JP2017031463A - Production method of water atomization metal powder - Google Patents

Production method of water atomization metal powder Download PDF

Info

Publication number
JP2017031463A
JP2017031463A JP2015152129A JP2015152129A JP2017031463A JP 2017031463 A JP2017031463 A JP 2017031463A JP 2015152129 A JP2015152129 A JP 2015152129A JP 2015152129 A JP2015152129 A JP 2015152129A JP 2017031463 A JP2017031463 A JP 2017031463A
Authority
JP
Japan
Prior art keywords
metal powder
water atomized
water
producing
rotating disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015152129A
Other languages
Japanese (ja)
Other versions
JP6372441B2 (en
Inventor
中村 尚道
Naomichi Nakamura
尚道 中村
誠 中世古
Makoto Nakaseko
誠 中世古
拓也 高下
Takuya Takashita
拓也 高下
村木 峰男
Mineo Muraki
峰男 村木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2015152129A priority Critical patent/JP6372441B2/en
Publication of JP2017031463A publication Critical patent/JP2017031463A/en
Application granted granted Critical
Publication of JP6372441B2 publication Critical patent/JP6372441B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a production method of water atomization metal powder capable of securing cooling speed which is required for amorphization by avoiding reduction of cooling speed due to formation of a steam film generated on each droplet of molten metal being divided by a water atomization method, and producing at low cost, atomization metal powder having a high amorphization ratio.SOLUTION: A production method of water atomization metal powders 11 is configured to: jet high pressure water 8 to a molten metal stream 6 which flows down; then divide the molten metal stream 6 for making water atomization metal powders 11. In the production method, each droplet 9 of the molten metal 6 which is divided and in a midway of falling is made to collide with a rotary disk 10 which rotates at peripheral speed equal to or higher than falling speed of each droplet during collision, at a position where a temperature is in a range of a coagulation start temperature of each droplet 9 to coagulation start temperature+50°C.SELECTED DRAWING: Figure 1

Description

本発明は、水アトマイズ法による金属粉末(以下、水アトマイズ金属粉末ともいう)の製造方法に係り、特に水アトマイズ金属粉末の非晶質化率向上に関する。   The present invention relates to a method for producing a metal powder (hereinafter also referred to as a water atomized metal powder) by a water atomization method, and more particularly to an improvement in the amorphization rate of the water atomized metal powder.

近年、省エネルギーの観点から、例えば電気自動車等に使用されるモーターコアの低鉄損化及び小型化が要望されている。従来、モーターコアは、電磁鋼板を積層させて製作されてきたが、最近では、形状設計の自由度が高い金属粉末(電磁鉄粉)を圧縮成型して作製したモーターコアが注目されている。このようなモーターコアの低鉄損化のためには、使用する金属粉末の低鉄損化が必要となる。低鉄損の金属粉末とするには、金属粉末を非晶質化(アモルファス化)することが有効な手段のひとつである。また、小型化・軽量化の為には金属粉末の磁束密度向上が必要である。   In recent years, from the viewpoint of energy saving, for example, a reduction in iron loss and a reduction in size of a motor core used in an electric vehicle or the like has been demanded. Conventionally, a motor core has been manufactured by laminating electromagnetic steel plates, but recently, a motor core produced by compression molding metal powder (electromagnetic iron powder) having a high degree of freedom in shape design has attracted attention. In order to reduce the iron loss of such a motor core, it is necessary to reduce the iron loss of the metal powder used. In order to obtain a metal powder with low iron loss, it is one effective means to make the metal powder amorphous. In addition, it is necessary to improve the magnetic flux density of the metal powder in order to reduce the size and weight.

一方、金属粉末の製造方法として溶融金属の流れを何らかの手段で分断して金属粉末を得るアトマイズ法が知られている。このアトマイズ法には、主として、溶融金属の流れに高圧の水を噴射して該溶融金属の流れを分断することにより金属粉末を得る水アトマイズ法、高圧の水に変えて不活性ガスを噴射するガスアトマイズ法の2種類がある。   On the other hand, as a method for producing metal powder, an atomizing method is known in which a molten metal flow is divided by some means to obtain metal powder. In this atomizing method, mainly, a water atomizing method for obtaining metal powder by injecting high-pressure water into a molten metal flow and dividing the molten metal flow, and injecting an inert gas instead of high-pressure water. There are two types of gas atomization methods.

水アトマイズ法は、ガスアトマイズ法の比べ、生産性、製造コストの面で金属粉末の大量生産に適する利点があるとともに、得られる粉体形状が適度に非定型を有することから真球形状に近いガスアトマイズ粉に比べて加熱成型時に粉末同士が絡みやすく、成型後の強度と圧粉成形性が安定している利点を有する。   Compared to the gas atomization method, the water atomization method has advantages that are suitable for mass production of metal powders in terms of productivity and manufacturing cost, and the obtained powder shape has an atypical shape, so that the gas atomization close to a true spherical shape is achieved. Compared to powder, powders are more likely to be entangled during heat molding, and the strength after molding and compactability are stable.

しかしながら、不活性ガス等を噴射して溶融金属を分断するガスアトマイズ法に比べて、水アトマイズ法では、高圧水で分断後の溶融状態を含む金属粉末(液滴)の表面に水膜もしくは水蒸気膜が形成される。このため、溶融状態を一部含む金属粉末(液滴)と冷却水との界面は直接接触を妨げる膜沸騰状態となり、溶融状態を含む金属粉末(液滴)の冷却速度を高めることが難しくなり、非晶質材料なかでも近年開発されたFe組成の割合が高く非晶質形成能が低いヘテロアモルファス材、ナノ結晶材料もしくはこれらの材料の原料となる非晶質を多く含む粉末を水アトマイズ法で製造することは難しいという問題があった。   However, compared with the gas atomization method in which the molten metal is divided by injecting an inert gas or the like, the water atomization method has a water film or a water vapor film on the surface of the metal powder (droplet) containing the molten state after being divided with high-pressure water. Is formed. For this reason, the interface between the metal powder (droplet) partially containing the molten state and the cooling water becomes a film boiling state that prevents direct contact, making it difficult to increase the cooling rate of the metal powder (droplet) including the molten state. Among the amorphous materials, the heteroatomized material with a high proportion of Fe composition developed in recent years and the amorphous forming ability is low, nanocrystalline material, or powder containing a lot of amorphous material as a raw material of these materials is a water atomization method There was a problem that it was difficult to manufacture with.

