JP2014227591A - Apparatus and method for producing metal fine powder - Google Patents

Apparatus and method for producing metal fine powder Download PDF

Info

Publication number
JP2014227591A
JP2014227591A JP2013110571A JP2013110571A JP2014227591A JP 2014227591 A JP2014227591 A JP 2014227591A JP 2013110571 A JP2013110571 A JP 2013110571A JP 2013110571 A JP2013110571 A JP 2013110571A JP 2014227591 A JP2014227591 A JP 2014227591A
Authority
JP
Japan
Prior art keywords
cooling medium
disk
particles
metal
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013110571A
Other languages
Japanese (ja)
Inventor
粕川 知昭
Tomoaki Kasukawa
知昭 粕川
雅樹 田中
Masaki Tanaka
雅樹 田中
佳宏 西須
Yoshihiro Nishisu
佳宏 西須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aida Chemical Industries Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Aida Chemical Industries Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aida Chemical Industries Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Aida Chemical Industries Co Ltd
Priority to JP2013110571A priority Critical patent/JP2014227591A/en
Publication of JP2014227591A publication Critical patent/JP2014227591A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus and a method for producing a metal fine powder, capable of collecting the metal fine powder by bringing liquid particles of a molten metal supplied by a gas atomization method into collision against a surface of a disk rotating at high speed to subject them to secondary fragmentation, and further by cooling the liquid particles with a small amount of cooling medium without hindering the fragmentation.SOLUTION: An apparatus for producing a metal fine powder comprises: a melting tank 1 for storing a molten metal A; an atomizing mechanism 2 for atomizing the molten metal A supplied from the melting tank 1 as liquid particles B by a gas atomization method; a molten metal fragmentation mechanism 4 for bringing the liquid particles B atomized by the atomizing mechanism 2 into collision into a surface of a disk 3 rotating at high speed with a highly pressurized gas 8 to subject them to fragmentation to make the particles finer; a cooling medium-supplying mechanism 5 for distributing and supplying the cooling medium C to each part of the apparatus; a collecting mechanism 6 for collecting cooled metal particles D; and a collecting tank 7 for storing the collected metal particles D and the cooling medium C.

Description

本発明は、ガスアトマイズ法にて供給される溶融金属の液状粒子を高速で回転させるディスクの表面に衝突させることにより二次分断し、さらに分断を妨げることなく少量の冷却媒体にて液状粒子を冷却して金属微粒子として回収することができる金属微粉末の製造装置、及び製造方法に関する。   In the present invention, liquid particles of molten metal supplied by the gas atomization method are secondarily divided by colliding with the surface of a disk that rotates at high speed, and the liquid particles are cooled with a small amount of cooling medium without disturbing the division. The present invention relates to a manufacturing apparatus and a manufacturing method of fine metal powder that can be recovered as fine metal particles.

高品質金属粉末は、増大する先進材料の製造に応えるために益々重要度を増し、各種の粉末製造技術が開発されている。具体的には、ガス、水、遠心力、プラズマの各アトマイズ法、メルト・スピニング法、回転電極法、メカニカル・アロイング法、各種の化学プロセスがある。
アトマイズ法は、溶融槽から流出する金属溶湯に、空気、水、不活性ガスのジェット流を吹きつけて溶湯を分断し、分断した液滴を凝固させて粉末をつくる方法であり、より高品質の粉末を得るため、前述のようにガスアトマイズ法、遠心力アトマイズ法など多くの方法が研究、実施されている。
High quality metal powders are becoming increasingly important in order to meet the increasing production of advanced materials, and various powder manufacturing techniques have been developed. Specific examples include gas, water, centrifugal force, plasma atomizing methods, melt spinning methods, rotating electrode methods, mechanical alloying methods, and various chemical processes.
The atomization method is a method in which a jet of air, water, or inert gas is blown into a molten metal flowing out of a melting tank to sever the molten metal, and the divided droplets are solidified to produce a powder. As described above, many methods such as the gas atomization method and the centrifugal force atomization method have been studied and implemented.

一般的なガスアトマイズ法としては、溶融金属を高圧ガスと共に噴霧することにより、溶融金属を微粉化する方法が提案されている。
しかし、粒子を微細化するためには、より高速のガス噴射が必要であり、高速化には多量の高圧ガスまたは、ヘリウム等の高価な不活性ガスを必要とした。また、金属溶湯を高速のガスにて微細化する場合、できた液滴の大きさには、分布があり、小さい液滴の冷却は早いが、大きな液滴の冷却は遅い。アトマイズに使用したガスの流れにより、粒子の移動速度が速く、大きな液滴が冷えて固まるまで装置に接触しないようにするには、十分な高さを必要としていた。そのため、装置全体も大型化していた。
As a general gas atomizing method, a method of atomizing molten metal by spraying molten metal together with high-pressure gas has been proposed.
However, in order to make the particles finer, higher-speed gas injection is required, and for high speed, a large amount of high-pressure gas or expensive inert gas such as helium is required. When the molten metal is refined with a high-speed gas, the size of the resulting droplets has a distribution, and cooling of small droplets is fast, but cooling of large droplets is slow. Due to the gas flow used for atomization, the moving speed of the particles was high, and a sufficient height was required to prevent the large droplets from contacting the apparatus until they cooled and solidified. For this reason, the entire apparatus has been enlarged.

特許文献1には、高速のガス噴射の変わりに高速回転させたディスクの表面に流動する分散媒の液膜を形成させ、その液膜に溶融金属を供給して微細化する方法が提案されている。さらに特許文献2および3では、ガスアトマイズ法と高速回転ディスクを組み合わせた方法が提案されている。すなわち、回転するディスクの表面に冷媒を供給して該冷媒の液膜を形成し、溶融金属をガスアトマイズ法にて一次粉砕して中間粒子を得、該中間粒子を前記回転するディスク上の前記液膜により二次粉砕しつつ急冷する方法が提案されている。さらに特許文献4では、ガスアトマイズ法と回転ディスク、回転ドラム又は回転ロールを組み合わせた方法が提案されている。さらに特許文献5および6では、ガスアトマイズ法と冷媒の液膜を回転体の表面に形成し、金属の液滴を衝突させ、扁平状の粉末を得る方法が提案されている。   Patent Document 1 proposes a method of forming a liquid film of a dispersion medium that flows on the surface of a disk rotated at high speed instead of high-speed gas injection, and supplying the molten metal to the liquid film to make it fine. Yes. Further, Patent Documents 2 and 3 propose a method combining a gas atomizing method and a high-speed rotating disk. That is, a refrigerant is supplied to the surface of the rotating disk to form a liquid film of the refrigerant, and a molten metal is first pulverized by a gas atomization method to obtain intermediate particles, and the intermediate particles are transferred to the liquid on the rotating disk. A method of quenching while secondary pulverization with a membrane has been proposed. Further, Patent Document 4 proposes a method in which a gas atomizing method is combined with a rotating disk, a rotating drum, or a rotating roll. Further, Patent Documents 5 and 6 propose a gas atomization method and a method in which a liquid film of a refrigerant is formed on the surface of a rotating body and metal droplets collide to obtain a flat powder.

特開平8−209207号公報JP-A-8-209207 特開2010−209409号公報JP 2010-209409 A 特開平10−317019号公報JP-A-10-317019 特開平7−54019号公報Japanese Patent Laid-Open No. 7-54019 特開平7−166212号公報JP-A-7-166212 特開平11−140512号公報Japanese Patent Laid-Open No. 11-140512

