより噴霧処理して分
裂させ、分裂された溶湯液滴を順次回転ロール及び回転
ディスクに衝突分裂させて微粒化し、微粒化された液滴
を冷却媒体と接触させて急速冷却させることにより凝固
して粉末とすることを特徴とする粉末作製方法。
3. A molten metal is sprayed with an inert gas to be divided, and the divided molten liquid droplets are successively collided and divided by a rotating roll and a rotating disk to be atomized, and the atomized droplets are brought into contact with a cooling medium. A method for producing a powder, characterized in that the powder is solidified by rapidly cooling it.
【請求項4】 溶湯を不活性ガスにより噴霧処理して分
裂させ、分裂された溶湯液滴を順次3本の回転ロールに
衝突分裂させて微粒化し、微粒化された液滴を冷却媒体
と接触させて急速冷却させて凝固して粉末とすることを
特徴とする粉末作製方法。
4. The molten metal is sprayed with an inert gas to be split, and the split molten liquid droplets are successively collided and split into three rotary rolls to be atomized, and the atomized droplets are brought into contact with a cooling medium. A method for producing a powder, characterized in that the powder is rapidly cooled and solidified to obtain a powder.
JP20332693A 1993-08-17 1993-08-17 Production of powder by multistage fissure and quenching Pending JPH0754019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20332693A JPH0754019A (en) 1993-08-17 1993-08-17 Production of powder by multistage fissure and quenching

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20332693A JPH0754019A (en) 1993-08-17 1993-08-17 Production of powder by multistage fissure and quenching

Publications (1)

Publication Number Publication Date
JPH0754019A true JPH0754019A (en) 1995-02-28

Family

ID=16472166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20332693A Pending JPH0754019A (en) 1993-08-17 1993-08-17 Production of powder by multistage fissure and quenching

Country Status (1)

Country Link
JP (1) JPH0754019A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08209207A (en) * 1995-02-02 1996-08-13 Masumoto Takeshi Production of metal powder
WO2008120938A1 (en) * 2007-03-30 2008-10-09 Il Jin Electric Co., Ltd. A device for manufacturing rapidly solidified powder alloy including si precipitates of active material for rechargable li-battery and a method thereof
KR100900142B1 (en) * 2007-06-27 2009-06-01 공주대학교 산학협력단 Method for producing Functional Alloy Strips by the Rapidly Solidification Process
WO2010097079A2 (en) * 2009-02-25 2010-09-02 Ecka Granulate Gmbh & Co. Kg I. I. Production of spheroidal metal particles
JP2010209409A (en) * 2009-03-10 2010-09-24 Nec Tokin Corp Method for producing amorphous soft magnetic alloy powder, amorphous soft magnetic alloy powder, and formed body using the same
JP2014227591A (en) * 2013-05-27 2014-12-08 相田化学工業株式会社 Apparatus and method for producing metal fine powder
CN108031853A (en) * 2017-11-29 2018-05-15 湖南工业大学 A kind of preparation facilities and preparation method of 3D printing composite granule
CN111230133A (en) * 2020-03-31 2020-06-05 四川科匠轻金属材料科技有限公司 Production equipment and production method for rapidly solidifying metal powder
JP2020169348A (en) * 2019-04-02 2020-10-15 パナソニックIpマネジメント株式会社 Apparatus and method for making metal microparticle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59166606A (en) * 1983-03-11 1984-09-20 Riken Corp Preparation of amorphous metal fine powder
JPS62112709A (en) * 1985-11-12 1987-05-23 Sumitomo Electric Ind Ltd Production of metallic powder
JPS62156205A (en) * 1985-12-27 1987-07-11 Furukawa Electric Co Ltd:The Production of pulverized metallic powder

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59166606A (en) * 1983-03-11 1984-09-20 Riken Corp Preparation of amorphous metal fine powder
JPS62112709A (en) * 1985-11-12 1987-05-23 Sumitomo Electric Ind Ltd Production of metallic powder
JPS62156205A (en) * 1985-12-27 1987-07-11 Furukawa Electric Co Ltd:The Production of pulverized metallic powder

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08209207A (en) * 1995-02-02 1996-08-13 Masumoto Takeshi Production of metal powder
WO2008120938A1 (en) * 2007-03-30 2008-10-09 Il Jin Electric Co., Ltd. A device for manufacturing rapidly solidified powder alloy including si precipitates of active material for rechargable li-battery and a method thereof
KR100900142B1 (en) * 2007-06-27 2009-06-01 공주대학교 산학협력단 Method for producing Functional Alloy Strips by the Rapidly Solidification Process
WO2010097079A2 (en) * 2009-02-25 2010-09-02 Ecka Granulate Gmbh & Co. Kg I. I. Production of spheroidal metal particles
WO2010097079A3 (en) * 2009-02-25 2011-12-29 Non Ferrum Gmbh Production of spheroidal metal particles
JP2010209409A (en) * 2009-03-10 2010-09-24 Nec Tokin Corp Method for producing amorphous soft magnetic alloy powder, amorphous soft magnetic alloy powder, and formed body using the same
JP2014227591A (en) * 2013-05-27 2014-12-08 相田化学工業株式会社 Apparatus and method for producing metal fine powder
CN108031853A (en) * 2017-11-29 2018-05-15 湖南工业大学 A kind of preparation facilities and preparation method of 3D printing composite granule
JP2020169348A (en) * 2019-04-02 2020-10-15 パナソニックIpマネジメント株式会社 Apparatus and method for making metal microparticle
CN111230133A (en) * 2020-03-31 2020-06-05 四川科匠轻金属材料科技有限公司 Production equipment and production method for rapidly solidifying metal powder
CN111230133B (en) * 2020-03-31 2023-10-31 四川科匠轻金属材料科技有限公司 Production equipment and production method for rapidly solidifying metal powder

Similar Documents

Publication Publication Date Title
US4215084A (en) Method and apparatus for producing flake particles
US4221587A (en) Method for making metallic glass powder
US4069045A (en) Metal powder suited for powder metallurgical purposes, and a process for manufacturing the metal powder
US5954112A (en) Manufacturing of large diameter spray formed components using supplemental heating
CA1133670A (en) Method and apparatus for producing flake
CN110640155A (en) Method for improving sphericity of metal powder prepared by gas atomization method
JPH0754019A (en) Production of powder by multistage fissure and quenching
US4971133A (en) Method to reduce porosity in a spray cast deposit
KR20160048262A (en) Method for producing a metal powder by using a rotating disk and gas atomization
US4242069A (en) Apparatus for producing flake
EP0017723B1 (en) Method and apparatus for making metallic glass powder
US4355057A (en) Formation of alloy powders through solid particle quenching
JP3270713B2 (en) Method and apparatus for producing metal powder
Fuqian et al. Study of rapidly solidified atomization technique and production of metal alloy powders
JP3511082B2 (en) Manufacturing method of metal fine powder
JPH08209207A (en) Production of metal powder
Zdujić et al. Production of atomized metal and alloy powders by the rotating electrode process
JPH07102307A (en) Production of flaky powder material
CA2170206A1 (en) Method of producing powders by multi-stage dividing and rapid cooling
JPH0892609A (en) Production of metal powder
JPH0437122B2 (en)
WO1989000470A1 (en) Double disintegration powder method
JPH06172817A (en) Production of quenched metal powder
JPH0321602B2 (en)
JPH024906A (en) Manufacture of flaky rapidly cooling solidified metal powder