このようなことから、従来、鉄系非晶質粉末のように、非晶質形成能が低く溶融状態から高い冷却速度で凝固させる必要がある非晶質金属粉末の製造方法として、ガスアトマイズ法をベースとした技術が開発されてきた。例えば、特許文献1には、回転するディスクの表面に冷媒を供給して該冷媒の液膜を形成し、溶融金属をガスアトマイズ法で1次粉砕した中間粒子を前記回転するディスク上の液膜により2次粉砕しつつ急冷する非晶質軟磁性合金粉末の製造方法が開示されている。また、特許文献2には、ノズルから流下した溶融金属を高圧不活性ガスにより1次粉砕して1次粉砕粒子を得る1次粉砕工程と、周速400m/s以上800m/s以下で回転させ、表面に第1の冷媒液の冷媒膜を形成したディスクに、前記1次粉砕粒子を衝突させて2次粉砕するとともに急冷し2次粉砕粒子を得る工程と、前記ディスクの表面から前記第1の冷媒液とともに前記ディスクの周囲に放出された前記2次粉砕粒子を、前記ディスクの周囲に形成した第2の冷媒液の冷媒膜にてさらに冷却する工程と、を備える軟磁性合金粉末の製造方法が開示されている。   For this reason, the gas atomization method is conventionally used as a method for producing an amorphous metal powder that has a low amorphous forming ability and needs to be solidified from a molten state at a high cooling rate, such as an iron-based amorphous powder. Technology based on it has been developed. For example, in Patent Document 1, a refrigerant is supplied to the surface of a rotating disk to form a liquid film of the refrigerant, and intermediate particles obtained by primary pulverization of molten metal by a gas atomization method are applied to the liquid film on the rotating disk. A method for producing an amorphous soft magnetic alloy powder that is rapidly cooled while being pulverized is disclosed. Patent Document 2 discloses a primary pulverization step in which molten metal flowing down from a nozzle is first pulverized by high-pressure inert gas to obtain primary pulverized particles, and rotated at a peripheral speed of 400 m / s to 800 m / s. A step of causing the primary pulverized particles to collide with the disk on which the refrigerant film of the first refrigerant liquid is formed on the surface to perform secondary pulverization and quenching to obtain secondary pulverized particles; And further cooling the secondary pulverized particles released around the disk together with the refrigerant liquid with a refrigerant film of a second refrigerant liquid formed around the disk. A method is disclosed.

また、特許文献3には、より大きな粒径のアモルファス金属粉末を、効率よく製造することができる金属粉末製造装置が開示されている。特許文献3に記載された金属粉末製造装置では、溶融金属を供給する供給部と、溶融金属が通過可能な流路と該流路に液体を噴射するオリフィスとを備えた液体噴射部とを備え、液体噴射部の下方に、分散液の進行方向を強制的に変化させる進行方向変更手段を設け、オリフィスから噴射された液体に溶融金属を接触させて、溶融金属を微細な多数の液滴に分裂させ、該液滴を液体に分散した状態の分散液として移送するとともに、分散液中の液滴を冷却固化させてアモルファス金属粉末を製造するとしている。進行方向変更手段としては、第2の液体を噴射するノズルを有し、ノズルから分散液に向けて、第2の液体を噴射して衝突させる手段、あるいは、長手方向の途中が円弧上に湾曲した曲部を有する筒状体とし、分散液の進行方向を曲部の内壁面に沿って強制的に変化させる手段、が例示され、これにより、粉末の周囲に形成される蒸気層を確実に分離することができ、多数の粉末をむらなく冷却できるとしている。   Patent Document 3 discloses a metal powder manufacturing apparatus that can efficiently manufacture an amorphous metal powder having a larger particle size. The metal powder manufacturing apparatus described in Patent Document 3 includes a supply unit that supplies molten metal, and a liquid ejecting unit that includes a flow path through which the molten metal can pass and an orifice that ejects liquid into the flow path. , A traveling direction changing means for forcibly changing the traveling direction of the dispersion liquid is provided below the liquid ejecting unit, and the molten metal is brought into contact with the liquid ejected from the orifice, so that the molten metal is converted into a large number of fine droplets. The liquid droplets are divided and transferred as a dispersion in which the droplets are dispersed in a liquid, and the droplets in the dispersion are cooled and solidified to produce an amorphous metal powder. The traveling direction changing means has a nozzle that ejects the second liquid and ejects the second liquid from the nozzle toward the dispersion liquid to collide, or the middle in the longitudinal direction is curved on an arc. And a means for forcibly changing the traveling direction of the dispersion along the inner wall surface of the curved portion, thereby ensuring a vapor layer formed around the powder. It can be separated and can cool a large number of powders evenly.

また、高い飽和磁束密度を有し、優れた軟磁性特性を有するFe基ナノ結晶合金を得るための出発原料となる合金組成の例として、例えば特許文献4には、主相として非晶質相を有している組成式FeSiCCuで、a:79〜86at%、b:5〜13at%、c:0〜8at%、x:1〜8at%、y:0〜4at%、z:0.4〜1.4at%である合金組成物が記載されている。この合金組成物は、主相としてアモルファス相を有し、非晶質と該非晶質中に存在する初期微結晶とからなるナノヘテロ構造を呈するとしている。また、これら合金組成物に熱処理を施すと、bccFe相からなるナノ結晶を析出させることができ、飽和磁束密度が高い、Fe基ナノ結晶合金粉末とすることができるとしている。 In addition, as an example of an alloy composition serving as a starting material for obtaining an Fe-based nanocrystalline alloy having a high saturation magnetic flux density and excellent soft magnetic properties, for example, Patent Document 4 discloses an amorphous phase as a main phase. in formula has a Fe a B b Si c P x C y Cu z, a: 79~86at%, b: 5~13at%, c: 0~8at%, x: 1~8at%, y The alloy composition is described as follows: 0-4 at%, z: 0.4-1.4 at%. This alloy composition has an amorphous phase as a main phase, and exhibits a nanoheterostructure composed of an amorphous phase and initial microcrystals present in the amorphous phase. Moreover, when heat-treating these alloy compositions, nanocrystals composed of bccFe phases can be precipitated, and Fe-based nanocrystal alloy powders having a high saturation magnetic flux density can be obtained.