前記特許文献1に記載の技術では、得られた金属粉末の粒度分布が広く、また稼働時間が長くなるほど、溶融金属粉がディスク表面に付着・堆積してしまい、長時間の稼働が困難であるという問題があった。
前記特許文献2及び3に記載の技術では、溶融金属が、ディスク上の冷媒に僅かな時間しか触れないため、冷却効果を得られず、溶融金属粉が凝固に至らないという問題があった。またこれらの組み合わせでは、ディスク上等の装置内の一定の限られた領域での冷媒による冷却効果を前提としているため、冷媒と接触しないことによる冷却不足で装置内に凝集、堆積しないように、ガス噴霧量や速度(噴霧圧等)の運転条件や、各機構の配置や装置内容積等の装置構成が制限されるため希望する粉末の形状、粒度分布が得られないという問題があった。さらに、前記のとおり未凝固の溶融金属と冷媒とが接触する空間および時間が限られるため、冷媒の利用効率が悪く、冷却、凝固に多量の冷媒を必要として、使用する冷媒やその処理にコストや時間が多く掛かるという問題があった。
前記特許文献4では、ガスアトマイズにて分断した金属液滴を回転ディスク、回転ドラム又は回転ロールに衝突させて微細化し、粉末が得られるが、回転ディスクと回転ドラム又は回転ロールに金属液滴として衝突させるには、回転ディスクと回転ドラム又は回転ロールという機構が複雑になり、装置内に凝集、堆積又は、回転ディスク、回転ドラム等に堆積するという問題があった。
前記特許文献5及び6では、回転体の表面に冷媒の液膜を形成し、金属液滴を前記回転体の液膜を突き抜けて回転体に衝突させ、偏平状の粉末が得られるが、長径が非常に長い、特殊な用途用の粉末は得られるが、先端材料に向けた粒径と流動性を兼ね備えた粉末は得られないという問題があった。ガス圧を上げ、液滴をより微小化し、回転体に到達するまでに凝固させ、粉末を得る方法が記載されているが、高圧ガスを用いても、液滴の大きさには分布があり、偏平する粉末が混入するという問題があった。さらに、前記と同様に、未凝固の溶融金属と冷媒とが接触する空間および時間が限られるため、冷媒の利用効率が悪く、冷却、凝固に多量の冷媒を必要として、使用する冷媒やその処理にコストや時間が多く掛かるという問題があった。
In the technique described in Patent Document 1, the obtained metal powder has a wider particle size distribution, and the longer the operation time, the more the molten metal powder adheres to and accumulates on the disk surface, making it difficult to operate for a long time. There was a problem.
In the techniques described in Patent Documents 2 and 3, since the molten metal touches the refrigerant on the disk for only a short time, there is a problem that the cooling effect cannot be obtained and the molten metal powder does not solidify. In addition, these combinations are premised on the cooling effect by the refrigerant in a certain limited area in the device such as on the disk, so that it does not aggregate and accumulate in the device due to insufficient cooling due to not contacting with the refrigerant. There is a problem that the desired powder shape and particle size distribution cannot be obtained because the operating conditions such as the gas spray amount and speed (spray pressure, etc.) and the arrangement of each mechanism and the apparatus configuration such as the internal volume of the apparatus are limited. Furthermore, as described above, the space and time in which the unsolidified molten metal and the refrigerant are in contact with each other is limited, so the efficiency of use of the refrigerant is poor, and a large amount of refrigerant is required for cooling and solidification, and the refrigerant used and the cost for the treatment are low. There was a problem that it took a lot of time.
In Patent Document 4, metal droplets separated by gas atomization are made to collide with a rotating disk, rotating drum or rotating roll to be refined to obtain a powder. However, they collide with the rotating disk and the rotating drum or rotating roll as metal droplets. In order to achieve this, the mechanism of the rotating disk and the rotating drum or rotating roll becomes complicated, and there is a problem that the apparatus is agglomerated or deposited in the apparatus or deposited on the rotating disk, rotating drum or the like.
In Patent Documents 5 and 6, a liquid film of a refrigerant is formed on the surface of a rotating body, and a metal droplet is made to penetrate the liquid film of the rotating body and collide with the rotating body to obtain a flat powder. However, there is a problem that a powder having a particle size and fluidity directed to the advanced material cannot be obtained, although a powder for special applications can be obtained. Although a method is described in which the gas pressure is increased to make the droplets finer and solidify before reaching the rotating body to obtain a powder, the size of the droplets is distributed even when high pressure gas is used. There was a problem that flat powder was mixed. Further, similarly to the above, the space and time in which the unsolidified molten metal and the refrigerant are in contact with each other are limited, so the efficiency of use of the refrigerant is poor, and a large amount of refrigerant is required for cooling and solidification. There is a problem that it takes a lot of cost and time.

そこで、本発明では、ガスアトマイズ法にて供給される溶融金属の液状粒子を高速で回転させるディスクの表面に衝突させることにより二次分断し、さらに分断を妨げることなく少量の冷却媒体にて液状粒子を冷却して金属微粒子として回収することができる金属微粉末の製造装置、及び製造方法を提案することを目的とする。   Therefore, in the present invention, the liquid particles of the molten metal supplied by the gas atomization method are secondarily divided by colliding with the surface of the disk rotating at a high speed, and further, the liquid particles are obtained with a small amount of cooling medium without disturbing the division. It aims at proposing the manufacturing apparatus and manufacturing method of a metal fine powder which can be cooled and collect | recovered as metal fine particles.

本発明は、上記に鑑み提案されたものであり、溶融金属を収容する溶融槽と、該溶融槽にて供給される溶融金属をガスアトマイズ法にて液状粒子として噴霧する噴霧機構と、該噴霧機構にて噴霧される液状粒子を高圧ガスにて高速回転するディスク(ディスク回転機構)の表面に衝突させて液状粒子を分断して微細化する溶湯分断機構と、冷却媒体を前記噴霧機構及び前記ディスク回転機構により噴霧槽内全体に散布供給する冷却媒体供給機構と、冷却媒体と金属微粒子を回収する回収機構と、回収した冷却媒体と金属微粒子を収容する回収槽とからなることを特徴とする金属微粉末の製造装置に関するものである。   The present invention has been proposed in view of the above, a melting tank for storing molten metal, a spraying mechanism for spraying molten metal supplied in the melting tank as liquid particles by a gas atomizing method, and the spraying mechanism The liquid particles sprayed by the high pressure gas collide with the surface of a disk (disk rotating mechanism) that rotates at high speed with a high-pressure gas to divide and refine the liquid particles, and the cooling medium as the spray mechanism and the disk. A metal characterized by comprising a cooling medium supply mechanism for supplying and spraying the entire spray tank by a rotating mechanism, a recovery mechanism for recovering the cooling medium and metal fine particles, and a recovery tank for storing the recovered cooling medium and metal fine particles. The present invention relates to a fine powder manufacturing apparatus.

また、本発明は、前記製造装置において、冷却媒体のディスク上の流動中心が、ディスク上の噴霧中心点直下を内包する扇形内にあり、流動方向が円周方向で冷却媒体が速やかにディスク外へ排出され、ディスク上に厚膜状に冷却媒体が堆積して溶湯分断機構を妨げないように設置された冷却媒体供給機構を備えることを特徴とする金属微粉末の製造装置をも提案する。   Further, the present invention provides the manufacturing apparatus, wherein the flow center of the cooling medium on the disk is in a fan shape including immediately below the spray center point on the disk, the flow direction is the circumferential direction, and the cooling medium is quickly removed from the disk. There is also proposed a metal fine powder manufacturing apparatus comprising a cooling medium supply mechanism which is disposed so as not to interfere with the molten metal dividing mechanism by depositing a cooling medium in a thick film shape on the disk.

また、本発明は、前記製造装置において、さらに液状粒子が衝突する直後のディスク表面から、生成した金属微粒子をディスク外に排出する排出機構を備えることを特徴とする金属微粉末の製造装置をも提案する。   The present invention also provides a metal fine powder production apparatus characterized in that the production apparatus further comprises a discharge mechanism for discharging generated fine metal particles from the disk surface immediately after the liquid particles collide. suggest.

さらに、本発明は、前記製造装置を用いる製造方法であって、ガスアトマイズ法にて噴霧される液状粒子を、回転するディスクの表面に衝突させて液状粒子を分断して微細化し、冷却媒体を噴霧機構及びディスク回転機構により噴霧槽内全体に散布し、冷却媒体と金属微粒子を回収することを特徴とする金属微粉末の製造方法をも提案するものである。   Further, the present invention is a manufacturing method using the manufacturing apparatus, wherein the liquid particles sprayed by the gas atomization method are collided with the surface of the rotating disk to divide the liquid particles to be refined, and the cooling medium is sprayed. The present invention also proposes a method for producing fine metal powder, characterized in that the cooling medium and fine metal particles are collected by spraying the entire inside of the spray tank by a mechanism and a disk rotating mechanism.

また、本発明は、熱量計算および装置構成より算出される必要最低限の冷却媒体量により、ディスクの微細化機能の効率化と低運転コスト化されたことを特徴とする金属微粉末の製造方法をも提案するものである。   Further, the present invention is a method for producing a metal fine powder, characterized in that the efficiency of the miniaturization function of the disk and the lower operation cost are reduced by the minimum amount of cooling medium calculated from the calorific value calculation and the apparatus configuration. Is also proposed.

