WO2023119896A1 - Production method for water-atomized metal powder, and production device for water-atomized metal powder - Google Patents

Production method for water-atomized metal powder, and production device for water-atomized metal powder Download PDF

Info

Publication number
WO2023119896A1
WO2023119896A1 PCT/JP2022/040910 JP2022040910W WO2023119896A1 WO 2023119896 A1 WO2023119896 A1 WO 2023119896A1 JP 2022040910 W JP2022040910 W JP 2022040910W WO 2023119896 A1 WO2023119896 A1 WO 2023119896A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling water
metal powder
water
molten metal
metal flow
Prior art date
Application number
PCT/JP2022/040910
Other languages
French (fr)
Japanese (ja)
Inventor
誠 中世古
繁 宇波
拓也 高下
尚貴 山本
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2023505679A priority Critical patent/JP7276637B1/en
Publication of WO2023119896A1 publication Critical patent/WO2023119896A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/04Amorphous alloys with nickel or cobalt as the major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals

Definitions

  • the present invention relates to a method for producing water-atomized metal powder and an apparatus for producing water-atomized metal powder.
  • the total content of Fe, Ni and Co is 76.0 atomic % or more and 86.0 atomic % or less. It is suitable for producing soft magnetic metal powders with high loading density, high degree of circularity, and high degree of amorphization.
  • HV hybrid vehicles
  • EV electric vehicles
  • FCV fuel cell vehicles
  • the low core loss contributes to the low loss and high efficiency of the reactor or motor core. It is also important for For this purpose, it is important that the atomized metal powder has a high degree of amorphization.
  • the core loss is often affected by the shape of the atomized metal powder. That is, the core loss tends to decrease as the shape of the atomized metal powder becomes more spherical. Furthermore, there is a close relationship between spheroidization and apparent density, and the higher the apparent density, the more spherical the shape of the metal powder. In recent years, atomized metal powders used as raw materials for reactors and motor cores are required to have an apparent density of 3.5 g/cm 3 or more.
  • Patent Document 1 The method shown in Patent Document 1 has been proposed as a means of amorphizing metal powder and controlling the shape by atomization.
  • Patent Document 1 a molten metal flow is divided by a gas jet with an injection pressure of 15 to 70 kg/cm 2 , and diffused while being dropped over a distance of 10 mm or more and 200 mm or less, and plunged into a water flow at an incident angle of 30 to 90°. discloses a method of obtaining metal powders.
  • an amorphous powder cannot be obtained at an incident angle of less than 30°, and when the incident angle exceeds 90°, powder particles tend to have a low circularity shape such as an oblate ellipsoid.
  • Patent Literature 1 discloses a gas atomization method in which a molten metal flow is first divided by gas.
  • the flow of molten steel is divided by a water jet injected from a nozzle or the like to make powdered metal (metal powder), and the water jet also cools the metal powder to obtain atomized metal powder.
  • the gas atomization method uses an inert gas injected from a nozzle. In the case of the gas atomization method, since the ability to cool molten steel is low, equipment for separately cooling the molten steel after atomization may be provided.
  • the water atomization method uses only water to produce metal powder, and thus has a high production capacity and a low cost.
  • the metal powder produced by the water atomization method (water-atomized metal powder) has an irregular shape. Since the molten steel solidifies as it is, the apparent density becomes less than 3.5 g/cm 3 .
  • the gas atomization method requires the use of a large amount of inert gas and is inferior to the water atomization method in the ability to divide the molten steel during atomization.
  • the metal powder produced by the gas atomization method takes a longer time from division to cooling than by the water atomization method. Therefore, since it is cooled after it becomes spherical due to the surface tension of the molten steel before it solidifies after being cut, the shape tends to be closer to a sphere and the apparent density is higher than that of the water-atomized metal powder.
  • Patent Document 2 water is sprayed obliquely downward from a spray nozzle in a V-shaped crossing, and molten steel is dropped in the center of the crossing to atomize and sphere the molten steel. disclosed.
  • a water atomization method is adopted, water sprayed from a spray nozzle is crossed in a V-shape, and molten steel is dropped toward the intersection to obtain fine metal powder.
  • This technique is a good means of obtaining fine metal powder, but since the water is dispersed rather than concentrated at the center point, part of the water does not contribute to the division or cooling of the molten steel at all. Therefore, this method is not suitable for increasing the cooling capacity. Therefore, the metal powder obtained by this method has a problem that it is difficult to make it amorphous.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a low-cost, high-productivity water atomization method in which the total content of Fe, Ni and Co is 76.0 at% or more, Provided is a method and apparatus for producing a water-atomized metal powder capable of producing a metal powder having an average particle diameter (D 50 ) of 50 ⁇ m or less, a high degree of amorphousness, a high apparent density, and a high degree of circularity. to provide.
  • D 50 average particle diameter
  • the inventors have conducted extensive research to solve the above problems.
  • the nozzle tip is arranged circumferentially and at a downward mounting angle so that the cooling water concentrates in the same place where the molten steel falls vertically.
  • the inventors of the present invention have determined the horizontal distance E (hereinafter also referred to as the eccentricity E) between the position where the cooling water collides with the molten metal flow and the center point where the cooling water concentrates, and the injection distance of the cooling water. It has been found that it is effective to set the ratio (E/L) of the vertical component (the vertical distance from the tip of the cooling water nozzle to the center point) L to 0.05 to 0.20.
  • the L is preferably 300 mm or less, more preferably 250 mm or less.
  • perpendicular means perpendicular to the horizontal plane (that is, vertical).
  • the present inventors have found that it is preferable to set the ratio of the amount of cooling water to the amount of falling molten metal flow (water/molten steel ratio) to 50 or more.
  • the gist of the present invention is as follows. [1] A method for producing a water-atomized metal powder by injecting cooling water against a falling molten metal flow and causing the molten metal flow and the cooling water to collide to divide the molten metal flow into metal powder. hand, the cooling water is jetted downward from the perimeter of the molten metal flow toward the molten metal flow so as to converge at a central point; The molten metal flow contacts the cooling water at a position separated by an eccentricity E in the horizontal distance from the center point, The amount of eccentricity E is in the relationship between the vertical distance L from the tip of the cooling water nozzle that injects the cooling water to the center point, and the value of E/L is in the range of 0.05 to 0.20.
  • a method for producing atomized metal powder [2]
  • the injection pressure of the cooling water is 10 MPa or more, and F/M, which is the ratio of the amount F (kg/min) of the cooling water to the falling amount M (kg/min) of the molten metal flow, is 50.
  • the metal powder has a total content of Fe, Ni and Co in an atomic fraction of 76.0 at % or more and 86.0 at % or less, an apparent density of 3.5 g/cm 3 or more, and a circular shape.
  • a plurality of cooling water nozzles for injecting the cooling water toward the molten metal flow downward from the periphery of the molten metal flow so as to converge at a central point; a molten steel nozzle that supplies the molten metal flow so as to contact the cooling water at a position separated by an eccentricity E in the horizontal distance from the center point, Manufacture of water-atomized metal powder, wherein the amount of eccentricity E is in a relationship between the vertical distance L from the tip of the cooling water nozzle to the center point, and the value of E/L is in the range of 0.05 to 0.20.
  • the amount of eccentricity E is in a relationship between the vertical distance L from the tip of the cooling water nozzle to the center point, and the value of E/L is in the range of 0.05 to 0.20.
  • the total content of Fe, Ni and Co is 76.0 at% or more, the average particle diameter (D 50 ) is 50 ⁇ m or less, the degree of amorphization is 95% or more, and the apparent density is of 3.5 g/cm 3 or more and a circularity of 0.90 or more can be produced by the water atomization method.
  • FIG. 1 is a diagram schematically showing a manufacturing apparatus for water-atomized metal powder according to an embodiment of the present invention, and is an example of a manufacturing apparatus in which the falling position of the molten metal stream is eccentric by shifting the molten steel nozzle in the horizontal direction. is shown.
  • FIG. 2 is a diagram schematically showing a production apparatus for water-atomized metal powder according to another embodiment of the present invention, showing an example of an eccentric production apparatus in which the molten steel nozzle is arranged obliquely with respect to the vertical direction. It is a thing.
  • FIG. 3 is a diagram schematically showing a configuration example of a production facility for water-atomized metal powder.
  • cooling water is jetted against a falling molten metal flow, and the molten metal flow collides with the cooling water to divide the molten metal flow into metal powder. It is a method for producing a water-atomized metal powder. Cooling water is jetted toward the falling molten metal stream from the perimeter of the molten metal stream downwards to converge at a central point.
  • the molten metal flow is supplied so as to come into contact with the cooling water at a position eccentric to the central point where the cooling water concentrates by the amount of eccentricity E.
  • the eccentricity E is related to the vertical component of the cooling water injection distance (the vertical distance from the tip of the cooling water nozzle to the center point) L, and the value of E/L is in the range of 0.05 to 0.20. is set to be
  • the value of E/L is preferably 0.07 or more. Also, the value of E/L is preferably 0.12 or less.
  • the injection pressure of the cooling water to be injected is 10 MPa or more, and F/M, which is the ratio of the amount F (kg/min) of the cooling water to the falling amount M (kg/min) of the molten metal flow, is 50 or more. is preferable, and may be 60 or more.