また、特許文献5には、アモルファス相を主相とする組成式Fe(100−X−Y−Z)Cuの合金組成物で、X、Y、Zが、100−X−Y−Z:79〜86at%、X:4〜13at%、Y:1〜10at%、Z:0.5〜1.5at%を満たす合金組成物が記載されている。そして、この合金組成物では、Feの一部をCo、Niのうちの1種以上の元素で置換してもよいとしている。Fe元素は磁性を担う元素であり、飽和磁束密度向上にはFe元素の割合を高めることが好ましいとしている。この合金組成物は、主相としてアモルファス相を有し、非晶質と該非晶質中に存在する初期微結晶とからなるナノヘテロ構造を呈する合金粉末とすることもできるとしている。そして、これら合金組成物に熱処理を施すと、bccFe相からなるナノ結晶を析出させることができ、飽和磁束密度が高い、Fe基ナノ結晶合金粉末とすることができるとしている。 Patent Document 5 discloses an alloy composition of the composition formula Fe (100-X—Y—Z) B X P Y Cu Z whose main phase is an amorphous phase, and X, Y, and Z are 100-X—. An alloy composition satisfying YZ: 79 to 86 at%, X: 4 to 13 at%, Y: 1 to 10 at%, and Z: 0.5 to 1.5 at% is described. In this alloy composition, a part of Fe may be substituted with one or more elements of Co and Ni. Fe element is an element responsible for magnetism, and it is preferable to increase the proportion of Fe element to improve the saturation magnetic flux density. This alloy composition has an amorphous phase as a main phase, and can also be made into an alloy powder exhibiting a nanoheterostructure consisting of an amorphous phase and initial microcrystals present in the amorphous phase. And when heat-treating these alloy compositions, it is said that nanocrystals consisting of bccFe phase can be precipitated, and Fe-based nanocrystal alloy powder with high saturation magnetic flux density can be obtained.

なお、粉末とはなっていないが、アモルファス合金組成として、例えば特許文献6には、アモルファス合金組成FeSiCuであって、a:73〜85at%、b:9.65〜22at%、b+c:9.65〜24.75at%、x:0.25〜5at%、y:0〜0.35at%、y/x:0超え0.5である合金組成物が記載されている。 Although not in the powder, as an amorphous alloy composition, for example, Patent Document 6, an amorphous alloy composition Fe a B b Si c P x Cu y, a: 73~85at%, b: 9.65~ An alloy composition in which 22 at%, b + c: 9.65 to 24.75 at%, x: 0.25 to 5 at%, y: 0 to 0.35 at%, y / x: 0 over 0.5 is described.

また、粉末とはなっていないが、アモルファス合金組成として、特許文献7には、アモルファス合金組成FeSiCuであって、a:73〜85at%、b:9.65〜22at%、b+c:9.65〜24.75at%、x:0.25〜5at%、y:0〜0.35at%、およびy/x:0〜0.5at%である薄帯形状の合金組成物が記載されている。 Although not in the powder, as an amorphous alloy composition, Patent Document 7, an amorphous alloy composition Fe a B b Si c P x Cu y, a: 73~85at%, b: 9.65~22at %, B + c: 9.65 to 24.75 at%, x: 0.25 to 5 at%, y: 0 to 0.35 at%, and y / x: 0 to 0.5 at%.

特開2010−209409公報JP 2010-209409 A 特開2013−55182公報JP2013-55182A 特開2007−291454号公報JP 2007-291454 A 特許第4584350号公報Japanese Patent No. 4584350 特許第4815014号公報Japanese Patent No. 4815014 特許第4288687号公報Japanese Patent No. 4288687 特許第4310480号公報Japanese Patent No. 4310480

しかし、特許文献1または2に記載された技術では、ガスアトマイズ法を利用して金属粉末を製造しているため、アトマイズのために大量の不活性ガスを必要とし、製造コストの高騰を招くという問題があった。   However, in the technique described in Patent Document 1 or 2, since metal powder is manufactured using the gas atomization method, a large amount of inert gas is required for atomization, resulting in an increase in manufacturing cost. was there.

また、特許文献3に記載された技術では、進行方向変更手段で強制的に進行方向を変化させられた分散液は、蒸気膜を除去されるが、分散液の温度が高いと、周囲に存在する水分により、再び蒸気膜が形成される可能性がある。一方、分散液の温度が低い場合には、進行方向変更手段からの第2に液体により、凝固して結晶化が進行するという問題がある。   Further, in the technique described in Patent Document 3, the dispersion liquid whose traveling direction is forcibly changed by the traveling direction changing means is removed from the vapor film, but when the dispersion liquid temperature is high, it exists in the surroundings. There is a possibility that a vapor film is formed again due to the moisture to be formed. On the other hand, when the temperature of the dispersion liquid is low, there is a problem that crystallization proceeds by solidification by the second liquid from the traveling direction changing means.

本発明は、上述のような問題点に鑑みてなされたものであり、水アトマイズ法で分断された溶融金属の液滴に生じる蒸気膜の形成による冷却速度の低下を回避して非晶質化に必要な冷却速度を確保でき、高い非晶質化率を有するアトマイズ金属粉末を低コストで製造できる水アトマイズ金属粉末の製造方法を提供することを目的とする。   The present invention has been made in view of the above-described problems, and is made amorphous by avoiding a decrease in cooling rate due to formation of a vapor film generated in molten metal droplets divided by a water atomization method. It is an object of the present invention to provide a method for producing a water atomized metal powder that can secure a necessary cooling rate and can produce an atomized metal powder having a high amorphization rate at a low cost.

本発明者等は、上述の課題を解決するため、水アトマイズ法で分断された液滴を回転ディスクに衝突させるアトマイズ金属粉末の製造方法について鋭意検討を行った。   In order to solve the above-mentioned problems, the present inventors have conducted intensive studies on a method for producing atomized metal powder in which droplets separated by a water atomization method collide with a rotating disk.

特許文献1または2に記載されたガスアトマイズ法と回転ディスクを組み合わせた方法では、溶融金属流が高圧ガスで分断されるため、分断された液滴は蒸気膜で覆われることはなく、回転ディスクに衝突した際に非晶質金属粉末とする十分な冷却速度が得られる。一方、水アトマイズ法では、分断された液滴が高圧水の蒸気膜で覆われ、回転ディスクに衝突した際に十分な冷却速度が得られなかった。そこで、回転ディスクに衝突した液滴の冷却速度を向上する方法について検討した結果、回転ディスク衝突時の液滴の温度を該液滴の凝固開始温度〜凝固開始温度+50℃の範囲に制御することにより液滴が覆われた水蒸気膜を除去できて回転ディスクに衝突した際の冷却速度が向上するという知見が得られた。   In the method combining the gas atomizing method and the rotating disk described in Patent Document 1 or 2, since the molten metal flow is divided by the high-pressure gas, the divided droplets are not covered with the vapor film, and the rotating disk is not covered. A sufficient cooling rate to obtain an amorphous metal powder upon collision is obtained. On the other hand, in the water atomization method, the divided droplets are covered with a vapor film of high-pressure water, and a sufficient cooling rate cannot be obtained when the droplets collide with the rotating disk. Therefore, as a result of investigating a method for improving the cooling rate of the liquid droplet colliding with the rotating disk, the temperature of the liquid droplet when the rotating disk collides is controlled within the range of the solidification start temperature of the liquid droplet to the solidification start temperature + 50 ° C. As a result, it was found that the water vapor film covered with the droplets can be removed and the cooling rate when colliding with the rotating disk is improved.