本発明の金属微粉末の製造装置は、ガスアトマイズ法にて供給される溶融金属の液状粒子を回転するディスクの表面に衝突させることにより二次分断して金属微粒子とすることができる。また、ディスク上に供給された冷却媒体は、二次分断に利用されるものではなく、該冷却媒体は飛散して霧滴化するため、ディスクにより二次分断された液状微粒子、およびガスアトマイズ法にて生成し、ディスクに到達する前に凝固を開始し、変形、分断されることのない微粒子を安全に効率よく冷却して凝集のない金属微粒子とすることができる。このように、本発明による製造装置は、前記の手法を実現するための機構を組み合わせて構成されるため、各機構が簡易であり、金属微粒子の製造を極めて容易に管理、制御することができる。さらに、装置の小型化を図ることができる。
さらに詳しく記載すると、本発明のガス噴霧、ディスク、冷却媒体供給機構構成にて、溶融金属噴霧口とディスク間の距離を、該噴霧されたガスが適切な速度となる距離に設定した場合、高速のまま噴霧ガスがディスクに衝突し、該ガス流中の未凝固金属の液状粒子もディスクにまで到達して該ディスクにより分断することで、得られた金属粉末の平均粒径をより小さくすることができる。また、本発明の冷却媒体供給機構により、冷却媒体をディスク周囲より装置内全体に飛散させることができるため、該ディスクにて二次分断された液状粒子を迅速に効率よく冷却することができる。
The apparatus for producing metal fine powder of the present invention can be divided into secondary particles by colliding the liquid metal particles supplied by the gas atomizing method with the surface of the rotating disk, thereby forming metal fine particles. In addition, the cooling medium supplied on the disk is not used for secondary division, and since the cooling medium is scattered to form mist droplets, the liquid fine particles secondarily divided by the disk and the gas atomization method are used. The particles that are generated and started to solidify before reaching the disk, and the fine particles that are not deformed or divided can be cooled safely and efficiently to form metal fine particles without aggregation. Thus, since the manufacturing apparatus according to the present invention is configured by combining the mechanisms for realizing the above-described method, each mechanism is simple, and the manufacture of metal fine particles can be managed and controlled very easily. . Furthermore, the apparatus can be reduced in size.
More specifically, when the distance between the molten metal spray port and the disk is set to a distance at which the sprayed gas has an appropriate speed in the gas spray, disk, and cooling medium supply mechanism configuration of the present invention, the high speed The atomized gas collides with the disk as it is, and the liquid particles of unsolidified metal in the gas flow reach the disk and are divided by the disk, thereby reducing the average particle diameter of the obtained metal powder. Can do. Further, since the cooling medium supply mechanism of the present invention can disperse the cooling medium from the periphery of the disk to the entire apparatus, the liquid particles secondarily divided by the disk can be quickly and efficiently cooled.

また、この製造装置において、冷却媒体のディスク上の流動中心が、ディスク上の噴霧中心点直下を内包する扇形内にあり、流動方向が円周方向で冷却媒体が速やかにディスク外へ排出され、ディスク上に厚膜状に冷却媒体が堆積して前記溶湯分断機構を妨げないように設置された冷却媒体供給機構を備える場合には、前述の液状粒子と回転するディスクとの衝突による二次分断が容易に達成される。
さらに、液状の溶融金属が凝固に至る熱量計算や装置容積等から装置に供給する冷却媒体の必要量を略計算して、冷却媒体量が過多にならないように制限することで、必要量以上の冷却媒体による溶融金属の分断阻害の影響を最小限にすることができる。
また、本発明は、ガス噴霧による分断効果を最大限利用し、前記ガス噴霧で生成した液状粒子の中で比較的大きい未凝固の液状粒子のみをディスクの分断対象とすることで、省電力で安価な回転機構の適用を可能とし、さらにガス噴霧のみの装置よりも冷却、凝固に必要な液状粒子の移動距離を短縮し装置高さを低くすることを可能として、省スペースで効率的な微細金属粉末の製造装置の実現を可能とした。
また、前記のとおり冷却媒体の利用効率が高く、安全性を維持しつつ冷却、凝固に必要な冷却媒体量を最低限にして、使用する冷却媒体処理の時間やコストの低減化を可能とした。
Further, in this manufacturing apparatus, the flow center of the cooling medium on the disk is in a fan shape including immediately below the spray center point on the disk, the flow direction is the circumferential direction, and the cooling medium is quickly discharged out of the disk. In the case where a cooling medium supply mechanism is provided so that the cooling medium is deposited in a thick film on the disk so as not to interfere with the molten metal dividing mechanism, secondary division by collision between the liquid particles and the rotating disk is performed. Is easily achieved.
Furthermore, the required amount of cooling medium supplied to the device is roughly calculated from the calculation of the amount of heat and solidification of the liquid molten metal, and the amount of cooling medium is limited so as not to be excessive. It is possible to minimize the influence of the molten metal fragmentation inhibition by the cooling medium.
Further, the present invention makes the best use of the dividing effect by gas spraying, and only the relatively large uncoagulated liquid particles among the liquid particles generated by the gas spraying are targeted for disk cutting, thereby saving power. It is possible to apply an inexpensive rotation mechanism, and also to reduce the moving distance of the liquid particles necessary for cooling and solidification and to reduce the height of the device as compared with a gas spray only device, making it possible to save space and efficiently fine. It was possible to realize a metal powder production apparatus.
In addition, as described above, the use efficiency of the cooling medium is high, the amount of the cooling medium necessary for cooling and solidification is minimized while maintaining safety, and the processing time and cost of the cooling medium to be used can be reduced. .

また、この製造装置において、さらに液状粒子とディスクとの衝突する領域の直後に、ディスク外周方向への圧縮ガスや冷却媒体噴射等による排出機構を備える場合には、ディスク衝突、分断後の粒子と後続の液状粒子との合体、凝集の原因となる、ディスク上、またはその周辺部の生成粒子の滞留を防ぐことができる。なお、冷却媒体を利用した前記排出機機構はディスク冷却を補助することができる。   In addition, in this manufacturing apparatus, when a discharge mechanism by compressed gas or cooling medium injection in the outer circumferential direction of the disk is provided immediately after the region where the liquid particles and the disk collide, It is possible to prevent stagnation of the generated particles on or around the disk, which causes coalescence and aggregation with subsequent liquid particles. The ejector mechanism using the cooling medium can assist the disk cooling.

さらに、本発明の金属微粉末の製造方法は、微粉末化する溶融金属の一次、二次の両溶湯分断機構及び冷却媒体を装置各部位へ分配、供給する機構の両機構を、ガスアトマイズ及び回転するディスクの組み合わせによって実現したものであるから、極めて製造機構及びその制御機構が簡易であり、各種の金属微粒子の製造を極めて容易に管理、制御することができる。そのため、各種の金属又は金属合金の微細粉末製造に適用されることが期待される。   Furthermore, the method for producing fine metal powder of the present invention comprises gas atomizing and rotating both the primary and secondary molten metal dividing mechanisms and the mechanism for distributing and supplying the cooling medium to each part of the apparatus. Therefore, the production mechanism and its control mechanism are very simple, and the production of various metal fine particles can be managed and controlled very easily. Therefore, it is expected to be applied to the production of fine powders of various metals or metal alloys.

(a)本発明の金属微粉末の製造装置を模式的に示す斜視図、(b)溶湯分断機構を拡大して示す斜視図、(c)冷却媒体の供給領域を示す平面図である。(A) The perspective view which shows typically the manufacturing apparatus of the metal fine powder of this invention, (b) The perspective view which expands and shows the molten metal parting mechanism, (c) The top view which shows the supply area | region of a cooling medium. (a)冷却媒体をディスク上の噴霧中心点直下を内包する扇形部分以外に広く供給し、かつディスク上の噴霧中心点直下を内包する扇形部分に到達せずにディスク外に排出されるように供給する態様を示す斜視図、(b)側面図である。(A) The cooling medium is widely supplied to a portion other than the fan-shaped portion included immediately below the spray center point on the disk, and discharged to the outside of the disk without reaching the fan-shaped portion included immediately below the spray center point on the disk. It is a perspective view which shows the aspect supplied, (b) It is a side view. (a)冷却媒体を噴霧中心点直下を内包する扇形内に供給する態様を示す斜視図、(b)側面図である。(A) It is a perspective view which shows the aspect which supplies a cooling medium in the fan shape which encloses just under a spray center point, (b) It is a side view. 冷却媒体を噴霧中心点直下を内包する扇形内に供給する態様において、冷却媒体の冷却媒体供給口を複数(3口)として、冷却媒体の供給を効率化した場合の例を示す斜視図である。FIG. 10 is a perspective view showing an example in which the cooling medium is made efficient by providing a plurality of cooling medium supply ports (three ports) for the cooling medium in an embodiment in which the cooling medium is supplied into a fan shape directly under the spray center point. . 実施例1にて得られたディスクで分断された粒子のSEM(走査型電子顕微鏡)写真の複写図である。FIG. 3 is a copy diagram of an SEM (scanning electron microscope) photograph of particles divided by the disk obtained in Example 1.