  • the total content of Fe, Ni and Co is 76.0 at% or more and 86.0 at% or less in terms of atomic fraction, and the apparent density is 3.5 g/cm 3 or more. , a circularity of 0.90 or more, an average particle diameter (D 50 ) of 50 ⁇ m or less, and an amorphization degree of 95% or more.
  • FIG. 1 is a diagram schematically showing a water-atomized metal powder manufacturing apparatus (hereinafter also referred to as an atomizing apparatus) according to this embodiment.
  • the molten metal stream is dropped at an eccentric position by horizontally shifting the molten steel nozzle with respect to the central point where the cooling water concentrates.
  • FIG. 2 is a diagram schematically showing an atomizing device according to another embodiment of the present invention.
  • the molten steel nozzle is arranged obliquely with respect to the vertical direction, so that the drop position of the molten metal flow is eccentric with respect to the central point where the cooling water concentrates.
  • FIG. 3 is a diagram schematically showing the configuration of water-atomized metal powder production equipment including an atomizer.
  • the atomizing device 14 shown in FIG. 1 has a tundish 1, a molten steel nozzle 3, a nozzle header 4, cooling water nozzles (spray nozzles) 5A and 5B, a water pipe 18 from a high pressure pump, and a chamber 19.
  • the tundish 1 is a container-shaped member into which the molten steel 2 melted in the melting furnace is poured.
  • an opening for connecting a molten steel nozzle 3 is formed in the bottom of the tundish 1 .
  • the composition of the manufactured metal powder 9 can be adjusted.
  • the total content of Fe, Ni and Co is 76.0 at% or more and 86.0 at% or less in atomic fraction, and the average particle diameter (D 50 ) is 50 ⁇ m or less.
  • the metal powder 9 preferably contains at least one selected from Si, P and B. Alternatively, it is also preferable to further contain Cu. In order to produce the metal powder having the above composition, the composition of the molten steel 2 should be adjusted within the above range.
  • the molten steel nozzle 3 is a cylindrical body connected to the opening at the bottom of the tundish 1. Molten steel 2 passes through the inside of the molten steel nozzle 3 . If the length of the molten steel nozzle 3 is long, the temperature of the molten steel 2 drops while passing through it. Therefore, the melting temperature in the melting furnace must be determined in anticipation of the temperature drop at the molten steel nozzle 3 .
  • the length of the molten steel nozzle 3 is determined according to the thickness of the nozzle header 4 . If the injection pressure of the cooling water is increased, the thickness of the nozzle header 4 must be increased in relation to the pressure resistance, so the length of the molten steel nozzle 3 must also be changed.
  • the amount of molten steel that falls per unit time (the amount of molten metal flow that falls) M (kg/min) can be adjusted by the injection hole diameter of the molten steel nozzle 3 .
  • the spray nozzles 5A and 5B are suitable nozzles for discharging the cooling water 7 to collide with the molten metal flow 6.
  • the spray nozzles 5A and 5B inject cooling water 7 against the molten metal flow 6 falling through the inside of the molten steel nozzle 3, causing the molten metal flow 6 and the cooling water 7 to collide with each other. As a result, the molten metal flow 6 is divided and the metal powder 9 is obtained.
  • the spray nozzles 5A, 5B spray cooling water 7 toward the molten metal flow 6 downward from the periphery of the molten metal flow 6 so as to converge at a central point 11 .
  • the molten steel nozzle 3 is arranged so that its axial direction is along the vertical direction.
  • the molten steel nozzle 3 supplies the molten metal stream 6 so as to contact the cooling water 7 at a position separated by the eccentricity E in the horizontal distance from the center point 11 .
  • the amount of eccentricity E is such that the value of E/L is in the range of 0.05 to 0.20 in relation to the vertical distance L from the tip of the cooling water nozzle (spray nozzle) to the center point 11.
  • the plurality of cooling water nozzles are arranged so that the heights of the tips of the nozzles are the same.
  • the water/molten steel ratio (F/M) is the ratio of the amount F (kg/min) of the cooling water 7 discharged from the discharge ports of the spray nozzles 5A and 5B to the amount M (kg/min) of the molten metal flow 6. and In this embodiment, it is preferable to adjust the water/molten steel ratio (F/M) to 50 or more.
  • the amount F of cooling water is the total amount of cooling water discharged from all cooling water nozzles (spray nozzles).
  • the water/molten steel ratio (F/M) is less than 50, the cooling rate is slow, and part or all of the metal powder tends to crystallize, so the desired degree of amorphization may not be obtained.
  • the water/molten steel ratio (F/M) is preferably 80 or higher.
  • the water/molten steel ratio (F/M) is more preferably 100 or more.
  • FIG. 2 is a diagram schematically showing an atomizing device according to another embodiment.
  • the atomizing device shown in FIG. 2 is an example of an eccentric manufacturing device in which the molten steel nozzle 3 (the axial direction of the molten steel nozzle 3) is obliquely arranged with respect to the vertical direction. 1 and 2 differ only in the arrangement angle of the molten steel nozzle 3, and the basic configuration is the same, so descriptions other than the molten steel nozzle 3 will be omitted.
  • FIG. 2 shows the amount of eccentricity E and the vertical distance from the tip of the cooling water nozzle to the central point where the cooling water concentrates (perpendicular to the cooling water injection distance) when the molten steel nozzle 3 is arranged obliquely to the vertical direction.
  • Component) L is shown.
  • the eccentricity E is the horizontal distance between the position where the cooling water collides with the molten metal flow and the central point where the cooling water concentrates.
  • the vertical component L of the cooling water injection distance is the vertical component of the distance from the tip of the cooling water nozzle 5 to the central point where the cooling water concentrates.
  • FIG. 3 is a schematic diagram showing a configuration example of a manufacturing facility for water-atomized metal powder.
  • the atomizer 14 an atomizer as shown in FIGS. 1 and 2 is used.
  • the cooling water temperature controller 16 is used to adjust the temperature in the cooling water tank 15, which is then sent to the cooling water high pressure pump 17, and from the cooling water high pressure pump 17 to the cooling water pipe (high pressure It is sent to the atomizer 14 through a water pipe 18 from the pump.
  • cooling water 7 is sprayed from cooling water nozzles (spray nozzles) 5 onto the falling molten metal flow 6 to divide the molten metal flow 6 into metal powder and cool the metal powder. to produce metal powder.
  • cooling water nozzles spray nozzles
  • FIG. 3 Although only one cooling water high-pressure pump 17 is shown in FIG. 3, two or more cooling water nozzles (spray nozzles) may be provided for each cooling water nozzle (spray nozzle).
  • a plurality of cooling water nozzles (spray nozzles) 5 are arranged in a circle when viewed from above. Cooling water is sprayed toward it.
  • the center point 11 is the position where the axial straight lines (axes) of the cooling water nozzles converge. 1 to 3, of the plurality of cooling water nozzles, only two cooling water nozzles (spray nozzles) in the 3 o'clock and 9 o'clock directions when viewed from above are illustrated.
  • the molten metal flow 6 is determined by the horizontal distance (eccentricity E) between the collision position of the molten metal flow 6 and the cooling water and the center point 11 where the cooling water concentrates, which is the injection distance of the cooling water.
  • E horizontal distance between the collision position of the molten metal flow 6 and the cooling water and the center point 11 where the cooling water concentrates
  • the position where the cooling water concentrates so that the value of E/L is in the range of 0.05 to 0.20 in relation to the vertical component (vertical distance from the tip of the cooling water nozzle to the center point) L , to a position shifted horizontally from the center point 11 .
  • Circularity is obtained by taking approximately 5000 projected images of metal powder dispersed on a slide using a particle image analyzer (G3SE) manufactured by Morphologi, and binarizing each metal powder data of the projected image.
  • the value of the volume average value (C 50 ) obtained by image analysis was used. Specifically, the volume average value (C 50 ) is obtained as follows.
  • the projected area and peripheral length of each metal powder are measured.
  • the diameter of a circle having the same area as the projected area of each metal powder (equivalent circle diameter) is calculated, and the volume of a sphere having the same diameter as that diameter is calculated.
  • the circularity and volume of each metal powder can be obtained, and the volume frequency at each circularity can be calculated. Then, the circularities of all the metal powders subjected to image analysis are arranged in ascending order, and the circularity of the metal powder corresponding to 50% of the total volume of all the metal powders is taken as the volume average value (C 50 ).
  • the degree of amorphization After removing dust other than the metal powder from the obtained metal powder, the halo peak from the amorphous phase and the diffraction peak from the crystal are measured by the X-ray diffraction method, and the WPPD method is used. Calculated by The "WPPD method" here is an abbreviation for Whole-powder-pattern decomposition method, and is described in Hideho Toratani: Journal of the Crystallographic Society of Japan, vol. 30 (1988), No. There is a detailed explanation on pages 4, 253-258.
  • the average particle size ( D50 ) is calculated by an integration method. It is also possible to use laser diffraction/scattering particle size distribution measurement.
  • the average particle size (D 50 ) is the particle size (median size) of 50% cumulative volume-based particles in the particle size distribution.