本発明は、かかる知見に基づき、さらに検討を加えて完成されたものであり、本発明の要旨は次のとおりである。
(1)落下する溶融金属流に高圧水を噴射し、該溶融金属流を分断して水アトマイズ金属粉末とする水アトマイズ金属粉末の製造方法において、前記分断され落下途中の溶融金属の液滴を該液滴の凝固開始温度〜凝固開始温度+50℃の範囲内の温度となる位置で回転ディスクに衝突させることを特徴とする水アトマイズ金属粉末の製造方法。
(2)前記回転ディスクは、該回転ディスクに衝突する際の前記液滴の落下速度以上の周速で回転させることを特徴とする(1)に記載の水アトマイズ金属粉末の製造方法。
(3)前記回転ディスクの表面上に、冷媒液による冷媒膜を形成することを特徴とする(1)または(2)に記載の水アトマイズ金属粉末の製造方法。
(4)前記高圧水の流量と溶融金属流の流量との比率が5以上であることを特徴とする(1)〜(3)のいずれかに記載の水アトマイズ金属粉末の製造方法。
(5)前記溶融金属が、Fe基軟磁性合金組成またはFeの一部をNiおよび/またはCoで置換されたFe基軟磁性合金組成で、前記FeあるいはFe、Ni、Coの合計量であるFe系元素比率が82.5at%超え86at%未満である合金組成を有することを特徴とする(1)ないし(4)のいずれかに記載の水アトマイズ金属粉末の製造方法。
(6)前記水アトマイズ金属粉末を、さらに400〜500℃の範囲内の温度に加熱する熱処理を施すことを特徴とする(5)に記載の水アトマイズ金属粉末の製造方法。
(7)(5)に記載の水アトマイズ金属粉末の製造方法で製造されてなり、平均粒径:5μm以上でかつ非晶質率が85%以上であることを特徴とする水アトマイズFe基軟磁性合金粉末。
(8)(6)に記載の水アトマイズ金属粉末の製造方法で製造されてなる水アトマイズ金属粉末であって、ナノ結晶構造を有することを特徴とする水アトマイズFe基軟磁性合金粉末。
The present invention has been completed by further studies based on such findings, and the gist of the present invention is as follows.
(1) In the method for producing water atomized metal powder, high pressure water is sprayed onto a falling molten metal stream, and the molten metal stream is divided to form a water atomized metal powder. A method for producing a water atomized metal powder, wherein the droplet is caused to collide with a rotating disk at a position within a range of solidification start temperature to solidification start temperature + 50 ° C.
(2) The method for producing water atomized metal powder according to (1), wherein the rotating disk is rotated at a peripheral speed equal to or higher than a dropping speed of the droplet when colliding with the rotating disk.
(3) The method for producing a water atomized metal powder according to (1) or (2), wherein a refrigerant film is formed by a refrigerant liquid on a surface of the rotating disk.
(4) The method for producing a water atomized metal powder according to any one of (1) to (3), wherein a ratio between the flow rate of the high-pressure water and the flow rate of the molten metal flow is 5 or more.
(5) The molten metal is an Fe-based soft magnetic alloy composition or an Fe-based soft magnetic alloy composition in which a part of Fe is replaced with Ni and / or Co, and is the total amount of Fe, Fe, Ni, and Co The method for producing a water atomized metal powder according to any one of (1) to (4), wherein the alloy composition has an Fe-based element ratio of more than 82.5 at% and less than 86 at%.
(6) The method for producing a water atomized metal powder according to (5), wherein the water atomized metal powder is further subjected to a heat treatment for heating to a temperature within a range of 400 to 500 ° C.
(7) A water atomized Fe-based soft material produced by the method for producing a water atomized metal powder according to (5), having an average particle size of 5 μm or more and an amorphous ratio of 85% or more. Magnetic alloy powder.
(8) A water atomized Fe-based soft magnetic alloy powder, which is a water atomized metal powder produced by the method for producing a water atomized metal powder according to (6) and has a nanocrystalline structure.

本発明により、従来の水アトマイズ法では困難であったFe(Feの一部を置換したNi、Coを含む)系元素比率が82.5at%を超えの組成を有する非晶質粉末を、水アトマイズ法で製造できるようになり、軟磁性材料として優れた性能を発揮する組成の金属粉末を低コストで大量生産することが可能となる。したがって、トランスの小型化やモーターの損失低減など、近年の省資源化や省エネルギー化の潮流に多大に寄与するものである。   According to the present invention, an amorphous powder having a composition in which the proportion of Fe (including Ni and Co in which part of Fe is substituted) -based element ratio, which has been difficult by the conventional water atomization method, exceeds 82.5 at%, It becomes possible to manufacture by the atomizing method, and it becomes possible to mass-produce metal powder having a composition exhibiting excellent performance as a soft magnetic material at low cost. Therefore, it greatly contributes to the recent trend of resource saving and energy saving such as miniaturization of transformers and reduction of motor loss.

本発明の製造方法を模式的に示す説明図である。It is explanatory drawing which shows the manufacturing method of this invention typically.

本発明の実施形態の一例を図1に模式的に示す。   An example of an embodiment of the present invention is schematically shown in FIG.

溶解炉1で製造した所定の成分の溶融金属2を、噴霧槽3の上部に設置した溶融金属保持容器4に注入し、その底部の溶湯ノズル5から溶融金属流6として落下させる。溶融金属流6の落下経路の周囲には高圧水噴射ノズル7が設置されており、該高圧水噴射ノズル7から噴射される高圧水8によって溶融金属流6は分断されて液滴9となる。液滴9は、落下経路の下方に配置された回転ディスク10の表面に衝突し、回転ディスク10の径方向に遠心力によって飛ばされて水アトマイズ金属粉末11となり、噴霧槽底12にスラリー状に堆積して、回収バルブ13から回収される。   A molten metal 2 having a predetermined component produced in the melting furnace 1 is poured into a molten metal holding container 4 installed at the top of the spray tank 3 and dropped as a molten metal stream 6 from a molten metal nozzle 5 at the bottom. A high-pressure water injection nozzle 7 is installed around the dropping path of the molten metal flow 6, and the molten metal flow 6 is divided into droplets 9 by the high-pressure water 8 injected from the high-pressure water injection nozzle 7. The droplet 9 collides with the surface of the rotating disk 10 disposed below the dropping path, and is blown off by the centrifugal force in the radial direction of the rotating disk 10 to become the water atomized metal powder 11, and is slurryed on the spray tank bottom 12. It accumulates and is recovered from the recovery valve 13.