本発明の金属微粉末の製造装置の一実施例を模式的に示す斜視図を図1(a)に示す。本発明の金属微粉末の製造装置は、前述のように溶融金属Aを収容する溶融槽1と、該溶融槽1にて供給される溶融金属Aをガスアトマイズ法にて液状粒子Bとして噴霧する噴霧機構2と、該噴霧機構2にて噴霧される液状粒子Bを高圧ガス8にて高速回転するディスク3の表面に衝突させて液状粒子Bを分断して微細化する溶湯分断機構4と、装置各部位へ分配される冷却媒体Cを前記噴霧機構2及び前記ディスク3の回転により噴霧槽20内全体に散布供給する冷却媒体供給機構5と、冷却した金属微粒子Dを回収する回収機構6と、回収した金属微粒子D及び冷却媒体Cを収容する回収槽7とからなる。
なお、生成金属微粒子Dを装置運転中に回収槽7外に排出するためのロータリー弁等の連続回収機構を回収槽7底部に設置してもよい。また、使用後の冷却媒体Cを循環再利用するための、冷却媒体循環用経路、フィルター等の固形物等除去装置、冷却媒体循環用の補助ポンプ等からなる冷却媒体循環装置を設置してもよい。
The perspective view which shows typically one Example of the manufacturing apparatus of the metal fine powder of this invention is shown to Fig.1 (a). As described above, the apparatus for producing fine metal powder of the present invention includes a melting tank 1 containing molten metal A, and a spray for spraying molten metal A supplied in the melting tank 1 as liquid particles B by a gas atomization method. A mechanism 2, and a molten metal dividing mechanism 4 that causes liquid particles B sprayed by the spray mechanism 2 to collide with the surface of a disk 3 that rotates at high speed with a high-pressure gas 8 to divide and refine the liquid particles B; A cooling medium supply mechanism 5 for supplying the cooling medium C distributed to each part to the entire inside of the spray tank 20 by the rotation of the spray mechanism 2 and the disk 3, and a recovery mechanism 6 for recovering the cooled metal fine particles D; It consists of a recovery tank 7 for storing the recovered metal fine particles D and the cooling medium C.
A continuous recovery mechanism such as a rotary valve for discharging the generated metal fine particles D to the outside of the recovery tank 7 during operation of the apparatus may be installed at the bottom of the recovery tank 7. In addition, a cooling medium circulation device including a cooling medium circulation path, a solid matter removal device such as a filter, an auxiliary pump for cooling medium circulation, etc. for circulating and reusing the used cooling medium C may be installed. Good.

これらの各機構のうち、溶融槽1、噴霧機構2、回収機構6については、従来のガスアトマイズ法に用いられているものを使用することもできる。
本発明に適用される金属としては、後述する実施例に示すように銀(Ag)、銅(Cu)、Ag−Pt、他に、貴金属およびその合金を使用することもできる。また、これらに限られることなく、装置内雰囲気や冷却媒体を変えることで、前記以外の金属およびその合金全般を対象とすることができる。
本発明に使用されるディスクの材質としては、特に限定するものではないが、装置内の雰囲気(ガス)や使用する冷却媒体に対して腐食し易くないものが好ましく、また、ディスク回転機構により噴霧槽内全体に冷却媒体を散布供給するため、アルミニウムおよびアルミニウム合金などの前記の適用される金属種よりも融点や耐熱温度の低い材質を使用することもできる。
また、本発明に使用される冷却媒体としては、水、油、有機溶剤、液体窒素やそれらの溶液、混合物などを使用することができる。溶融金属の温度を考慮し、冷却媒体は、不燃性の溶剤を選択する。
Among these mechanisms, as the melting tank 1, the spray mechanism 2, and the recovery mechanism 6, those used in the conventional gas atomization method can be used.
As a metal applied to the present invention, noble metals and alloys thereof can be used in addition to silver (Ag), copper (Cu), Ag-Pt, as shown in Examples described later. Moreover, it is not restricted to these, By changing the in-apparatus atmosphere and a cooling medium, metals other than the above and their alloys can be objected.
The material of the disk used in the present invention is not particularly limited, but is preferably one that is not easily corroded by the atmosphere (gas) in the apparatus or the cooling medium used, and is sprayed by the disk rotation mechanism. In order to disperse and supply the cooling medium throughout the tank, it is also possible to use a material having a melting point and a heat resistant temperature lower than those of the above-described metal species such as aluminum and aluminum alloy.
Moreover, water, oil, an organic solvent, liquid nitrogen, those solutions, a mixture, etc. can be used as a cooling medium used for this invention. Considering the temperature of the molten metal, a non-flammable solvent is selected as the cooling medium.

図1(b)に拡大して示す前記溶湯分断機構4は、本発明の製造装置の中核をなす存在であり、ガスアトマイズ法にて噴霧される液状粒子Bを高圧ガス8にて高速回転するディスク3の表面に衝突させて液状粒子Bを分断して微細化するものである。また、冷却媒体Cは液状粒子Bを冷却、凝固して粉末化する役割と、該液状粒子Bが製造装置に付着・堆積するのを防止する役割と、該液状粒子B等の高温物質との接触による該製造装置の劣化や損壊を防止しまた安全性を維持する役割と、生成した金属微粒子Dと後出の該液状粒子Bとが接触して合体することを防止し速やかに前記回収機構6に移行させる役割等、多くの役割を担っている。冷却媒体Cが前記噴霧機構2及び前記ディスク回転機構30と共に冷却媒体供給機構5として該役割を実行するためには、該冷却媒体Cは該ディスク3上の図1(c)(点A、点B、点Oで示される噴霧中心点直下を内包する扇型部分)に示される領域に供給されることが好ましい。この図1(c)の点A、点B、点Oで示される噴霧中心点直下を内包する扇型部分に冷却媒体Cが供給された場合には、高速回転するディスク3、噴霧機構2による高速ガス8およびこれらの相互作用によって、該ディスク3および該高速ガス8と冷却媒体Cとの接触により、該接触領域近傍の最も冷却媒体Cを必要とするガスアトマイズ(噴霧)直下のディスク3周辺に最も冷却媒体Cを多く分布させ、かつ該周辺部を中心として容易に装置内全体に飛散、供給して前記役割に供することができる。
図2(a)に示すように、冷却媒体Cをディスク3上の噴霧中心点直下を内包する扇形部分以外に広く供給した場合には、該冷却媒体Cは高速回転する該ディスク3の遠心力により、全供給量に対し高い比率でディスク3上の噴霧中心点直下を内包する扇形部分に到達せずにディスク3外に排出されるため噴霧槽内全体に冷却媒体を散布供給されない、すなわち前記の本発明の金属微粉末の製造装置の冷却媒体供給機構5には供給されないことになる。また図2(b)に示すように、ディスク3の回転に同期して膜状に体積した冷却媒体Cは、前記引用文献にあるように噴霧中心点直下まで達して前記のとおり液状粒子Bと接触するものの、前記のとおりディスク3上で量的に少なく薄膜であり冷却が不足する。
冷却媒体Cを図3(a)に示す本発明の金属微粉末の製造装置のとおり、噴霧中心点直下を内包する扇形内に供給した場合には、前記冷却媒体供給機構5に直接該冷却媒体Cが供給されることになり、図3(b)に示すとおり十分に前記役割を果たすことが可能となる。なお、該機構に供給されない一部の冷却媒体Cがあった場合にも、流動方向が速やかにディスク3外へ排出される円周方向であれば、ディスク3上で厚膜を形成して溶湯分断機構4を妨げることがない。
さらに図3の態様において、図4に示すとおり、より前記冷却媒体供給機構5全体に均等に冷却媒体Cを供給するため、冷却媒体供給口52を複数(3口)化して供給位置を増やすことで、より少ない供給量でも効率的に該機構5に冷却媒体Cを供給することが可能となる。
結果的に、図5のSEM写真の複写図に示すように、高品位の金属微粒子Dから成る金属微粉末を得ることが可能となる。
The molten metal dividing mechanism 4 shown in an enlarged view in FIG. 1B is the core of the production apparatus of the present invention, and is a disk that rotates liquid particles B sprayed by a gas atomizing method at high speed with a high-pressure gas 8. 3 is made to collide with the surface of 3 and the liquid particle B is divided and refined. In addition, the cooling medium C has a role of cooling and solidifying the liquid particles B to form powder, a role of preventing the liquid particles B from adhering to and depositing on the manufacturing apparatus, and a high-temperature substance such as the liquid particles B. The role of preventing deterioration and breakage of the manufacturing apparatus due to contact and maintaining safety, and the generated metal fine particles D and the liquid particles B which will be described later are prevented from coming into contact and coalescing to quickly collect the recovery mechanism. It plays many roles such as the role of transition to 6. In order for the cooling medium C to perform this role as the cooling medium supply mechanism 5 together with the spray mechanism 2 and the disk rotating mechanism 30, the cooling medium C is shown in FIG. B, it is preferable to be supplied to a region indicated by a fan-shaped portion including a portion directly below the spray center point indicated by point O). When the cooling medium C is supplied to the fan-shaped portion including the portion immediately below the spray center point indicated by the points A, B, and O in FIG. 1C, the disk 3 and the spray mechanism 2 rotate at high speed. Due to the high-speed gas 8 and their interaction, the disk 3 and the high-speed gas 8 and the cooling medium C come into contact with the periphery of the disk 3 immediately below the gas atomization (spraying) that requires the cooling medium C in the vicinity of the contact area. The cooling medium C can be distributed as much as possible, and can be easily scattered and supplied to the entire apparatus around the peripheral portion to serve the above-mentioned role.
As shown in FIG. 2 (a), when the cooling medium C is supplied widely except for the fan-shaped portion that encloses the area directly below the spray center point on the disk 3, the cooling medium C is subjected to centrifugal force of the disk 3 rotating at high speed. Thus, the cooling medium is not sprayed and supplied to the entire spray tank because it is discharged to the outside of the disk 3 without reaching the fan-shaped portion included immediately below the spray center point on the disk 3 at a high ratio with respect to the total supply amount. It is not supplied to the cooling medium supply mechanism 5 of the metal fine powder manufacturing apparatus of the present invention. Further, as shown in FIG. 2 (b), the cooling medium C that has been volume-synchronized with the rotation of the disk 3 reaches the position just below the spray center point as described in the cited document, and the liquid particles B as described above. Although in contact, as described above, the amount of thin film on the disk 3 is small, and cooling is insufficient.
When the cooling medium C is supplied into a sector containing the atomization center point as in the metal fine powder manufacturing apparatus of the present invention shown in FIG. 3A, the cooling medium C is directly supplied to the cooling medium supply mechanism 5. C will be supplied, and as shown in FIG. 3B, the above-mentioned role can be sufficiently achieved. Even when there is a part of the cooling medium C that is not supplied to the mechanism, a thick film is formed on the disk 3 so long as the flow direction is a circumferential direction that is quickly discharged out of the disk 3. The dividing mechanism 4 is not disturbed.
Further, in the embodiment of FIG. 3, as shown in FIG. 4, in order to supply the cooling medium C more evenly to the entire cooling medium supply mechanism 5, a plurality of (three) cooling medium supply ports 52 are provided to increase the supply position. Thus, the cooling medium C can be efficiently supplied to the mechanism 5 even with a smaller supply amount.
As a result, as shown in a copy of the SEM photograph in FIG. 5, it is possible to obtain a fine metal powder composed of high-quality fine metal particles D.