  • the total content of Fe, Ni and Co is 76.0 at% or more and 86.0 at% or less in terms of atomic fraction
  • the apparent density is 3.5 g/cm 3 or more
  • the circularity is A metal powder having an average particle diameter (D 50 ) of 0.90 or more, an average particle diameter (D 50 ) of 50 ⁇ m or less, and an amorphization degree of 95% or more can be obtained by a water atomization method.
  • nano-sized crystals precipitate when a member molded from the water-atomized metal powder obtained in the present invention is subjected to an appropriate heat treatment.
  • the water-atomized metal powder having a large total content of Fe, Ni, and Co obtained in the present invention is used as a raw material, a reactor or motor molded from the metal powder as a raw material can be appropriately heat-treated, It is possible to achieve both low loss and high magnetic flux density.
  • the manufacturing method of the present invention is applied, even if the Fe-based component concentration is 76.0 at % or more, the apparent density is 3.5 g/cm 3 or more and the circularity (C 50 ) is 0.5 g/cm 3 or more. 90 or more, an average particle diameter (D 50 ) of 50 ⁇ m or less, and a degree of amorphization of 95% or more.
  • the metal powder having a large total content of Fe, Ni, and Co obtained in the present invention is used as a raw material
  • a reactor or motor molded from the metal powder as a raw material is subjected to an appropriate heat treatment to reduce loss. It is possible to achieve both high strength and high magnetic flux density.
  • metal powder was produced using the atomizing apparatus shown in FIGS. 1 and 2 and the atomizing apparatus and manufacturing equipment having the same configuration as the water-atomized metal powder manufacturing equipment shown in FIG. At that time, the invention examples and comparative examples of the present invention were carried out by changing the atomization conditions.
  • the drop amount of the molten metal flow was set to 4-5 kg/min.
  • the atomizer was equipped with 12 cooling water nozzles (spray nozzles).
  • the cooling water nozzles are arranged on a plane perpendicular to the falling direction (vertical direction) of the molten metal flow at equal intervals in a circumferential manner when viewed from above, and the cooling water trajectory is discharged toward the molten metal flow.
  • the formed convergence angle ⁇ was 24° (see angle ⁇ in Figure 1). All of the cooling water nozzles were flat spray nozzles in which the sprayed water spreads in a fan shape.
  • the amount of cooling water (total amount of cooling water injected from 12 cooling water nozzles) F was set to 250 kg/min, and the injection pressure of cooling water injected from each cooling water nozzle was set to 15 MPa.
  • raw materials molten steel adjusted to have the following composition system were prepared.
  • a soft magnetic material having the following composition was prepared.
  • “%” means “at %” (atomic fraction).
  • (i) to (v) are Fe-based soft magnetic raw materials,
  • (vi) is an Fe+Co-based soft magnetic material, and
  • (vii) is an Fe+Co+Ni-based soft magnetic material.
  • Tables 1 and 2 show raw material conditions, atomization conditions, and evaluation results of the produced metal powders of invention examples and comparative examples.
  • raw materials such as iron were placed in a high-frequency melting furnace and melted by applying high frequency to each component (i) to (vii). At that time, the melting temperature before atomization was in the range of 1500 to 1650°C. The higher the iron content, the higher the melting point and therefore the higher the melting temperature.
  • the high-frequency melting furnace was tilted to pour the molten steel into the tundish.
  • a molten steel nozzle with a predetermined hole diameter was installed at the bottom of the tundish, and the drop amount of the molten metal flow was adjusted to be in the range of 4 to 5 kg/min.
  • the atomization conditions in each example are the convergence angle ⁇ , the type and number of cooling water nozzles, the injection pressure of cooling water (injection pressure of cooling water injected from each cooling water nozzle), and the amount of cooling water. (Total amount of cooling water injected from 12 cooling water nozzles) was adjusted.
  • a type of nozzle a fan-shaped 15° spray is a cooling water nozzle (flat spray nozzle) in which the sprayed water spreads in a fan shape, and a flat spray in which the central angle (spread angle) of the fan shape is 15 °. It refers to using a nozzle.
  • the horizontally spreading flat spray was installed in the nozzle, the nozzle was installed so that the width spreading direction of the nozzle was horizontal.
  • the molten steel is dropped eccentrically (shifted) from the center of the atomized water sprayed in a downward cone (that is, the apex of the cone).
  • the eccentricity E (mm) which is the horizontal distance between the contact position of the molten metal flow and the cooling water and the center point where the cooling water concentrates, is the vertical component of the cooling water injection distance (cooling water nozzle In relation to the vertical distance L (mm) from the tip to the center point, the eccentricity was set so that E/L was in the range of 0.05 to 0.20.
  • the molten steel nozzle was arranged vertically as shown in FIG. 1.
  • the molten steel nozzle was arranged obliquely as shown in FIG. .
  • the apparent density was measured according to JIS Z 2504:2012.
  • Circularity is obtained by taking approximately 5,000 projection images of powder particles dispersed on a slide using a particle image analyzer (G3SE) manufactured by Morphologi, and binarizing each metal powder data of the projection images.
  • G3SE particle image analyzer
  • the value of the volume average value (C 50 ) obtained by image analysis was used.
  • the average particle size (D 50 ) was calculated by the integration method. Laser diffraction/scattering particle size distribution measurements were used.
  • the target values are an apparent density of 3.5 g/cm 3 or more, a circularity (C 50 ) of 0.90 or more, an average particle diameter (D 50 ) of 50 ⁇ m or less, and an amorphization degree of 95% or more. If all of the bulk density, circularity, average particle size and degree of amorphization reach the target values, it will be passed ( ⁇ ), and any of the apparent density, circularity, average particle size and degree of amorphization failed (x) if the target value was not reached.
  • E / L is in the range of 0.05 to 0.20, the total content of Fe, Ni and Co is 76.0 at% or more and 86.0 at% or less in atomic fraction, and the apparent density is 3 .5 g/cm 3 or more, a circularity of 0.90 or more, an average particle diameter (D 50 ) of 50 ⁇ m or less, and an amorphization degree of 95% or more. rice field.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

Provided are a production method and a production device for producing a water-atomized metal powder, whereby a metal powder having a degree of amorphization and having high apparent density and high circularity can be produced through a low cost, high-productivity water-atomizing method. In the method for producing a water-atomized metal powder, cooling water is jetted against a falling molten metal flow such that the molten metal flow and the cooling water collide, thereby dividing the molten metal flow into parts to form a metal powder. The cooling water is jetted downward from the perimeter of the molten metal flow and toward the falling molten metal flow so as to gather at a center point. The molten metal flow contacts the cooling water at a position separated at a horizontal distance from the center point by an eccentricity amount E. In the relationship between the eccentricity amount E and the vertical distance L from a leading end of a cooling water nozzle to the center point, the value of E/L is in the range of 0.05-0.20.

Description

水アトマイズ金属粉末の製造方法および水アトマイズ金属粉末の製造装置Method for producing water-atomized metal powder and apparatus for producing water-atomized metal powder
 本発明は、水アトマイズ金属粉末の製造方法および水アトマイズ金属粉末の製造装置に関するものである。本発明の水アトマイズ金属粉末の製造方法および水アトマイズ金属粉末の製造装置は、特に、Fe、Ni及びCoの合計含有量が原子分率で76.0at%以上86.0at%以下であり、見掛密度が高く、円形度が高く、非晶質化度が高い軟磁性金属粉末の製造に適する。 The present invention relates to a method for producing water-atomized metal powder and an apparatus for producing water-atomized metal powder. In the method for producing a water-atomized metal powder and the apparatus for producing a water-atomized metal powder according to the present invention, the total content of Fe, Ni and Co is 76.0 atomic % or more and 86.0 atomic % or less. It is suitable for producing soft magnetic metal powders with high loading density, high degree of circularity, and high degree of amorphization.
 ハイブリッド自動車(HV)、電気自動車(EV)及び燃料電池自動車(FCV)の生産台数が増加しており、それらの自動車に使用するリアクトルやモーターコアの低鉄損化、高効率化及び小型化が要望されている。 The production volume of hybrid vehicles (HV), electric vehicles (EV) and fuel cell vehicles (FCV) is increasing, and the reactors and motor cores used in these vehicles are required to have low iron loss, high efficiency and miniaturization. is requested.
 これらリアクトルやモーターコアは、これまでは電磁鋼板を薄くして積層させて製作されてきた。最近では、形状設計の自由度が高い金属粉末を圧縮成形することによって作製したモーターコアが注目されている。 Until now, these reactors and motor cores have been manufactured by laminating thin magnetic steel sheets. Recently, attention has been paid to motor cores manufactured by compression-molding metal powder, which has a high degree of freedom in shape design.
 リアクトルやモーターコアの低鉄損化のためには、原料として使用する金属粉末を非晶質化させることが有効であると考えられている。  In order to reduce the iron loss of reactors and motor cores, it is considered effective to make the metal powder used as a raw material amorphous.