回転ディスク10は、本発明の範囲の回転周速による遠心力で破壊されない強度を有するものであればよく、例えば、従来のディスクアトマイズ法で用いられてきた金属材料(ステンレス鋼など)製やセラミック(窒化ホウ素など)製の回転ディスクなどが好適に用いられる。また、液滴9を急冷するという目的には、銅などの熱伝導率が高い金属材料製の回転ディスクを用いることがさらに効果的である。   The rotating disk 10 only needs to have a strength that is not broken by the centrifugal force due to the rotational peripheral speed within the range of the present invention. For example, the rotating disk 10 is made of a metal material (such as stainless steel) or ceramic that has been used in the conventional disk atomizing method. A rotating disk made of (such as boron nitride) is preferably used. For the purpose of rapidly cooling the droplets 9, it is more effective to use a rotating disk made of a metal material having a high thermal conductivity such as copper.

溶融金属流に高圧水を噴射して分断された液滴9は、高圧水の蒸発による蒸気膜で覆われているためこのままでは高い冷却速度が得られない。しかしながら、液滴9が回転ディスク10に衝突することによって、前記蒸気膜に強いせん断応力が作用して前記蒸気膜が引きちぎられ、液滴9の金属表面が直接回転ディスク10の表面に接触して高い冷却速度が得られる。   The droplets 9 separated by jetting high-pressure water into the molten metal stream are covered with a vapor film formed by evaporation of the high-pressure water, so that a high cooling rate cannot be obtained as it is. However, when the droplet 9 collides with the rotating disk 10, a strong shearing stress acts on the vapor film to tear the vapor film, and the metal surface of the droplet 9 directly contacts the surface of the rotating disk 10. A high cooling rate is obtained.

本発明では、回転ディスク10に衝突する際の液滴9の温度が、液滴9の凝固開始温度〜凝固開始温度+50℃の範囲内となるように調整する。回転ディスク10に衝突する際の液滴9の温度は、溶融金属保持容器4に注入する溶融金属2の温度、あるいは溶湯ノズル5やアトマイズポイント14と回転ディスク10との間の距離を変化させることによって制御できる。回転ディスク10に衝突する際の液滴9の温度が液滴9の凝固開始温度より低い場合には、液滴9が水蒸気膜に覆われた冷却速度の低い状態で結晶化が開始してしまうため、非晶質度の高い水アトマイズ金属粉末が得られない。回転ディスク10に衝突する際の液滴9の温度が液滴9の凝固開始温度+50℃より高い場合には、液滴9が十分低い温度まで冷却されないうちに回転ディスク10から飛ばされるため、非晶質度が十分高い水アトマイズ金属粉末が得られない。   In the present invention, the temperature of the droplet 9 when colliding with the rotating disk 10 is adjusted to be within the range of the solidification start temperature of the droplet 9 to the solidification start temperature + 50 ° C. The temperature of the droplet 9 when colliding with the rotating disk 10 changes the temperature of the molten metal 2 injected into the molten metal holding container 4 or the distance between the molten metal nozzle 5 or atomizing point 14 and the rotating disk 10. Can be controlled by. When the temperature of the droplet 9 when colliding with the rotating disk 10 is lower than the solidification start temperature of the droplet 9, crystallization starts with the droplet 9 covered with the water vapor film at a low cooling rate. Therefore, a water atomized metal powder having a high degree of amorphousness cannot be obtained. When the temperature of the droplet 9 when colliding with the rotating disk 10 is higher than the solidification start temperature of the droplet 9 + 50 ° C., the droplet 9 is blown from the rotating disk 10 before being cooled to a sufficiently low temperature. A water atomized metal powder having a sufficiently high crystallinity cannot be obtained.

また、本発明では、液滴9が衝突する点の回転ディスク10の周速を、液滴9の落下速度以上とすることが好ましい。回転ディスク10の周速をこの範囲とすることによって、液滴9が覆われている水蒸気膜を引きちぎる効果がより顕著に発現する。なお、衝突点における液滴9の落下速度は、液滴9を高速度カメラ等で観察することで直接的に計測されるが、液滴9とともに飛翔している衝突点近傍の高圧水の速度を同様の方法で計測した値で近似することも可能である。   In the present invention, it is preferable that the peripheral speed of the rotating disk 10 at the point where the droplet 9 collides is equal to or higher than the dropping speed of the droplet 9. By setting the peripheral speed of the rotating disk 10 within this range, the effect of tearing off the water vapor film covered with the droplets 9 is more remarkably exhibited. The drop speed of the droplet 9 at the collision point is directly measured by observing the droplet 9 with a high-speed camera or the like, but the velocity of the high-pressure water near the collision point flying with the droplet 9 It is also possible to approximate with a value measured by a similar method.

さらに、本発明では、回転ディスク10の表面上に、水などの冷媒液による冷媒層を形成しておくことが好ましい。これにより、回転ディスク10に衝突する際の液滴9の冷却速度はさらに向上する。冷媒層を形成するに当たっては、例えば、特許文献3に開示されているような、回転軸上に設けた送液口15から冷媒液を送出してディスクの遠心力を利用してディスク表面に均一に拡散させる方法など、従来公知の方法を適用することが可能である。なお、冷媒液の温度は低いほど好ましく、例えば水を用いる場合には10℃以下とすることによって、冷却速度の向上を図ることができる。   Furthermore, in the present invention, it is preferable to form a refrigerant layer made of a refrigerant liquid such as water on the surface of the rotating disk 10. Thereby, the cooling rate of the droplet 9 when colliding with the rotating disk 10 is further improved. In forming the refrigerant layer, for example, as disclosed in Patent Document 3, the refrigerant liquid is sent out from the liquid feeding port 15 provided on the rotating shaft, and is uniformly applied to the disk surface using the centrifugal force of the disk. It is possible to apply a conventionally known method such as a method of diffusing in a layer. The temperature of the refrigerant liquid is preferably as low as possible. For example, when water is used, the cooling rate can be improved by setting the temperature to 10 ° C. or lower.

また、本発明では、高圧水8の流量と溶融金属流6の流量の比率(以下、水溶湯比と言う)が高いほど、上述の冷却速度向上効果がより顕著に発現するため、水溶湯比を5以上とすることが好ましい。なお、より好ましくは10以上である。   Further, in the present invention, the higher the ratio of the flow rate of the high-pressure water 8 and the flow rate of the molten metal stream 6 (hereinafter referred to as the “water-solution ratio”), the more the above-mentioned cooling rate improvement effect is manifested. Is preferably 5 or more. More preferably, it is 10 or more.