ガス噴霧された溶融金属(液状粒子)の大きさは、噴霧するガス圧力と使用するガス種ごとの比熱を用い、さらに得られた粉末より装置係数を使用することで数式1(1)〜(4)より推測することができる。
ガスアトマイズにて分断された溶融金属は時間と共に冷却が進むが、液状粒子の大きさが小さいほど、冷却時間は短くなる。ガス噴霧では、分断された溶融金属は、高速のガス流に乗るためガス流との相対速度は小さく、粒子の冷却時間は数式2より推定される。
これらの数式により、溶融金属の比較的大きい液状粒子が冷却する前にディスクに衝突する距離(ディスク高さ)に設定することができる。また、ガスアトマイズで分断され、凝固していない溶融金属の液状粒子の冷却に必要な冷却媒体量を設定することができる。最適化した冷却媒体量を用いることにより、ディスクでの分断が行える。冷却媒体量を過剰にするとディスク表面に出来た液膜により、粒子の偏平化や急冷による粗大粒子が生成される。ディスクでの分断は極短時間で行われるため、ディスク表面との反応は少なく、液状粒子への溶け出しも少なく、粉末への影響を抑えることができる。さらに、本発明のガス噴霧、ディスク、冷却媒体供給機構により、必要最低限の冷却媒体を適切に配分、供給することが可能で、すなわち最も冷却媒体を必要とするガスアトマイズ直下のディスク周辺に最も冷却媒体を多く分布させ、ディスクに供給した冷却媒体により、ディスクの溶融金属との接触による温度上昇を防ぎ、ディスクによる分断を維持し、該周辺部を中心として容易に装置内全体に飛散、供給させて装置全体を冷却することができるため、装置への損傷はもちろん、装置内での粉末の凝集を防ぐことができる。
The size of the molten metal (liquid particles) sprayed by gas is calculated by using the gas pressure to be sprayed and the specific heat for each gas type to be used, and further using the apparatus coefficient from the obtained powder, as shown in Equations 1 (1) to (1)-( 4) Can be guessed more.
Although the molten metal divided by gas atomization is cooled with time, the cooling time is shorter as the size of the liquid particles is smaller. In gas spraying, the divided molten metal rides on a high-speed gas flow, so the relative velocity with the gas flow is small, and the particle cooling time is estimated from Equation 2.
By these mathematical formulas, it is possible to set the distance (disc height) at which the relatively large liquid particles of molten metal collide with the disc before cooling. Further, it is possible to set a cooling medium amount necessary for cooling liquid particles of molten metal that are divided by gas atomization and are not solidified. By using the optimized amount of the cooling medium, it is possible to divide the disc. When the amount of the cooling medium is excessive, coarse particles are generated by flattening or rapid cooling of the particles due to the liquid film formed on the disk surface. Since the division with the disc is performed in a very short time, there is little reaction with the disc surface, and there is little dissolution into the liquid particles, so that the influence on the powder can be suppressed. Furthermore, the gas spray, disk, and cooling medium supply mechanism of the present invention can appropriately distribute and supply the minimum necessary cooling medium, that is, the cooling medium around the disk immediately under the gas atomization that requires the most cooling medium. A large amount of medium is distributed, and the cooling medium supplied to the disk prevents the temperature from rising due to contact with the molten metal of the disk, maintains the division by the disk, and is easily scattered and supplied around the periphery. Therefore, not only damage to the apparatus but also aggregation of powder in the apparatus can be prevented.

〔実施例1〕
図1に示す製造装置にて、窒素雰囲気中、高周波で銅1kgを誘導加熱し、1300℃にてノズルの口径1.2mm、3MPaの窒素ガスを使用し、ガスアトマイズを行った。ディスクはノズルからの距離(ディスク高さ)200mmに設置し、周速188m/sで回転させたディスクにて二次分断を行った。冷却媒体の供給態様は、図3に示すとおりであり、冷却媒体として水を使用し、冷却媒体のディスク上の流動中心が、ディスク上の噴霧中心点直下を内包する扇形内にあり、流動方向が円周方向で冷却媒体が速やかにディスク外へ排出する位置より、供給量55L/minを供給し、金属微粉末を作製した。
ディスクで分断された液状粒子は、分断後直ちに冷却された結果、図5に示すように切断面がSEMで観察でき、粒度分布からは、比較的大きい粒子が減少して、結果として平均粒径も小さくなった。
[Example 1]
In the manufacturing apparatus shown in FIG. 1, 1 kg of copper was induction-heated at a high frequency in a nitrogen atmosphere, and gas atomization was performed at 1300 ° C. using a nitrogen gas having a nozzle diameter of 1.2 mm and 3 MPa. The disk was installed at a distance (disk height) of 200 mm from the nozzle, and was subjected to secondary cutting with a disk rotated at a peripheral speed of 188 m / s. The supply mode of the cooling medium is as shown in FIG. 3, wherein water is used as the cooling medium, the flow center of the cooling medium on the disk is in a sector shape including immediately below the spray center point on the disk, and the flow direction From the position where the cooling medium is quickly discharged out of the disk in the circumferential direction, a supply amount of 55 L / min was supplied to produce fine metal powder.
As a result of the liquid particles divided by the disk being cooled immediately after the division, the cut surface can be observed by SEM as shown in FIG. 5, and from the particle size distribution, relatively large particles are reduced, resulting in an average particle size. Became smaller.