 さらには、リアクトルやモーターの小型化・軽量化・高出力化のためには原料として使用する金属粉末の磁束密度を増大させる必要がある。そのためには、Fe、Ni及びCoの合計含有量を多くすることが重要であり、前記合計含有量が原子分率で76.0at%以上である非晶質化軟磁性金属粉末の要求が高まっている。 Furthermore, it is necessary to increase the magnetic flux density of the metal powder used as raw materials in order to make reactors and motors smaller, lighter, and more powerful. For this purpose, it is important to increase the total content of Fe, Ni and Co, and there is an increasing demand for an amorphous soft magnetic metal powder in which the total content is 76.0 atomic % or more in terms of atomic fraction. ing.
 また、金属粉末として、アトマイズ金属粉末(アトマイズ法により製造された金属粉末)を圧縮成形してリアクトルやモーターコアとして使用する際、コアロスが低いことが、前記リアクトルやモーターコアの低損失・高効率化のためにも重要である。このためには、アトマイズ金属粉末の非晶質化度が高いことが重要である。さらに、前記コアロスは、アトマイズ金属粉末の形状にも影響されることが多い。すなわちアトマイズ金属粉末の形状が球形化しているほどコアロスが低減する傾向にある。さらに球形化と見掛密度には密接な関係があり、見掛密度が高い程、金属粉末の形状は球形化する。近年、リアクトルやモーターコアの原料として使用されるアトマイズ金属粉末には、見掛密度3.5g/cm以上の特性が求められる。 In addition, when atomized metal powder (metal powder produced by the atomization method) is used as a reactor or motor core by compression molding as the metal powder, the low core loss contributes to the low loss and high efficiency of the reactor or motor core. It is also important for For this purpose, it is important that the atomized metal powder has a high degree of amorphization. Furthermore, the core loss is often affected by the shape of the atomized metal powder. That is, the core loss tends to decrease as the shape of the atomized metal powder becomes more spherical. Furthermore, there is a close relationship between spheroidization and apparent density, and the higher the apparent density, the more spherical the shape of the metal powder. In recent years, atomized metal powders used as raw materials for reactors and motor cores are required to have an apparent density of 3.5 g/cm 3 or more.
 以上から、リアクトルやモーターコアの原料として用いるアトマイズ金属粉末の特性として、以下の2点が求められている。
1)モーターの小型化・高性能化のため、Fe、Ni及びCoを高濃度で含有すること
2)低損失・高効率化のため、金属粉末の非晶質化度が高く、かつ見掛密度及び円形度が高いこと
さらに自動車のHV、EV及びFCVの増加に伴うアトマイズ金属粉末の需要増から、以下が求められている。
3)低コスト及び高生産性であること
From the above, the following two points are required as characteristics of the atomized metal powder used as a raw material for reactors and motor cores.
1) Fe, Ni, and Co should be contained at high concentrations for miniaturization and high performance of motors. Due to the high density and circularity, as well as the increasing demand for atomized metal powders due to the increase in HV, EV and FCV of automobiles, the following are required.
3) Low cost and high productivity
特開2001-64704号公報JP-A-2001-64704 特開2012-111993号公報JP 2012-111993 A
 アトマイズ法によって金属粉末の非晶質化と形状制御を行う手段として、特許文献1に示す方法が提案されている。 The method shown in Patent Document 1 has been proposed as a means of amorphizing metal powder and controlling the shape by atomization.
 特許文献1では、溶融金属流を噴射圧力15~70kg/cmのガスジェットで分断し、10mm以上200mm以下の距離を落下させながら拡散させて、水流に入射角30~90°で突入させることによって、金属粉末を得る方法が開示されている。また、特許文献1では、入射角が30°未満では非晶質粉末を得られず、入射角が90°超では偏平楕円体といった円形度の低い形状の粉末粒子となる傾向が見られる。 In Patent Document 1, a molten metal flow is divided by a gas jet with an injection pressure of 15 to 70 kg/cm 2 , and diffused while being dropped over a distance of 10 mm or more and 200 mm or less, and plunged into a water flow at an incident angle of 30 to 90°. discloses a method of obtaining metal powders. In addition, in Patent Document 1, an amorphous powder cannot be obtained at an incident angle of less than 30°, and when the incident angle exceeds 90°, powder particles tend to have a low circularity shape such as an oblate ellipsoid.
 ところで、アトマイズ法で溶融金属流を分断する方法としては、水アトマイズ法とガスアトマイズ法がある。水アトマイズ法は溶融金属流に冷却水を噴射して溶鋼を分断して金属粉末を得る方法で、ガスアトマイズ法は溶融金属流に不活性ガスを噴射する方法である。特許文献1では、最初に溶融金属流の分断をガスで行うガスアトマイズ法を開示している。 By the way, there are water atomization method and gas atomization method for dividing the molten metal flow by the atomization method. The water atomization method is a method of injecting cooling water into the molten metal flow to divide the molten steel to obtain metal powder, and the gas atomization method is a method of injecting an inert gas into the molten metal flow. Patent Literature 1 discloses a gas atomization method in which a molten metal flow is first divided by gas.
 水アトマイズ法では、ノズル等より噴射した水ジェットで溶鋼の流れを分断し、粉末状の金属(金属粉末)にするとともに、水ジェットで金属粉末の冷却も行ってアトマイズ金属粉末を得ている。一方、ガスアトマイズ法では、ノズルより噴射した不活性ガスを用いる。ガスアトマイズ法の場合、溶鋼を冷却する能力が低いので、アトマイズ後に別途冷却する設備を備える場合がある。 In the water atomization method, the flow of molten steel is divided by a water jet injected from a nozzle or the like to make powdered metal (metal powder), and the water jet also cools the metal powder to obtain atomized metal powder. On the other hand, the gas atomization method uses an inert gas injected from a nozzle. In the case of the gas atomization method, since the ability to cool molten steel is low, equipment for separately cooling the molten steel after atomization may be provided.
 金属粉末を製造する上では、水アトマイズ法はガスアトマイズ法に比べて、水のみを用いるので生産能力が高く、低コストである。ただし、水アトマイズ法によって製造された金属粉末(水アトマイズ金属粉末)は、不定形状であり、特に非晶質化された金属粉末を得ようとして分断と冷却を同時に行うと、分断されたときのままで溶鋼が凝固するため、見掛密度が3.5g/cm未満となる。 Compared to the gas atomization method, the water atomization method uses only water to produce metal powder, and thus has a high production capacity and a low cost. However, the metal powder produced by the water atomization method (water-atomized metal powder) has an irregular shape. Since the molten steel solidifies as it is, the apparent density becomes less than 3.5 g/cm 3 .
 一方、ガスアトマイズ法では、不活性ガスを大量に使用する必要があり、かつアトマイズする際の溶鋼を分断する能力は水アトマイズ法には劣る。ただし、ガスアトマイズ法によって製造された金属粉末は、分断から冷却までの時間が水アトマイズ法に比べて長い。そのため、分断してから凝固するまでに溶鋼の表面張力によって球形状になってから冷却されるため、形状は水アトマイズ金属粉末に比べて球に近く見掛密度が高い傾向にある。 On the other hand, the gas atomization method requires the use of a large amount of inert gas and is inferior to the water atomization method in the ability to divide the molten steel during atomization. However, the metal powder produced by the gas atomization method takes a longer time from division to cooling than by the water atomization method. Therefore, since it is cooled after it becomes spherical due to the surface tension of the molten steel before it solidifies after being cut, the shape tends to be closer to a sphere and the apparent density is higher than that of the water-atomized metal powder.
 特許文献1に記載の技術では、ガスアトマイズ後の冷却で水の噴射角度(入射角度)を調整することにより、金属粉末の球状化と非晶質化を両立している。しかし、上記の通り、ガスアトマイズ法は生産性が低く、大量の高圧不活性ガスを使用するために製造コストが高いことが課題である。さらに、ガスアトマイズ法で製造した金属粉末は、ガスアトマイズ時における分断エネルギーが水アトマイズに比べて小さいため、一般的に平均粒子径(D50)が50μm超と大きくなる傾向にある。 In the technique described in Patent Document 1, by adjusting the injection angle (incidence angle) of water in cooling after gas atomization, both spheroidization and amorphization of the metal powder are achieved. However, as described above, the gas atomization method has problems of low productivity and high production cost due to the use of a large amount of high-pressure inert gas. Furthermore, the metal powder produced by the gas atomization method generally tends to have a large average particle size (D 50 ) of more than 50 μm because the breaking energy during gas atomization is smaller than that in water atomization.
 この点、特許文献2では、スプレーノズルから水を斜め下向きにV字状に交差させて噴射し、その交差している中央部に溶鋼を落下させて、溶鋼を微粒化して球形化する技術が開示されている。特許文献2に記載の技術では、水アトマイズ法を採用し、スプレーノズルから噴射する水をV字状に交差させ、その交差分に向かって溶鋼を落下させることにより、微粒の金属粉末を得ている。この技術は、微粒の金属粉末を得るには良い手段であるが、水を中心点に集中させずに分散させているため、一部の水は溶鋼の分断や冷却に全く寄与しない。そのため、この方法では冷却能力を上げることに不向きである。そのため、この方法で得られた金属粉末は、非晶質化しにくいという問題がある。 In this regard, in Patent Document 2, water is sprayed obliquely downward from a spray nozzle in a V-shaped crossing, and molten steel is dropped in the center of the crossing to atomize and sphere the molten steel. disclosed. In the technique described in Patent Document 2, a water atomization method is adopted, water sprayed from a spray nozzle is crossed in a V-shape, and molten steel is dropped toward the intersection to obtain fine metal powder. there is This technique is a good means of obtaining fine metal powder, but since the water is dispersed rather than concentrated at the center point, part of the water does not contribute to the division or cooling of the molten steel at all. Therefore, this method is not suitable for increasing the cooling capacity. Therefore, the metal powder obtained by this method has a problem that it is difficult to make it amorphous.