本発明は、非晶質化に特に大きな冷却速度が必要とされる金属粉末の製造に有効であり、溶融金属が、Fe基軟磁性合金組成またはFeの一部部をNiおよび/またはCoで置換されたFe基軟磁性合金組成で、前記FeあるいはFe、Ni、Coの合計量であるFe系元素比率が82.5at%超え86at%未満である合金組成を有することが好ましい。従来、水アトマイズ法では非晶質化が困難であったFe基軟磁性合金の非晶質化が水アトマイズ法によって達成できる。なお、本方法によっても前記Fe系元素比率が86at%超えの合金は、完全な非晶質化が達成できなかったので組成限定範囲の上限とした。   INDUSTRIAL APPLICABILITY The present invention is effective for the production of metal powders that require a particularly large cooling rate for amorphization, and the molten metal is composed of Fe-based soft magnetic alloy composition or a part of Fe with Ni and / or Co. The substituted Fe-based soft magnetic alloy composition preferably has an alloy composition in which the Fe-based element ratio, which is the total amount of Fe or Fe, Ni, and Co, is more than 82.5 at% and less than 86 at%. Conventionally, amorphization of an Fe-based soft magnetic alloy, which has been difficult to be amorphized by the water atomization method, can be achieved by the water atomization method. Note that the alloy with the Fe-based element ratio exceeding 86 at% could not be completely amorphized even by this method, so the upper limit of the composition limitation range was set.

また、上述の製造方法で製造されたFe基軟磁性合金の非晶質粉末をナノ結晶粉末とする場合には、さらに前記非晶質粉末に400〜500℃の範囲内の温度に加熱する熱処理を施すことが好ましい。熱処理温度が400℃未満ではナノ結晶化が十分進行せず、500℃超えでは結晶粒が粗大化する。   When the amorphous powder of the Fe-based soft magnetic alloy manufactured by the above-described manufacturing method is a nanocrystalline powder, the amorphous powder is further heated to a temperature in the range of 400 to 500 ° C. It is preferable to apply. When the heat treatment temperature is less than 400 ° C, nanocrystallization does not proceed sufficiently, and when it exceeds 500 ° C, the crystal grains become coarse.

以上説明した本発明の方法により、Fe系元素比率が82.5at%超え86at%未満である合金組成を有し、平均粒径5μm以上でかつ非晶質化率が90%以上である水アトマイズFe基軟磁性合金粉末が製造できる。さらに、ナノ結晶構造を有し、高飽和磁束密度を有する水アトマイズFe基軟磁性合金粉末が製造できる。   According to the method of the present invention described above, water atomization has an alloy composition with an Fe-based element ratio of more than 82.5 at% and less than 86 at%, an average particle diameter of 5 μm or more, and an amorphization ratio of 90% or more. Fe-based soft magnetic alloy powder can be produced. Furthermore, a water atomized Fe-based soft magnetic alloy powder having a nanocrystal structure and a high saturation magnetic flux density can be produced.

なお、ここで言う「平均粒径」とは、レーザー回折・散乱法で測定した体積基準積算粒度分布が50%となる粒径であり、「非晶質化率」は、X線回折法により、アモルファス(非晶質)からのハローピークおよび結晶からの回折ピークを測定し、WPPD法により非晶質化率を算出した。ここでいう「WPPD法」とは、Whole-powder-pattern decomposition methodの略である。なお、WPPD法については、虎谷秀穂:日本結晶学会誌, vol.30(1988), No.4, P253〜258に詳しい。   The “average particle size” mentioned here is a particle size at which the volume-based cumulative particle size distribution measured by the laser diffraction / scattering method is 50%, and the “amorphization ratio” is determined by the X-ray diffraction method. Then, the halo peak from the amorphous (amorphous) and the diffraction peak from the crystal were measured, and the amorphization rate was calculated by the WPPD method. The “WPPD method” here is an abbreviation for Whole-powder-pattern decomposition method. The WPPD method is detailed in Hideho Toraya: Journal of the Crystallographic Society of Japan, vol.30 (1988), No. 4, P253-258.

図1に示した装置を用いて、表1に示す成分および条件で水アトマイズ金属粉末を製造した。なお、原料の溶解量は1チャージ当たり20kgとし、各原料の凝固開始温度は熱力学的計算手法により求めた。製造した水アトマイズ金属粉末について平均粒径、結晶化率を測定した。また、表1の粉末No.1−1、No.2、およびNo.3の金属粉末については、窒素雰囲気で300、400、500、600℃の温度に加熱し、20分間保持する熱処理を施した。熱処理後の金属粉末について結晶化率とともにα−Feの結晶粒径Dを評価した。   Using the apparatus shown in FIG. 1, water atomized metal powder was produced with the components and conditions shown in Table 1. The amount of raw material dissolved was 20 kg per charge, and the solidification start temperature of each raw material was determined by a thermodynamic calculation method. The average particle size and crystallization rate of the produced water atomized metal powder were measured. In Table 1, the powder No. 1-1, no. 2, and no. About the metal powder of 3, it heated to the temperature of 300, 400, 500, 600 degreeC by nitrogen atmosphere, and performed the heat processing hold | maintained for 20 minutes. The crystal grain size D of α-Fe was evaluated together with the crystallization rate of the metal powder after the heat treatment.

なお、結晶化率は上述のWPPD法によって算出し、結晶粒径D(nm)は、α−Fe(110)面によるX線回折ピークの半価幅βからシェラーの式D=0.9λ/βcosθを用いて算出した。ここで、λはX線の波長(nm)、θはα−Fe(110)面の回折角であり、2θ=52.505°である。   The crystallization rate is calculated by the above WPPD method, and the crystal grain size D (nm) is calculated from Scherrer's formula D = 0.9λ / from the half-value width β of the X-ray diffraction peak by the α-Fe (110) plane. It calculated using (beta) cos (theta). Here, λ is the X-ray wavelength (nm), θ is the diffraction angle of the α-Fe (110) plane, and 2θ = 52.505 °.

各測定結果を表1と表2に示す。   Tables 1 and 2 show the measurement results.

Figure 2017031463
Figure 2017031463

Figure 2017031463
Figure 2017031463

本発明の製造条件を外れ、回転ディスク衝突時の液滴の温度が(凝固開始温度−5℃)であった比較例(粉末No.1−4)、および回転ディスク衝突時の液滴の温度が(凝固開始温度+55℃)であった比較例(粉末No.1−5)の非晶質化率が82〜75%であるに対し、本発明例は、非晶質化率がいずれも85%を超える値であり、本発明法により非晶質化率の高い水アトマイズ金属粉末が製造できることが確認できた。   The comparative example (powder No. 1-4) in which the temperature of the droplet at the time of collision with the rotating disk was (solidification start temperature −5 ° C.) outside the production conditions of the present invention, and the temperature of the droplet at the time of collision with the rotating disk Of the comparative example (powder No. 1-5) having a (solidification start temperature + 55 ° C.) was 82 to 75%, whereas the examples of the present invention had both the amorphization rate It was a value exceeding 85%, and it was confirmed that a water atomized metal powder having a high amorphization rate can be produced by the method of the present invention.