〔実施例2〕
図1に示す製造装置にて、窒素雰囲気中、高周波で銀900g、白金100gを誘導加熱し、1600℃にてノズルの口径1.2mm、3MPaの窒素ガスを使用し、ガスアトマイズを行った。ディスクはノズルからの距離(ディスク高さ)100mmに設置し、周速188m/sで回転させたディスクにて二次分断を行った。冷却媒体の供給態様は、図3に示すとおりであり、冷却媒体として水を使用し、冷却媒体のディスク上の流動中心が、ディスク上の噴霧中心点直下を内包する扇形内にあり、流動方向が円周方向で冷却媒体が速やかにディスク外へ排出する位置より、供給量50L/minを供給し、金属微粉末を作製した。
結果、平均粒径14μmのAg−Pt合金粉末が得られた。
[Example 2]
In the production apparatus shown in FIG. 1, 900 g of silver and 100 g of platinum were induction-heated at high frequency in a nitrogen atmosphere, and gas atomization was performed at 1600 ° C. using a nitrogen gas having a nozzle diameter of 1.2 mm and 3 MPa. The disk was installed at a distance from the nozzle (disk height) of 100 mm, and was subjected to secondary cutting with a disk rotated at a peripheral speed of 188 m / s. The supply mode of the cooling medium is as shown in FIG. 3, wherein water is used as the cooling medium, the flow center of the cooling medium on the disk is in a sector shape including immediately below the spray center point on the disk, and the flow direction From the position where the cooling medium is quickly discharged out of the disk in the circumferential direction, a supply amount of 50 L / min was supplied to produce fine metal powder.
As a result, an Ag—Pt alloy powder having an average particle size of 14 μm was obtained.

〔実施例3〕
図1に示す製造装置にて、窒素雰囲気中、高周波で銀1Kgを誘導加熱し、1600℃にてノズルの口径1.2mm、3MPaの窒素ガスを使用し、ガスアトマイズを行った。ディスクはノズルからの距離(ディスク高さ)100mmに設置し、周速188m/sで回転させたディスクにて二次分断を行った。冷却媒体の供給態様は、図3に示すとおりであり、冷却媒体として水を使用し、冷却媒体がディスク上に厚い水膜を作らず、噴霧槽内全体に冷却媒体が散布されるように供給量29L/minを供給し、金属微粉末を作製した。
結果、平均粒径20.4μmのAg粉末が得られた。
Example 3
In the production apparatus shown in FIG. 1, 1 Kg of silver was induction-heated at a high frequency in a nitrogen atmosphere, and gas atomization was performed at 1600 ° C. using a nitrogen gas having a nozzle diameter of 1.2 mm and 3 MPa. The disk was installed at a distance from the nozzle (disk height) of 100 mm, and was subjected to secondary cutting with a disk rotated at a peripheral speed of 188 m / s. The supply mode of the cooling medium is as shown in FIG. 3, and water is used as the cooling medium, and the cooling medium does not form a thick water film on the disk, and is supplied so that the cooling medium is dispersed throughout the spray tank. An amount of 29 L / min was supplied to produce a metal fine powder.
As a result, an Ag powder having an average particle diameter of 20.4 μm was obtained.

〔実施例4〕
図1に示す製造装置にて、窒素雰囲気中、高周波で銀1Kgを誘導加熱し、1600℃にてノズルの口径1.2mm、3MPaの窒素ガスを使用し、ガスアトマイズを行った。ディスクはノズルからの距離(ディスク高さ)100mmに設置し、冷却媒体の供給態様は、図3に示すとおりであり、冷却媒体として水を使用し、冷却媒体のディスク上の流動中心が、ディスク上の噴霧中心点直下を内包する扇形内にあり、流動方向が円周方向で冷却媒体が速やかにディスク外へ排出する位置より、以下のとおり、前述の理論に基づき出湯量を1kg/minと仮定して計算した供給量3L/minを供給し、金属微粉末を作製した。
なお、冷却媒体供給量であるが、溶融銀の比熱0.283[J/(K・g)]、固体銀の比熱0.24[J/(K・g)]、水の比熱4.2[J/(K・g)]、銀の融解熱105[KJ/kg]らの諸物性値と、式1、2から計算される本条件ではアトマイズ後にディスク到着までに凝固温度まで冷却されない下限の粒径26μm、粒度計測から求めたディスク効果のない場合にアトマイズされた該26μm以上の溶融銀の液状粒子総量の全銀量に対する割合50%、該液状粒子の平均径41μm等の計算、実験値に基づいて、該平均径および該液状粒子総量と式1、2および前記諸物性から、該液状粒子を凝固させ、さらに全量を80℃以下まで冷却するのに必要な前記供給量は、許容する水温上昇を50℃とすると略1450〜1700gと概算される。また、溶融銀全量を冷却媒体(水)のみで凝固冷却すると仮定した場合には、同様に略2380gと計算される。そこで、銀1000g(1kg/min)に対して、安全性を考慮して前記供給量を前記の必要供給量の略倍量となる3000g(3L/min)とした。
結果、平均粒径18μmのAg粉末が得られた。なお、使用した冷却水の水量は6Lであった。
Example 4
In the production apparatus shown in FIG. 1, 1 Kg of silver was induction-heated at a high frequency in a nitrogen atmosphere, and gas atomization was performed at 1600 ° C. using a nitrogen gas having a nozzle diameter of 1.2 mm and 3 MPa. The disk is installed at a distance (disk height) of 100 mm from the nozzle, the supply mode of the cooling medium is as shown in FIG. 3, water is used as the cooling medium, and the flow center of the cooling medium on the disk is From the position where the flow direction is in the circumferential direction and the cooling medium is quickly discharged out of the disk, the amount of hot water discharged is 1 kg / min based on the above theory as follows. A supply amount of 3 L / min calculated on the assumption was supplied to produce fine metal powder.
In addition, although it is a cooling medium supply amount, the specific heat of molten silver 0.283 [J / (K * g)], the specific heat of solid silver 0.24 [J / (K * g)], the specific heat of water 4.2 [J / (K · g)], various physical properties such as 105 [KJ / kg] of heat of fusion of silver, and the lower limit that is not cooled to the solidification temperature by the arrival of the disk after atomization in this condition calculated from equations 1 and 2. The particle size of 26 μm, the ratio of the total amount of liquid particles of the molten silver of 26 μm or more atomized when there is no disk effect obtained from the particle size measurement to the total silver amount, the average diameter of the liquid particles of 41 μm, etc. Based on the value, the supply amount necessary for solidifying the liquid particles and cooling the total amount to 80 ° C. or less from the average diameter, the total amount of the liquid particles, the formulas 1 and 2 and the physical properties is acceptable. When the water temperature rise is 50 ° C, it is roughly 1450-1700g It is calculated. Further, when it is assumed that the total amount of molten silver is solidified and cooled only by the cooling medium (water), it is calculated to be approximately 2380 g. Therefore, with respect to 1000 g (1 kg / min) of silver, the supply amount is set to 3000 g (3 L / min), which is approximately double the required supply amount in consideration of safety.
As a result, Ag powder having an average particle size of 18 μm was obtained. The amount of cooling water used was 6L.

〔実施例5〕
実施例4と同一条件に加え、液状粒子が衝突する直後のディスク表面から金属微粒子を排出する方向に水を10L/minを供給し、金属微粉末を作製した。
結果、平均粒径19.2μmのAg粉末が得られた。平均粒径に大きな変化は見られないが、大きな粒子が減り、粒度分布の幅が狭くなった。なお、使用した冷却水の合計水量は26Lであった。
Example 5
In addition to the same conditions as in Example 4, 10 L / min of water was supplied in the direction of discharging the metal fine particles from the disk surface immediately after the liquid particles collided to produce metal fine powder.
As a result, an Ag powder having an average particle size of 19.2 μm was obtained. Although there was no significant change in the average particle size, the number of large particles decreased and the width of the particle size distribution narrowed. The total amount of cooling water used was 26L.