 本発明は上記課題を解決するためになされたものであり、その目的は、低コストで生産性の高い水アトマイズ法で、Fe、Ni及びCoの合計含有量が76.0at%以上であり、平均粒子径(D50)が50μm以下であり、高い非晶質化度を有し、高い見掛密度および高い円形度を有する金属粉末を製造可能な水アトマイズ金属粉末の製造方法および製造装置を提供することにある。 The present invention has been made to solve the above problems, and an object of the present invention is to provide a low-cost, high-productivity water atomization method in which the total content of Fe, Ni and Co is 76.0 at% or more, Provided is a method and apparatus for producing a water-atomized metal powder capable of producing a metal powder having an average particle diameter (D 50 ) of 50 µm or less, a high degree of amorphousness, a high apparent density, and a high degree of circularity. to provide.
 本発明者らは、上記課題を解決するために鋭意研究を重ねた。 The inventors have conducted extensive research to solve the above problems.
 通常、水アトマイズ法では、溶鋼が鉛直に落下してきたところに冷却水が同じ場所に集中するように、ノズルチップが円周状にかつ下向きに取付角度をもって配置される。 Normally, in the water atomization method, the nozzle tip is arranged circumferentially and at a downward mounting angle so that the cooling water concentrates in the same place where the molten steel falls vertically.
 通常は、その冷却水が集中する中央(中心点)にむかって溶融金属流を落下させるが、本発明者らは、図1に示すように、溶融金属流の落下位置を、冷却水が集中する中央(中心点)から外れた位置とすることが有効であることを知見した。 Usually, the molten metal flow is dropped toward the center (central point) where the cooling water concentrates. It was found that it is effective to set the position away from the center (center point) where the
 そして、本発明者らは、冷却水と溶融金属流が衝突する位置と、冷却水が集中する中心点との水平距離E(以下、偏心量Eともいう。)と、冷却水の噴射距離の垂直成分(冷却水ノズルの先端から前記中心点までの垂直距離)Lの比(E/L)を0.05~0.20とすることが有効であることを知見した。前記Lは300mm以下であることが好ましく、250mm以下であることがより好ましい。なお、本明細書において垂直とは、水平面に対して垂直(すなわち、鉛直)であることを意味する。 The inventors of the present invention have determined the horizontal distance E (hereinafter also referred to as the eccentricity E) between the position where the cooling water collides with the molten metal flow and the center point where the cooling water concentrates, and the injection distance of the cooling water. It has been found that it is effective to set the ratio (E/L) of the vertical component (the vertical distance from the tip of the cooling water nozzle to the center point) L to 0.05 to 0.20. The L is preferably 300 mm or less, more preferably 250 mm or less. In this specification, the term “perpendicular” means perpendicular to the horizontal plane (that is, vertical).
 さらに、本発明者らは、冷却水の水量と溶融金属流の落下量の比(水/溶鋼比)を50以上とすることが好ましいことを知見した。 Furthermore, the present inventors have found that it is preferable to set the ratio of the amount of cooling water to the amount of falling molten metal flow (water/molten steel ratio) to 50 or more.
 本発明は、以下のことを要旨とする。
[1]落下する溶融金属流に対して冷却水を噴射し、前記溶融金属流と前記冷却水を衝突させて前記溶融金属流を分断して金属粉末とする水アトマイズ金属粉末の製造方法であって、
 前記冷却水は、前記溶融金属流に向かって、前記溶融金属流の周囲から下向きに、中心点に集まるように噴射され、
 前記溶融金属流は、前記中心点から水平距離において偏心量Eだけ離れた位置で前記冷却水に接触し、
 前記偏心量Eは、前記冷却水を噴射する冷却水ノズルの先端から前記中心点までの垂直距離Lとの関係において、E/Lの値が0.05~0.20の範囲である、水アトマイズ金属粉末の製造方法。
[2]前記冷却水の噴射圧が10MPa以上で、かつ、前記溶融金属流の落下量M(kg/min)に対する前記冷却水の水量F(kg/min)の比であるF/Mが50以上である、[1]に記載の水アトマイズ金属粉末の製造方法。
[3]前記金属粉末は、Fe、Ni及びCoの合計含有量が原子分率で76.0at%以上86.0at%以下であり、見掛密度が3.5g/cm以上であり、円形度が0.90以上であり、平均粒子径(D50)が50μm以下であり、非晶質化度が95%以上である、[1]または[2]に記載の水アトマイズ金属粉末の製造方法。
[4]落下する溶融金属流に対して冷却水を噴射し、前記溶融金属流と前記冷却水を衝突させて前記溶融金属流を分断して金属粉末とする水アトマイズ金属粉末の製造装置であって、
 前記冷却水を、前記溶融金属流に向かって、前記溶融金属流の周囲から下向きに、中心点に集まるように噴射する複数の冷却水ノズルと、
 前記溶融金属流を、前記中心点から水平距離において偏心量Eだけ離れた位置で前記冷却水に接触させるように供給する溶鋼ノズルとを備え、
 前記偏心量Eは、前記冷却水ノズルの先端から前記中心点までの垂直距離Lとの関係において、E/Lの値が0.05~0.20の範囲である、水アトマイズ金属粉末の製造装置。
The gist of the present invention is as follows.
[1] A method for producing a water-atomized metal powder by injecting cooling water against a falling molten metal flow and causing the molten metal flow and the cooling water to collide to divide the molten metal flow into metal powder. hand,
the cooling water is jetted downward from the perimeter of the molten metal flow toward the molten metal flow so as to converge at a central point;
The molten metal flow contacts the cooling water at a position separated by an eccentricity E in the horizontal distance from the center point,
The amount of eccentricity E is in the relationship between the vertical distance L from the tip of the cooling water nozzle that injects the cooling water to the center point, and the value of E/L is in the range of 0.05 to 0.20. A method for producing atomized metal powder.
[2] The injection pressure of the cooling water is 10 MPa or more, and F/M, which is the ratio of the amount F (kg/min) of the cooling water to the falling amount M (kg/min) of the molten metal flow, is 50. The method for producing a water-atomized metal powder according to [1], which is the above.
[3] The metal powder has a total content of Fe, Ni and Co in an atomic fraction of 76.0 at % or more and 86.0 at % or less, an apparent density of 3.5 g/cm 3 or more, and a circular shape. The water-atomized metal powder according to [1] or [2], which has a degree of 0.90 or more, an average particle diameter (D 50 ) of 50 μm or less, and an amorphous degree of 95% or more. Method.
[4] An apparatus for producing water-atomized metal powder by injecting cooling water against a falling molten metal flow and causing the molten metal flow and the cooling water to collide to divide the molten metal flow into metal powder. hand,
a plurality of cooling water nozzles for injecting the cooling water toward the molten metal flow downward from the periphery of the molten metal flow so as to converge at a central point;
a molten steel nozzle that supplies the molten metal flow so as to contact the cooling water at a position separated by an eccentricity E in the horizontal distance from the center point,
Manufacture of water-atomized metal powder, wherein the amount of eccentricity E is in a relationship between the vertical distance L from the tip of the cooling water nozzle to the center point, and the value of E/L is in the range of 0.05 to 0.20. Device.
 本発明により、Fe、Ni及びCoの合計含有量が76.0at%以上であり、平均粒子径(D50)が50μm以下であり、非晶質化度が95%以上であり、見掛密度が3.5g/cm以上であり、円形度が0.90以上である金属粉末を水アトマイズ法により製造することができる。 According to the present invention, the total content of Fe, Ni and Co is 76.0 at% or more, the average particle diameter (D 50 ) is 50 μm or less, the degree of amorphization is 95% or more, and the apparent density is of 3.5 g/cm 3 or more and a circularity of 0.90 or more can be produced by the water atomization method.
図1は、本発明の一実施形態に係る水アトマイズ金属粉末の製造装置を模式的に示す図であり、溶融金属流の落下位置が溶鋼ノズルを水平方向にずらすことにより偏心した製造装置の例を示したものである。FIG. 1 is a diagram schematically showing a manufacturing apparatus for water-atomized metal powder according to an embodiment of the present invention, and is an example of a manufacturing apparatus in which the falling position of the molten metal stream is eccentric by shifting the molten steel nozzle in the horizontal direction. is shown. 図2は、本発明の他の実施形態に係る水アトマイズ金属粉末の製造装置を模式的に示す図であり、溶鋼ノズルを鉛直方向に対し斜めに配置することにより偏心した製造装置の例を示したものである。FIG. 2 is a diagram schematically showing a production apparatus for water-atomized metal powder according to another embodiment of the present invention, showing an example of an eccentric production apparatus in which the molten steel nozzle is arranged obliquely with respect to the vertical direction. It is a thing. 図3は、水アトマイズ金属粉末の製造設備の構成例を模式的に示す図である。FIG. 3 is a diagram schematically showing a configuration example of a production facility for water-atomized metal powder.