また、表2に示すように、熱処理温度が400℃または500℃の場合、いずれの金属粉末も熱処理後の結晶化率が41〜46%、α−Feの結晶粒径Dが19〜24nmであったのに対し、熱処理温度が300℃では結晶化率が8%以下であり、熱処理温度が600℃ではα−Feの結晶粒径Dが48nm以上と粗大であった。   Moreover, as shown in Table 2, when the heat treatment temperature is 400 ° C. or 500 ° C., all the metal powders have a crystallization rate after heat treatment of 41 to 46% and an α-Fe crystal grain size D of 19 to 24 nm. In contrast, when the heat treatment temperature was 300 ° C., the crystallization rate was 8% or less, and when the heat treatment temperature was 600 ° C., the α-Fe crystal grain size D was as coarse as 48 nm or more.

1 溶解炉
2 溶融金属
3 噴霧槽
4 溶融金属保持容器
5 溶湯ノズル
6 溶融金属流
7 高圧水噴射ノズル
8 高圧水
9 液滴
10 回転ディスク
11 水アトマイズ金属粉末
12 噴霧槽底
13 回収バルブ
14 アトマイズポイント
15 送液口
DESCRIPTION OF SYMBOLS 1 Melting furnace 2 Molten metal 3 Spraying tank 4 Molten metal holding container 5 Molten metal nozzle 6 Molten metal flow 7 High pressure water injection nozzle 8 High pressure water 9 Droplet 10 Rotating disk 11 Water atomized metal powder 12 Spray tank bottom 13 Recovery valve 14 Atomizing point 15 Liquid feeding port

Claims (8)

落下する溶融金属流に高圧水を噴射し、該溶融金属流を分断して水アトマイズ金属粉末とする水アトマイズ金属粉末の製造方法において、前記分断され落下途中の溶融金属の液滴を該液滴の凝固開始温度〜凝固開始温度+50℃の範囲内の温度となる位置で回転ディスクに衝突させることを特徴とする水アトマイズ金属粉末の製造方法。   In the method for producing water atomized metal powder, high pressure water is sprayed onto a falling molten metal stream, and the molten metal stream is divided to form water atomized metal powder. A method for producing a water atomized metal powder characterized by causing the rotating disk to collide with a rotating disk at a position within a range of the solidification start temperature to the solidification start temperature + 50 ° C. 前記回転ディスクは、該回転ディスクに衝突する際の前記液滴の落下速度以上の周速で回転させることを特徴とする請求項1に記載の水アトマイズ金属粉末の製造方法。   The method for producing water atomized metal powder according to claim 1, wherein the rotating disk is rotated at a peripheral speed equal to or higher than a dropping speed of the droplet when colliding with the rotating disk. 前記回転ディスクの表面上に、冷媒液による冷媒膜を形成することを特徴とする請求項1または2に記載の水アトマイズ金属粉末の製造方法。   The method for producing water atomized metal powder according to claim 1, wherein a refrigerant film is formed by a refrigerant liquid on a surface of the rotating disk. 前記高圧水の流量と前記溶融金属流の流量との比率が5以上であることを特徴とする請求項1〜3のいずれかに記載の水アトマイズ金属粉末の製造方法。   The ratio of the flow volume of the said high pressure water and the flow volume of the said molten metal flow is 5 or more, The manufacturing method of the water atomized metal powder in any one of Claims 1-3 characterized by the above-mentioned. 前記溶融金属が、Fe基軟磁性合金組成またはFeの一部をNiおよび/またはCoで置換されたFe基軟磁性合金組成で、前記FeあるいはFe、Ni、Coの合計量であるFe系元素比率が82.5at%超え86at%未満である合金組成を有することを特徴とする請求項1ないし4のいずれかに記載の水アトマイズ金属粉末の製造方法。   The molten metal is an Fe-based soft magnetic alloy composition or an Fe-based soft magnetic alloy composition in which a part of Fe is replaced with Ni and / or Co, and is an Fe-based element that is the total amount of Fe or Fe, Ni, and Co The method for producing a water atomized metal powder according to any one of claims 1 to 4, wherein the composition has an alloy composition in which the ratio is greater than 82.5 at% and less than 86 at%. 前記水アトマイズ金属粉末を、さらに400〜500℃の範囲内の温度に加熱する熱処理を施すことを特徴とする請求項5に記載の水アトマイズ金属粉末の製造方法。   The method for producing a water atomized metal powder according to claim 5, wherein the water atomized metal powder is further subjected to a heat treatment for heating to a temperature within a range of 400 to 500 ° C. 請求項5に記載の水アトマイズ金属粉末の製造方法で製造されてなり、平均粒径:5μm以上でかつ非晶質率が85%以上であることを特徴とする水アトマイズFe基軟磁性合金粉末。   6. A water atomized Fe-based soft magnetic alloy powder produced by the method for producing a water atomized metal powder according to claim 5, having an average particle size of 5 μm or more and an amorphous ratio of 85% or more. . 請求項6に記載の水アトマイズ金属粉末の製造方法で製造されてなる水アトマイズ金属粉末であって、ナノ結晶構造を有することを特徴とする水アトマイズFe基軟磁性合金粉末。   A water atomized Fe-based soft magnetic alloy powder, which is a water atomized metal powder produced by the method for producing a water atomized metal powder according to claim 6 and having a nanocrystal structure.
JP2015152129A 2015-07-31 2015-07-31 Method for producing water atomized metal powder Active JP6372441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015152129A JP6372441B2 (en) 2015-07-31 2015-07-31 Method for producing water atomized metal powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015152129A JP6372441B2 (en) 2015-07-31 2015-07-31 Method for producing water atomized metal powder

Publications (2)

Publication Number Publication Date
JP2017031463A true JP2017031463A (en) 2017-02-09
JP6372441B2 JP6372441B2 (en) 2018-08-15

Family

ID=57987779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015152129A Active JP6372441B2 (en) 2015-07-31 2015-07-31 Method for producing water atomized metal powder

Country Status (1)