〔比較例1〕
図1に示す製造装置にて、窒素雰囲気中、高周波で銀1kgを誘導加熱し、1100℃に下げてノズルの口径1.2mm、3MPaの窒素ガスを使用し、ガスアトマイズを行った。ディスクはノズルからの距離(ディスク高さ)200mmに設置し、ディスクの回転を止めた。冷却媒体の供給態様は、図2に示すとおりであり、冷却媒体として水を使用し、冷却媒体をディスク上の噴霧中心点直下を内包する扇形部分以外に広く供給し、かつディスク上の噴霧中心点直下を内包する扇形部分に到達せずにディスク外に排出されるように、供給量55L/minを供給し、金属微粉末を作製した。
溶融金属の温度が低いにもかかわらず、ガス流の衝撃では、分断されず、ディスク上に金属が堆積した。凝固塊も生じ平均粒径が大きくなった。
[Comparative Example 1]
In the production apparatus shown in FIG. 1, 1 kg of silver was induction-heated at high frequency in a nitrogen atmosphere, and the temperature was lowered to 1100 ° C., using a nitrogen gas with a nozzle diameter of 1.2 mm and 3 MPa, and gas atomization was performed. The disk was installed at a distance (disk height) of 200 mm from the nozzle, and the rotation of the disk was stopped. The supply mode of the cooling medium is as shown in FIG. 2. Water is used as the cooling medium, the cooling medium is supplied widely except for the fan-shaped part that is directly under the spray center point on the disk, and the spray center on the disk is A supply amount of 55 L / min was supplied so as not to reach the fan-shaped portion enclosing just under the point but to be discharged out of the disk, thereby producing a metal fine powder.
Despite the low temperature of the molten metal, the gas flow impact did not break and the metal was deposited on the disk. A coagulated mass was also formed and the average particle size was increased.

〔比較例2〕
図1に示す製造装置にて、窒素雰囲気中、高周波で銅1kgを誘導加熱し、1100℃に下げてノズルの口径1.2mm、3MPaの窒素ガスを使用し、ガスアトマイズを行った。ディスクはノズルからの距離(ディスク高さ)200mmに設置し、周速188m/sで回転させたディスクにて二次分断を行った。冷却媒体の供給態様は、図2に示すとおりであり、冷却媒体として水を使用し、冷却媒体をディスク上の噴霧中心点直下を内包する扇形部分以外に広く供給し、かつディスク上の噴霧中心点直下を内包する扇形部分に到達せずにディスク外に排出されるように、供給量55L/minを供給し、金属微粉末を作製した。
金属がディスク上に堆積し、目視可能なサイズの凝固塊が生じ、粉末の作製量が減少した。なお、使用した冷却水の水量は110Lであった。
[Comparative Example 2]
In the manufacturing apparatus shown in FIG. 1, 1 kg of copper was induction-heated at high frequency in a nitrogen atmosphere, and the temperature was lowered to 1100 ° C., and a nozzle diameter of 1.2 mm and nitrogen gas of 3 MPa were used for gas atomization. The disk was installed at a distance (disk height) of 200 mm from the nozzle, and was subjected to secondary cutting with a disk rotated at a peripheral speed of 188 m / s. The supply mode of the cooling medium is as shown in FIG. 2. Water is used as the cooling medium, the cooling medium is supplied widely except for the fan-shaped part that is directly under the spray center point on the disk, and the spray center on the disk is A supply amount of 55 L / min was supplied so as not to reach the fan-shaped portion enclosing just under the point but to be discharged out of the disk, thereby producing a metal fine powder.
The metal was deposited on the disk, producing a visible sized solidified mass, reducing the amount of powder produced. The amount of cooling water used was 110 L.

〔比較例3〕
図1に示す製造装置にて、窒素雰囲気中、高周波で銀1kgを誘導加熱し、1200℃に下げてノズルの口径1.2mm、10MPaの窒素ガスを使用し、ガスアトマイズを行った。噴霧槽にはディスクを設置せずに、噴霧槽の長さを1.5m長くし、金属微粉末を作成した。
ディスクに比べ、10倍以上噴霧点直下のチャンバー底部までの距離を確保したが、底部に凝固体が存在し、粉末の作製量が半減した。
[Comparative Example 3]
In the production apparatus shown in FIG. 1, 1 kg of silver was induction-heated at a high frequency in a nitrogen atmosphere, and the temperature was reduced to 1200 ° C., and a nitrogen gas having a nozzle diameter of 1.2 mm and 10 MPa was used for gas atomization. Without installing a disk in the spray tank, the length of the spray tank was increased by 1.5 m to produce fine metal powder.
Compared to the disk, the distance to the bottom of the chamber just over 10 times the spray point was ensured, but a solidified body was present at the bottom, and the amount of powder produced was halved.

〔比較例4〕
実施例4と同様に、金属を銀1Kgにて、温度を1600℃、ディスクはノズルからの距離(ディスク高さ)100mmに設置、冷却媒体として水を使用し、第1の冷却媒体のディスク上の流動中心が、ディスク上の噴霧中心点直下を内包する扇形内にあり、流動方向が円周方向で冷却媒体が速やかにディスク外へ排出する位置より、供給量22L/minを供給し、さらに、第2の冷却媒体のディスク上の流動中心が、ディスク上の噴霧中心点直下を内包する扇形部分以外から該扇形部分にまで到達して厚膜状となるように水を22L/minを供給し、金属微粉末を作製した。
結果、ディスクでの分断効果が得られず、平均粒径が25.3μmとなった。
[Comparative Example 4]
As in Example 4, the metal was 1 Kg, the temperature was 1600 ° C., the disk was installed at a distance of 100 mm from the nozzle (disk height), water was used as the cooling medium, and the first cooling medium on the disk Is supplied in a fan shape containing directly under the spray center point on the disk, and the supply direction is 22 L / min from the position where the flow direction is the circumferential direction and the cooling medium is quickly discharged out of the disk. , Supply 22 L / min of water so that the flow center on the disk of the second cooling medium reaches the fan-shaped part from other than the fan-shaped part included directly under the spray center point on the disk, and reaches the fan-shaped part. Then, a fine metal powder was produced.
As a result, the cutting effect on the disk was not obtained, and the average particle size was 25.3 μm.

〈結果〉
<result>

A 溶湯金属
B 液状粒子
C 冷却媒体
D 金属微粒子
1 溶融槽
2 噴霧機構
20 噴霧槽
3 ディスク
30 ディスク回転機構
4 溶湯分断機構
5 冷却媒体供給機構
50 冷却媒体貯留部
51 冷却媒体導入部
52 冷却媒体供給口
6 回収機構
7 回収槽
8 高圧ガス
80 高圧ガス貯留部
A Molten Metal B Liquid Particle C Cooling Medium D Metal Fine Particle 1 Melting Tank 2 Spraying Mechanism 20 Spraying Tank 3 Disc 30 Disc Rotating Mechanism 4 Molten Metal Cutting Mechanism 5 Cooling Medium Supply Mechanism 50 Cooling Medium Reserving Unit 51 Cooling Medium Introducing Unit 52 Cooling Medium Supplying 52 Port 6 Recovery mechanism 7 Recovery tank 8 High-pressure gas 80 High-pressure gas reservoir

Claims (5)

溶融金属を収容する溶融槽と、該溶融槽にて供給される溶融金属をガスアトマイズ法にて液状粒子として噴霧する噴霧機構と、該噴霧機構にて噴霧される液状粒子を回転するディスクの表面に衝突させて液状粒子を分断して微細化する溶湯分断機構と、冷却媒体を前記噴霧機構及び前記ディスクの回転により噴霧槽内全体に散布供給する冷却媒体供給機構と、冷却媒体と金属微粒子を回収する回収機構と、回収した冷却媒体と金属微粒子を収容する回収槽とからなることを特徴とする金属微粉末の製造装置。   A melting tank for storing molten metal, a spraying mechanism for spraying molten metal supplied in the melting tank as liquid particles by a gas atomizing method, and a surface of a disk that rotates the liquid particles sprayed by the spraying mechanism. Molten metal splitting mechanism that splits and refines liquid particles by collision, cooling medium supply mechanism that supplies cooling medium to the entire spray tank by rotating the spray mechanism and the disk, and recovers the cooling medium and metal fine particles An apparatus for producing fine metal powder, comprising: a collecting mechanism for collecting, a collected cooling medium and a collecting tank for storing fine metal particles. 冷却媒体のディスク上の流動中心が、ディスク上の噴霧中心点直下を内包する扇形内にあり、流動方向が円周方向で冷却媒体が速やかにディスク外へ排出され、ディスク上に厚膜状に冷却媒体が堆積して溶湯分断機構を妨げないように設置された冷却媒体供給機構を備えることを特徴とする請求項1に記載の金属微粉末の製造装置。   The flow center of the cooling medium on the disk is in a fan shape that is directly under the spray center point on the disk, the flow direction is the circumferential direction, and the cooling medium is quickly discharged out of the disk, forming a thick film on the disk. The apparatus for producing fine metal powder according to claim 1, further comprising a cooling medium supply mechanism installed so that the cooling medium accumulates and does not interfere with the molten metal dividing mechanism. さらに液状粒子が衝突する直後のディスク表面から、生成した金属微粒子をディスク外に排出する排出機構を備えることを特徴とする請求項1又は2に記載の金属微粉末の製造装置。   The apparatus for producing fine metal powder according to claim 1 or 2, further comprising a discharge mechanism for discharging generated fine metal particles from the disk surface immediately after the liquid particles collide. 請求項1〜3の何れか一項に記載の製造装置を用いる製造方法であって、ガスアトマイズ法にて噴霧される液状粒子を、回転するディスクの表面に衝突させて液状粒子を分断して微細化し、冷却媒体を噴霧機構及びディスクの回転により噴霧槽内全体に散布し、冷却媒体と金属微粒子を回収することを特徴とする金属微粉末の製造方法。   It is a manufacturing method using the manufacturing apparatus as described in any one of Claims 1-3, Comprising: The liquid particle sprayed by the gas atomization method is made to collide with the surface of the rotating disk, and a liquid particle is divided | segmented and is fine. A method for producing fine metal powder, characterized in that a cooling medium is sprayed throughout the spray tank by rotation of a spray mechanism and a disk, and the cooling medium and metal fine particles are collected. 熱量計算および装置構成より算出される必要最低限の冷却媒体量により、ディスクの微細化機能の効率化と低運転コスト化されたことを特徴とする請求項4に記載の金属微粉末の製造方法。   5. The method for producing a metal fine powder according to claim 4, wherein the efficiency of the miniaturization function of the disk and the operation cost are reduced by the minimum amount of cooling medium calculated from the calorie calculation and the apparatus configuration. .
JP2013110571A 2013-05-27 2013-05-27 Apparatus and method for producing metal fine powder Pending JP2014227591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013110571A JP2014227591A (en) 2013-05-27 2013-05-27 Apparatus and method for producing metal fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013110571A JP2014227591A (en) 2013-05-27 2013-05-27 Apparatus and method for producing metal fine powder