 以下、本発明の一実施形態について説明する。なお、本発明は以下の実施形態に限定されるものではない。 An embodiment of the present invention will be described below. In addition, this invention is not limited to the following embodiment.
 本実施形態の水アトマイズ金属粉末の製造方法は、落下する溶融金属流に対して冷却水を噴射し、前記溶融金属流と前記冷却水を衝突させて前記溶融金属流を分断して金属粉末とする水アトマイズ金属粉末の製造方法である。冷却水は、落下する溶融金属流に向かって、前記溶融金属流の周囲から下向きに、中心点に集まるように噴射される。 In the method for producing water-atomized metal powder according to the present embodiment, cooling water is jetted against a falling molten metal flow, and the molten metal flow collides with the cooling water to divide the molten metal flow into metal powder. It is a method for producing a water-atomized metal powder. Cooling water is jetted toward the falling molten metal stream from the perimeter of the molten metal stream downwards to converge at a central point.
 溶融金属流は、冷却水が集中する中心点に対し、偏心量Eだけ偏心した位置において、冷却水と接触するように供給される。偏心量Eは、冷却水の噴射距離の垂直成分(冷却水ノズルの先端から、中心点までの垂直距離)Lとの関係において、E/Lの値が0.05~0.20の範囲となるように設定されている。前記E/Lの値は、0.07以上であることが好ましい。また、前記E/Lの値は、0.12以下であることが好ましい。 The molten metal flow is supplied so as to come into contact with the cooling water at a position eccentric to the central point where the cooling water concentrates by the amount of eccentricity E. The eccentricity E is related to the vertical component of the cooling water injection distance (the vertical distance from the tip of the cooling water nozzle to the center point) L, and the value of E/L is in the range of 0.05 to 0.20. is set to be The value of E/L is preferably 0.07 or more. Also, the value of E/L is preferably 0.12 or less.
 また、噴射する冷却水の噴射圧が10MPa以上で、かつ、溶融金属流の落下量M(kg/min)に対する前記冷却水の水量F(kg/min)の比であるF/Mが50以上であることが好ましく、60以上としてもよい。 Further, the injection pressure of the cooling water to be injected is 10 MPa or more, and F/M, which is the ratio of the amount F (kg/min) of the cooling water to the falling amount M (kg/min) of the molten metal flow, is 50 or more. is preferable, and may be 60 or more.
 そして、本実施形態において得られる金属粉末は、Fe、Ni及びCoの合計含有量が原子分率で76.0at%以上86.0at%以下であり、見掛密度が3.5g/cm以上であり、円形度が0.90以上であり、平均粒子径(D50)が50μm以下であり、非晶質化度が95%以上である。 In the metal powder obtained in the present embodiment, the total content of Fe, Ni and Co is 76.0 at% or more and 86.0 at% or less in terms of atomic fraction, and the apparent density is 3.5 g/cm 3 or more. , a circularity of 0.90 or more, an average particle diameter (D 50 ) of 50 μm or less, and an amorphization degree of 95% or more.
 次に、本実施形態に係る好適な水アトマイズ金属粉末の製造装置について説明しつつ、水アトマイズ金属粉末の製造方法について説明する。 Next, a method for producing a water-atomized metal powder will be explained while explaining a preferred apparatus for producing a water-atomized metal powder according to the present embodiment.
 図1は、本実施形態に係る水アトマイズ金属粉末の製造装置(以下、アトマイズ装置ともいう。)を模式的に示す図である。図1に示すアトマイズ装置は、溶融金属流の落下位置が、冷却水が集中する中心点に対し、溶鋼ノズルを水平方向にずらすことにより、偏心した位置とされている。 FIG. 1 is a diagram schematically showing a water-atomized metal powder manufacturing apparatus (hereinafter also referred to as an atomizing apparatus) according to this embodiment. In the atomizer shown in FIG. 1, the molten metal stream is dropped at an eccentric position by horizontally shifting the molten steel nozzle with respect to the central point where the cooling water concentrates.
 図2は、本発明の他の実施形態に係るアトマイズ装置を模式的に示す図である。図2に示すアトマイズ装置は、溶鋼ノズルを鉛直方向に対し斜めに配置することにより、溶融金属流の落下位置が、冷却水が集中する中心点に対し、偏心した位置とされている。 FIG. 2 is a diagram schematically showing an atomizing device according to another embodiment of the present invention. In the atomizer shown in FIG. 2, the molten steel nozzle is arranged obliquely with respect to the vertical direction, so that the drop position of the molten metal flow is eccentric with respect to the central point where the cooling water concentrates.
 図3は、アトマイズ装置を含む水アトマイズ金属粉末の製造設備の構成を模式的に示す図である。 FIG. 3 is a diagram schematically showing the configuration of water-atomized metal powder production equipment including an atomizer.
 図1に示すアトマイズ装置14は、タンディッシュ1、溶鋼ノズル3、ノズルヘッダー4、冷却水ノズル(スプレーノズル)5A、5B、高圧ポンプからの送水管18及びチャンバー19を有する。 The atomizing device 14 shown in FIG. 1 has a tundish 1, a molten steel nozzle 3, a nozzle header 4, cooling water nozzles (spray nozzles) 5A and 5B, a water pipe 18 from a high pressure pump, and a chamber 19.
 タンディッシュ1は、溶解炉で溶かした溶鋼2が注ぎ込まれる容器状の部材である。タンディッシュ1としては、通常公知のものを用いればよい。図1に示す通り、タンディッシュ1の底には溶鋼ノズル3を接続するための開口が形成されている。 The tundish 1 is a container-shaped member into which the molten steel 2 melted in the melting furnace is poured. As the tundish 1, a commonly known one may be used. As shown in FIG. 1, an opening for connecting a molten steel nozzle 3 is formed in the bottom of the tundish 1 .
 溶鋼2の組成を調整すれば、製造される金属粉末9の組成を調整できる。本実施形態の製造方法は、Fe、Ni及びCoの合計含有量が原子分率で76.0at%以上86.0at%以下であり、平均粒子径(D50)が50μm以下である水アトマイズ金属粉末の製造に適する。また、上記の金属粉末9は、Si、P及びBから選ばれる少なくとも1種を含有することも好ましい。あるいは、さらにCuを含有することも好ましい。上記組成の金属粉末を製造するためには、溶鋼2の組成を上記範囲に調整すればよい。 By adjusting the composition of the molten steel 2, the composition of the manufactured metal powder 9 can be adjusted. In the production method of the present embodiment, the total content of Fe, Ni and Co is 76.0 at% or more and 86.0 at% or less in atomic fraction, and the average particle diameter (D 50 ) is 50 μm or less. Suitable for powder production. Also, the metal powder 9 preferably contains at least one selected from Si, P and B. Alternatively, it is also preferable to further contain Cu. In order to produce the metal powder having the above composition, the composition of the molten steel 2 should be adjusted within the above range.
 溶鋼ノズル3は、タンディッシュ1の底の開口に接続される筒状体である。溶鋼ノズル3の内部を溶鋼2が通る。溶鋼ノズル3の長さが長いとその内部を通過する間に溶鋼2の温度が低下する。したがって、溶解炉での溶解温度は、溶鋼ノズル3で温度が低下することを見越して、決定する必要がある。溶鋼ノズル3の長さは、ノズルヘッダー4の厚さに応じて定められる。冷却水の噴射圧が高くなると耐圧の関係でノズルヘッダー4の厚さを厚くする必要があるため、溶鋼ノズル3の長さも変更する必要がある。溶鋼ノズル3の噴射孔径によって、落下する単位時間あたりの溶鋼量(溶融金属流の落下量)M(kg/min)を調整することができる。 The molten steel nozzle 3 is a cylindrical body connected to the opening at the bottom of the tundish 1. Molten steel 2 passes through the inside of the molten steel nozzle 3 . If the length of the molten steel nozzle 3 is long, the temperature of the molten steel 2 drops while passing through it. Therefore, the melting temperature in the melting furnace must be determined in anticipation of the temperature drop at the molten steel nozzle 3 . The length of the molten steel nozzle 3 is determined according to the thickness of the nozzle header 4 . If the injection pressure of the cooling water is increased, the thickness of the nozzle header 4 must be increased in relation to the pressure resistance, so the length of the molten steel nozzle 3 must also be changed. The amount of molten steel that falls per unit time (the amount of molten metal flow that falls) M (kg/min) can be adjusted by the injection hole diameter of the molten steel nozzle 3 .
 スプレーノズル5A、5Bは、溶融金属流6に衝突させる冷却水7を吐出させるための好適なノズルである。スプレーノズル5A、5Bは、溶鋼ノズル3内を通って落下する溶融金属流6に対して冷却水7を噴射し、溶融金属流6と冷却水7を衝突させる。これにより、溶融金属流6が分断され金属粉末9が得られる。スプレーノズル5A、5Bは、冷却水7を、溶融金属流6に向かって、溶融金属流6の周囲から下向きに、中心点11に集まるように噴射する。 The spray nozzles 5A and 5B are suitable nozzles for discharging the cooling water 7 to collide with the molten metal flow 6. The spray nozzles 5A and 5B inject cooling water 7 against the molten metal flow 6 falling through the inside of the molten steel nozzle 3, causing the molten metal flow 6 and the cooling water 7 to collide with each other. As a result, the molten metal flow 6 is divided and the metal powder 9 is obtained. The spray nozzles 5A, 5B spray cooling water 7 toward the molten metal flow 6 downward from the periphery of the molten metal flow 6 so as to converge at a central point 11 .