Country Link
JP (1) JP6372441B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018137306A (en) * 2017-02-21 2018-08-30 株式会社トーキン Soft magnetic powder, magnetic part and powder-compact magnetic core
CN111558723A (en) * 2020-06-24 2020-08-21 湖南天际智慧材料科技有限公司 Device and method for rapidly producing amorphous powder by water atomization method
CN112170857A (en) * 2020-09-30 2021-01-05 宁波中科毕普拉斯新材料科技有限公司 Preparation method of fine alloy powder
CN112536444A (en) * 2020-12-26 2021-03-23 福建德尔诺新材料科技有限公司 Method for preparing high-chromium micro-magnetic metal spherical powder
CN112584950A (en) * 2018-07-03 2021-03-30 格勒诺布尔综合理工学院 Granulation method and apparatus
CN113828781A (en) * 2020-06-24 2021-12-24 湖南天际智慧材料科技有限公司 Device and method for producing amorphous powder by water atomization method
CN113828783A (en) * 2020-06-24 2021-12-24 湖南天际智慧材料科技有限公司 Rapid cooling production equipment and method for amorphous powder
CN113828780A (en) * 2020-06-24 2021-12-24 湖南天际智慧材料科技有限公司 Secondary quenching type amorphous powder production equipment and method thereof
CN113828782A (en) * 2020-06-24 2021-12-24 湖南天际智慧材料科技有限公司 Production method and equipment of amorphous material
AT524161A1 (en) * 2020-09-08 2022-03-15 Rimmer Dipl Ing Dr Karl PREPARATION OF A METAL POWDER
CN117884643A (en) * 2024-03-11 2024-04-16 四川力泓电子科技有限公司 Copper powder, copper powder preparation method and application thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55128507A (en) * 1979-03-23 1980-10-04 Allied Chem Manufacture of glassy metal powder and its apparatus
JPS6024303A (en) * 1983-07-19 1985-02-07 Nippon Kinzoku Kk Production of amorphous alloy powder
JPH0463206A (en) * 1990-06-29 1992-02-28 Nisshin Steel Co Ltd High pressure water injecting pipe for manufacturing metal powder and manufacture of metal powder having low apparent density
JPH08209207A (en) * 1995-02-02 1996-08-13 Masumoto Takeshi Production of metal powder
JPH11140512A (en) * 1997-11-05 1999-05-25 Akihisa Inoue Manufacture of flat metallic powder and its device
JP2010150665A (en) * 2008-08-22 2010-07-08 Teruhiro Makino Alloy composition, fe-based nano-crystalline alloy and production method therefor, and magnetic component
JP2012136770A (en) * 2010-12-10 2012-07-19 Nec Tokin Corp Fe-BASED NANO-CRYSTALLINE ALLOY POWDER AND METHOD FOR PRODUCING THE SAME, AND DUST CORE AND METHOD FOR MANUFACTURING THE SAME

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55128507A (en) * 1979-03-23 1980-10-04 Allied Chem Manufacture of glassy metal powder and its apparatus
JPS6024303A (en) * 1983-07-19 1985-02-07 Nippon Kinzoku Kk Production of amorphous alloy powder
JPH0463206A (en) * 1990-06-29 1992-02-28 Nisshin Steel Co Ltd High pressure water injecting pipe for manufacturing metal powder and manufacture of metal powder having low apparent density
JPH08209207A (en) * 1995-02-02 1996-08-13 Masumoto Takeshi Production of metal powder
JPH11140512A (en) * 1997-11-05 1999-05-25 Akihisa Inoue Manufacture of flat metallic powder and its device
JP2010150665A (en) * 2008-08-22 2010-07-08 Teruhiro Makino Alloy composition, fe-based nano-crystalline alloy and production method therefor, and magnetic component
JP2012136770A (en) * 2010-12-10 2012-07-19 Nec Tokin Corp Fe-BASED NANO-CRYSTALLINE ALLOY POWDER AND METHOD FOR PRODUCING THE SAME, AND DUST CORE AND METHOD FOR MANUFACTURING THE SAME

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018137306A (en) * 2017-02-21 2018-08-30 株式会社トーキン Soft magnetic powder, magnetic part and powder-compact magnetic core
CN112584950B (en) * 2018-07-03 2023-10-10 格勒诺布尔综合理工学院 Granulation method and apparatus
CN112584950A (en) * 2018-07-03 2021-03-30 格勒诺布尔综合理工学院 Granulation method and apparatus
CN113828782A (en) * 2020-06-24 2021-12-24 湖南天际智慧材料科技有限公司 Production method and equipment of amorphous material
CN111558723A (en) * 2020-06-24 2020-08-21 湖南天际智慧材料科技有限公司 Device and method for rapidly producing amorphous powder by water atomization method
CN113828781A (en) * 2020-06-24 2021-12-24 湖南天际智慧材料科技有限公司 Device and method for producing amorphous powder by water atomization method
CN113828783A (en) * 2020-06-24 2021-12-24 湖南天际智慧材料科技有限公司 Rapid cooling production equipment and method for amorphous powder
CN113828780A (en) * 2020-06-24 2021-12-24 湖南天际智慧材料科技有限公司 Secondary quenching type amorphous powder production equipment and method thereof
AT524161A1 (en) * 2020-09-08 2022-03-15 Rimmer Dipl Ing Dr Karl PREPARATION OF A METAL POWDER
AT524161B1 (en) * 2020-09-08 2023-04-15 Karl Rimmer Dipl Ing Dr PREPARATION OF A METAL POWDER
CN112170857A (en) * 2020-09-30 2021-01-05 宁波中科毕普拉斯新材料科技有限公司 Preparation method of fine alloy powder
CN112536444A (en) * 2020-12-26 2021-03-23 福建德尔诺新材料科技有限公司 Method for preparing high-chromium micro-magnetic metal spherical powder
CN117884643A (en) * 2024-03-11 2024-04-16 四川力泓电子科技有限公司 Copper powder, copper powder preparation method and application thereof
CN117884643B (en) * 2024-03-11 2024-05-17 四川力泓电子科技有限公司 Copper powder, copper powder preparation method and application thereof

Also Published As

Publication number Publication date
JP6372441B2 (en) 2018-08-15

Similar Documents

Publication Publication Date Title
JP6372441B2 (en) Method for producing water atomized metal powder
JP6372440B2 (en) Method for producing water atomized metal powder
JP6266636B2 (en) Method for producing atomized metal powder
JP6299873B2 (en) Method for producing water atomized metal powder
JP6372442B2 (en) Method for producing water atomized metal powder
JP2020105593A (en) Method for producing atomized metal powder
JP6721138B1 (en) Method for producing water atomized metal powder
JP6406156B2 (en) Method for producing water atomized metal powder
JP2018104787A (en) Production method and production apparatus for atomized metal powder
JP6575723B1 (en) Method for producing atomized metal powder
JP6721137B1 (en) Method for producing water atomized metal powder
JP6372443B2 (en) Method for producing water atomized metal powder
JP6881549B2 (en) Manufacturing method of soft magnetic iron powder
EP4077755A1 (en) Metal powder for additive manufacturing
WO2023119896A1 (en) Production method for water-atomized metal powder, and production device for water-atomized metal powder
JP7276637B1 (en) Method for producing water-atomized metal powder and apparatus for producing water-atomized metal powder
JP6996673B1 (en) How to make water atomized metal powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180702

R150 Certificate of patent or registration of utility model

Ref document number: 6372441

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250