Publications (1)

Publication Number Publication Date
JP2014227591A true JP2014227591A (en) 2014-12-08

Family

ID=52127746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013110571A Pending JP2014227591A (en) 2013-05-27 2013-05-27 Apparatus and method for producing metal fine powder

Country Status (1)

Country Link
JP (1) JP2014227591A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107282935A (en) * 2016-12-30 2017-10-24 西安交通大学青岛研究院 A kind of continuous liquid supply atomization preparing apparatus of nickel aluminium powder
CN107322001A (en) * 2017-06-19 2017-11-07 湖南工业大学 A kind of 3D printing metal dust and its preparation facilities and method
CN107377985A (en) * 2016-12-30 2017-11-24 西安交通大学青岛研究院 A kind of atomization preparing apparatus of nickel aluminium powder
CN107414093A (en) * 2016-12-30 2017-12-01 西安交通大学青岛研究院 A kind of continuous liquid supply atomization preparing apparatus of TiAl powder
CN108031853A (en) * 2017-11-29 2018-05-15 湖南工业大学 A kind of preparation facilities and preparation method of 3D printing composite granule
KR20190092175A (en) 2018-01-30 2019-08-07 공주대학교 산학협력단 Apparatus and Method for Producing Alloy Powder by the Gas and Water Hybrid Process
CN110802236A (en) * 2019-11-21 2020-02-18 西安赛隆金属材料有限责任公司 Device and method for preparing fine-grain-size metal powder through local melting of particles
CN114951672A (en) * 2022-06-17 2022-08-30 中国科学院力学研究所 Circulative cooling formula high temperature metal centrifugation atomizing powder process device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4896745U (en) * 1972-02-18 1973-11-16
JPH02133726A (en) * 1988-11-15 1990-05-22 Toshiba Corp Drain disk
JPH0754019A (en) * 1993-08-17 1995-02-28 Nippon Sozai Kk Production of powder by multistage fissure and quenching
JPH10317019A (en) * 1997-05-19 1998-12-02 Akihisa Inoue Production and device for metal powder
JPH11323411A (en) * 1998-05-18 1999-11-26 Daido Steel Co Ltd Low melting point metal powder and its production
JP2010209409A (en) * 2009-03-10 2010-09-24 Nec Tokin Corp Method for producing amorphous soft magnetic alloy powder, amorphous soft magnetic alloy powder, and formed body using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4896745U (en) * 1972-02-18 1973-11-16
JPH02133726A (en) * 1988-11-15 1990-05-22 Toshiba Corp Drain disk
JPH0754019A (en) * 1993-08-17 1995-02-28 Nippon Sozai Kk Production of powder by multistage fissure and quenching
JPH10317019A (en) * 1997-05-19 1998-12-02 Akihisa Inoue Production and device for metal powder
JPH11323411A (en) * 1998-05-18 1999-11-26 Daido Steel Co Ltd Low melting point metal powder and its production
JP2010209409A (en) * 2009-03-10 2010-09-24 Nec Tokin Corp Method for producing amorphous soft magnetic alloy powder, amorphous soft magnetic alloy powder, and formed body using the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107282935A (en) * 2016-12-30 2017-10-24 西安交通大学青岛研究院 A kind of continuous liquid supply atomization preparing apparatus of nickel aluminium powder
CN107377985A (en) * 2016-12-30 2017-11-24 西安交通大学青岛研究院 A kind of atomization preparing apparatus of nickel aluminium powder
CN107414093A (en) * 2016-12-30 2017-12-01 西安交通大学青岛研究院 A kind of continuous liquid supply atomization preparing apparatus of TiAl powder
CN107470644A (en) * 2016-12-30 2017-12-15 西安交通大学青岛研究院 A kind of atomization production of nickel aluminium powder
CN107322001A (en) * 2017-06-19 2017-11-07 湖南工业大学 A kind of 3D printing metal dust and its preparation facilities and method
CN108031853A (en) * 2017-11-29 2018-05-15 湖南工业大学 A kind of preparation facilities and preparation method of 3D printing composite granule
KR20190092175A (en) 2018-01-30 2019-08-07 공주대학교 산학협력단 Apparatus and Method for Producing Alloy Powder by the Gas and Water Hybrid Process
CN110802236A (en) * 2019-11-21 2020-02-18 西安赛隆金属材料有限责任公司 Device and method for preparing fine-grain-size metal powder through local melting of particles
CN110802236B (en) * 2019-11-21 2023-07-28 西安赛隆增材技术股份有限公司 Device and method for preparing fine-particle-size metal powder through partial melting of particles
CN114951672A (en) * 2022-06-17 2022-08-30 中国科学院力学研究所 Circulative cooling formula high temperature metal centrifugation atomizing powder process device
CN114951672B (en) * 2022-06-17 2023-07-21 中国科学院力学研究所 Circulation cooling type high-temperature metal centrifugal atomization powder making device

Similar Documents

Publication Publication Date Title
JP2014227591A (en) Apparatus and method for producing metal fine powder
JP6299873B2 (en) Method for producing water atomized metal powder
JP6266636B2 (en) Method for producing atomized metal powder
Tang et al. Characteristics and atomization behavior of Ti-6Al-4V powder produced by plasma rotating electrode process
KR20200084887A (en) Method and apparatus for producing fine spherical powder from coarse and angled powder feed material
CN105252009B (en) A kind of manufacture method of micro-fine spherical titanium powder
JP2017031463A (en) Production method of water atomization metal powder
JP4264873B2 (en) Method for producing fine metal powder by gas atomization method
JP2020105593A (en) Method for producing atomized metal powder
JP2021101043A (en) Atomization process for producing low-melting-point metal or alloy powder
JP2021514028A (en) Melting point metal or alloy powder atomizing manufacturing process
CN113828783A (en) Rapid cooling production equipment and method for amorphous powder
KR20160048262A (en) Method for producing a metal powder by using a rotating disk and gas atomization
JP2017031461A (en) Production method of water atomization metal powder
US3533136A (en) Apparatus for producing metal powder
Schade et al. Atomization
Soong et al. Atomization of metal and alloy powders: Processes, parameters, and properties
JPH0754019A (en) Production of powder by multistage fissure and quenching
Fuqian et al. Study of rapidly solidified atomization technique and production of metal alloy powders
JPH07102307A (en) Production of flaky powder material
KR101517584B1 (en) Apparatus and Method for Manufacturing Minute Powder
JP2017031465A (en) Production method of water atomization metal powder
JPH11323411A (en) Low melting point metal powder and its production
KR102651086B1 (en) Apparatus and Method for Manufacturing Metal Powder Using Non-oxidizing Water Jetting
JP2018095915A (en) Metal powder production method and production apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170822