 図1に示すアトマイズ装置14において、溶鋼ノズル3は、その軸方向が鉛直方向に沿うように配置されている。溶鋼ノズル3は、溶融金属流6を、中心点11から水平距離において偏心量Eだけ離れた位置で冷却水7に接触させるように供給する。溶鋼ノズル3は、偏心量Eが、冷却水ノズル(スプレーノズル)の先端から、中心点11までの垂直距離Lとの関係において、E/Lの値が0.05~0.20の範囲となるように配置される。なお、複数の冷却水ノズル(スプレーノズル)は、該ノズルの先端の高さが同じ高さとなるように配置される。 In the atomizer 14 shown in FIG. 1, the molten steel nozzle 3 is arranged so that its axial direction is along the vertical direction. The molten steel nozzle 3 supplies the molten metal stream 6 so as to contact the cooling water 7 at a position separated by the eccentricity E in the horizontal distance from the center point 11 . In the molten steel nozzle 3, the amount of eccentricity E is such that the value of E/L is in the range of 0.05 to 0.20 in relation to the vertical distance L from the tip of the cooling water nozzle (spray nozzle) to the center point 11. are arranged so that In addition, the plurality of cooling water nozzles (spray nozzles) are arranged so that the heights of the tips of the nozzles are the same.
 溶融金属流6の落下量M(kg/min)に対するスプレーノズル5A、5Bの吐出口から吐出される冷却水7の水量F(kg/min)の比を、水/溶鋼比(F/M)とする。本実施形態では、この水/溶鋼比(F/M)を50以上になるように調整することが好ましい。なお、前記冷却水の水量Fは、すべての冷却水ノズル(スプレーノズル)から吐出される冷却水の合計の水量である。 The water/molten steel ratio (F/M) is the ratio of the amount F (kg/min) of the cooling water 7 discharged from the discharge ports of the spray nozzles 5A and 5B to the amount M (kg/min) of the molten metal flow 6. and In this embodiment, it is preferable to adjust the water/molten steel ratio (F/M) to 50 or more. The amount F of cooling water is the total amount of cooling water discharged from all cooling water nozzles (spray nozzles).
 水/溶鋼比(F/M)が50未満であると、冷却速度が遅く、金属粉末の一部または全部が結晶化しやすくなるため、所望の非晶質化度が得られない可能性がある。また、水/溶鋼比(F/M)は、好ましくは80以上である。水/溶鋼比(F/M)は、より好ましくは100以上である。 When the water/molten steel ratio (F/M) is less than 50, the cooling rate is slow, and part or all of the metal powder tends to crystallize, so the desired degree of amorphization may not be obtained. . Also, the water/molten steel ratio (F/M) is preferably 80 or higher. The water/molten steel ratio (F/M) is more preferably 100 or more.
 図2は、他の実施形態に係るアトマイズ装置を模式的に示す図である。図2に示すアトマイズ装置は、溶鋼ノズル3(溶鋼ノズル3の軸方向)を鉛直方向に対し斜めに配置することにより偏心した製造装置の例を示したものである。なお、図1と図2は、溶鋼ノズル3の配置角度が異なるだけで、基本構成は同じであるため、溶鋼ノズル3以外の説明を省略する。 FIG. 2 is a diagram schematically showing an atomizing device according to another embodiment. The atomizing device shown in FIG. 2 is an example of an eccentric manufacturing device in which the molten steel nozzle 3 (the axial direction of the molten steel nozzle 3) is obliquely arranged with respect to the vertical direction. 1 and 2 differ only in the arrangement angle of the molten steel nozzle 3, and the basic configuration is the same, so descriptions other than the molten steel nozzle 3 will be omitted.
 図2では、溶鋼ノズル3を鉛直方向に対し斜めに配置した場合における、偏心量Eと、冷却水ノズルの先端から、冷却水が集中する中心点までの垂直距離(冷却水の噴射距離の垂直成分)Lを示している。図2にも示されるように、偏心量Eとは、冷却水と溶融金属流が衝突する位置と、冷却水が集中する中心点との水平距離である。冷却水の噴射距離の垂直成分Lは、冷却水ノズル5の先端から、冷却水が集中する中心点までの距離の垂直成分である。 FIG. 2 shows the amount of eccentricity E and the vertical distance from the tip of the cooling water nozzle to the central point where the cooling water concentrates (perpendicular to the cooling water injection distance) when the molten steel nozzle 3 is arranged obliquely to the vertical direction. Component) L is shown. As also shown in FIG. 2, the eccentricity E is the horizontal distance between the position where the cooling water collides with the molten metal flow and the central point where the cooling water concentrates. The vertical component L of the cooling water injection distance is the vertical component of the distance from the tip of the cooling water nozzle 5 to the central point where the cooling water concentrates.
 図3は、水アトマイズ金属粉末の製造設備の構成例を示す模式図である。図3に示す水アトマイズ金属粉末の製造設備は、アトマイズ装置14、冷却水用高圧ポンプ17、及び冷却水タンク15を含む。そして、本発明においては、アトマイズ装置14として、図1や図2に示されるようなアトマイズ装置を用いる。冷却水については、冷却水用温度調節機16を用いて、冷却水タンク15中の温度が調整され、冷却水用高圧ポンプ17に送られ、冷却水用高圧ポンプ17から冷却水用配管(高圧ポンプからの送水管)18を通してアトマイズ装置14に送られる。さらにアトマイズ装置14において、落下する溶融金属流6に対して冷却水ノズル(スプレーノズル)5より冷却水7が噴射され、上記溶融金属流6を分断して金属粉末とし、かつその金属粉末を冷却して、金属粉末を製造する。なお、冷却水用高圧ポンプ17は、図3では一台のみ記載しているが、夫々の冷却水ノズル(スプレーノズル)ごとに二台以上設けてもよい。 FIG. 3 is a schematic diagram showing a configuration example of a manufacturing facility for water-atomized metal powder. The water-atomized metal powder manufacturing facility shown in FIG. In the present invention, as the atomizer 14, an atomizer as shown in FIGS. 1 and 2 is used. As for the cooling water, the cooling water temperature controller 16 is used to adjust the temperature in the cooling water tank 15, which is then sent to the cooling water high pressure pump 17, and from the cooling water high pressure pump 17 to the cooling water pipe (high pressure It is sent to the atomizer 14 through a water pipe 18 from the pump. Further, in the atomizer 14, cooling water 7 is sprayed from cooling water nozzles (spray nozzles) 5 onto the falling molten metal flow 6 to divide the molten metal flow 6 into metal powder and cool the metal powder. to produce metal powder. Although only one cooling water high-pressure pump 17 is shown in FIG. 3, two or more cooling water nozzles (spray nozzles) may be provided for each cooling water nozzle (spray nozzle).
 複数の冷却水ノズル(スプレーノズル)5は、上から見ると、円状に配されており、それぞれの冷却水ノズル5から、円の中心(冷却水が集中する位置である中心点11)に向かうように冷却水が噴射される。中心点11は、それぞれの冷却水ノズルの軸方向の直線(軸線)が集中する位置である。なお、図1~3では、複数の冷却水ノズルのうち、上から見て、3時と9時の方向の2本の冷却水ノズル(スプレーノズル)のみを図示している。 A plurality of cooling water nozzles (spray nozzles) 5 are arranged in a circle when viewed from above. Cooling water is sprayed toward it. The center point 11 is the position where the axial straight lines (axes) of the cooling water nozzles converge. 1 to 3, of the plurality of cooling water nozzles, only two cooling water nozzles (spray nozzles) in the 3 o'clock and 9 o'clock directions when viewed from above are illustrated.
 本発明では、溶融金属流6は、溶融金属流6と冷却水との衝突位置と、冷却水が集中する位置である中心点11との水平距離(偏心量E)が、冷却水の噴射距離の垂直成分(冷却水ノズルの先端から、中心点までの垂直距離)Lとの関係において、E/Lの値が0.05~0.20の範囲となるように、冷却水が集中する位置である中心点11から水平方向にずらした位置に落下するようにされている。 In the present invention, the molten metal flow 6 is determined by the horizontal distance (eccentricity E) between the collision position of the molten metal flow 6 and the cooling water and the center point 11 where the cooling water concentrates, which is the injection distance of the cooling water. The position where the cooling water concentrates so that the value of E/L is in the range of 0.05 to 0.20 in relation to the vertical component (vertical distance from the tip of the cooling water nozzle to the center point) L , to a position shifted horizontally from the center point 11 .
 次に、得られた金属粉末について、平均粒子径、見掛密度、円形度および非晶質化度の測定方法について説明する。 Next, the methods for measuring the average particle size, apparent density, circularity, and degree of amorphization of the obtained metal powder will be described.
 見掛密度は、JIS Z 2504:2012に準拠して測定する。 Apparent density is measured in accordance with JIS Z 2504:2012.
 円形度は、モフォロギ社製の粒子画像分析装置(G3SE)を使用し、プレパラート上に分散させた金属粉末の投影画像を約5000個撮影し、投影画像の各金属粉末データを二値化することによって、画像解析を行って求めた体積平均値(C50)の値を用いた。具体的には、体積平均値(C50)は、以下のように求める。上記画像解析によって、各金属粉末の投影面積と周囲長さを測定する。そして、各金属粉末について、円形度(=2(π×金属粉末の投影面積)1/2/周囲長さ)を算出する。各金属粉末の投影面積と同じ面積を持つ円の直径(円相当径)を算出し、その直径と同じ直径を有する球の体積を算出する。これにより、各金属粉末の円形度と体積が得られ、各円形度における体積頻度を算出することができる。そして、画像解析した全金属粉末の円形度について昇順で並べ、全金属粉末の体積の総和の50%に相当する金属粉末の円形度を体積平均値(C50)とする。 Circularity is obtained by taking approximately 5000 projected images of metal powder dispersed on a slide using a particle image analyzer (G3SE) manufactured by Morphologi, and binarizing each metal powder data of the projected image. The value of the volume average value (C 50 ) obtained by image analysis was used. Specifically, the volume average value (C 50 ) is obtained as follows. By the above image analysis, the projected area and peripheral length of each metal powder are measured. Then, the degree of circularity (=2(π×projected area of metal powder) 1/2 /peripheral length) is calculated for each metal powder. The diameter of a circle having the same area as the projected area of each metal powder (equivalent circle diameter) is calculated, and the volume of a sphere having the same diameter as that diameter is calculated. As a result, the circularity and volume of each metal powder can be obtained, and the volume frequency at each circularity can be calculated. Then, the circularities of all the metal powders subjected to image analysis are arranged in ascending order, and the circularity of the metal powder corresponding to 50% of the total volume of all the metal powders is taken as the volume average value (C 50 ).
 非晶質化度は、得られた金属粉末について、金属粉末以外のゴミを除去したのち、X線回折法により、非晶質相からのハローピークおよび結晶からの回折ピークを測定し、WPPD法により算出する。ここでいう「WPPD法」とは、Whole-powder-pattern decomposition methodの略であり、虎谷秀穂:日本結晶学会誌,vol.30(1988),No.4,253~258ページに詳しい説明がある。 For the degree of amorphization, after removing dust other than the metal powder from the obtained metal powder, the halo peak from the amorphous phase and the diffraction peak from the crystal are measured by the X-ray diffraction method, and the WPPD method is used. Calculated by The "WPPD method" here is an abbreviation for Whole-powder-pattern decomposition method, and is described in Hideho Toratani: Journal of the Crystallographic Society of Japan, vol. 30 (1988), No. There is a detailed explanation on pages 4, 253-258.
 平均粒子径は、積算法によって平均粒子径(D50)を算出する。また、レーザー回折/散乱式粒度分布測定を用いることも可能である。なお、平均粒子径(D50)は、粒子径分布における体積基準の累積50%の粒子径(メジアン径)である。 For the average particle size, the average particle size ( D50 ) is calculated by an integration method. It is also possible to use laser diffraction/scattering particle size distribution measurement. The average particle size (D 50 ) is the particle size (median size) of 50% cumulative volume-based particles in the particle size distribution.
 本発明によれば、Fe、Ni及びCoの合計含有量が原子分率で76.0at%以上86.0at%以下であり、見掛密度が3.5g/cm以上であり、円形度が0.90以上であり、平均粒子径(D50)が50μm以下であり、非晶質化度が95%以上の金属粉末を水アトマイズ法により得られる。 According to the present invention, the total content of Fe, Ni and Co is 76.0 at% or more and 86.0 at% or less in terms of atomic fraction, the apparent density is 3.5 g/cm 3 or more, and the circularity is A metal powder having an average particle diameter (D 50 ) of 0.90 or more, an average particle diameter (D 50 ) of 50 μm or less, and an amorphization degree of 95% or more can be obtained by a water atomization method.
 また、本発明で得られた水アトマイズ金属粉末を原料として成形した部材に、適切な熱処理を施せば、ナノサイズの結晶が析出する。 In addition, nano-sized crystals precipitate when a member molded from the water-atomized metal powder obtained in the present invention is subjected to an appropriate heat treatment.
 特に、本発明で得られたFe、Ni及びCoの合計含有量が多い水アトマイズ金属粉末を原料として用いれば、当該金属粉末を原料として成形したリアクトルやモーターに、適切な熱処理を施すことで、低損失性と高磁束密度の両立が可能となる。 In particular, if the water-atomized metal powder having a large total content of Fe, Ni, and Co obtained in the present invention is used as a raw material, a reactor or motor molded from the metal powder as a raw material can be appropriately heat-treated, It is possible to achieve both low loss and high magnetic flux density.
 加えて近年では、まてりあVol.41 No.6 P.392, Journal of Applied Physics 105, 013922(2009)、特許第4288687号公報、特許第4310480号公報、特許第4815014号公報、WO2010/084900号、特開2008-231534号公報、特開2008-231533号公報、特許第2710938号公報などに示されるように磁束密度の大きなヘテロアモルファス材料や、ナノ結晶材料が開発されている。これらの材料に用いられるFe、Ni及びCoの含有量が多い金属粉末を水アトマイズ法により製造するに際して、本発明はきわめて有利に適合する。特にat%(原子分率)でFe系成分濃度が76.0%以上となると、従来技術では非晶質化度を高めることが非常に困難であった。 In addition, in recent years, Materia Vol. 41 No. 6P. 392, Journal of Applied Physics 105, 013922 (2009), Patent No. 4288687, Patent No. 4310480, Patent No. 4815014, WO2010/084900, JP-A-2008-231534, JP-A-2008-231 533 As shown in Japanese Patent Publication No. 2710938, hetero-amorphous materials and nanocrystalline materials having high magnetic flux densities have been developed. The present invention is very advantageously applied to the production of metal powders containing a large amount of Fe, Ni and Co, which are used in these materials, by the water atomization method. In particular, when the Fe-based component concentration is 76.0% or more in terms of at % (atomic fraction), it has been very difficult to increase the degree of amorphization with conventional techniques.
 しかし、本発明の製造方法を適用すれば、Fe系成分濃度が76.0at%以上であっても、見掛密度が3.5g/cm以上であり、円形度(C50)が0.90以上であり、平均粒子径(D50)が50μm以下であり、非晶質化度が95%以上である金属粉末を得ることができる。 However, if the manufacturing method of the present invention is applied, even if the Fe-based component concentration is 76.0 at % or more, the apparent density is 3.5 g/cm 3 or more and the circularity (C 50 ) is 0.5 g/cm 3 or more. 90 or more, an average particle diameter (D 50 ) of 50 μm or less, and a degree of amorphization of 95% or more.
 特に、本発明で得られたFe、Ni及びCoの合計含有量が多い金属粉末を原料として用いれば、当該金属粉末を原料として成形したリアクトルやモーターに、適切な熱処理を施すことで、低損失性と高磁束密度の両立が可能となる。 In particular, if the metal powder having a large total content of Fe, Ni, and Co obtained in the present invention is used as a raw material, a reactor or motor molded from the metal powder as a raw material is subjected to an appropriate heat treatment to reduce loss. It is possible to achieve both high strength and high magnetic flux density.
 以下、本発明の実施例を説明する。ただし、本発明は、以下の実施例に限定されない。本実施例では、図1、図2に示すアトマイズ装置、および、図3に示す水アトマイズ金属粉末の製造設備と同様の構成を有するアトマイズ装置と製造設備を用いて、金属粉末を製造した。その際、アトマイズ条件を変更することで、本発明の発明例および比較例を実施した。 Examples of the present invention will be described below. However, the present invention is not limited to the following examples. In this example, metal powder was produced using the atomizing apparatus shown in FIGS. 1 and 2 and the atomizing apparatus and manufacturing equipment having the same configuration as the water-atomized metal powder manufacturing equipment shown in FIG. At that time, the invention examples and comparative examples of the present invention were carried out by changing the atomization conditions.
 溶融金属流の落下量を4~5kg/minとした。アトマイズ装置には、12本の冷却水ノズル(スプレーノズル)を設置した。前記冷却水ノズルは、溶融金属流の落下方向(鉛直方向)に対する垂直面上に、上方から見て円周状に等間隔で設置され、溶融金属流に向けて吐出される冷却水の軌道で形成される収束角度αは24°とした(図1の角度αを参照)。前記冷却水ノズルはすべて噴射した水が扇形状に広がるフラットスプレーノズルとした。冷却水の水量(12本の冷却水ノズルから噴射する冷却水の合計水量)Fは250kg/minとし、それぞれの冷却水ノズルから噴射する冷却水の噴射圧は15MPaとした。 The drop amount of the molten metal flow was set to 4-5 kg/min. The atomizer was equipped with 12 cooling water nozzles (spray nozzles). The cooling water nozzles are arranged on a plane perpendicular to the falling direction (vertical direction) of the molten metal flow at equal intervals in a circumferential manner when viewed from above, and the cooling water trajectory is discharged toward the molten metal flow. The formed convergence angle α was 24° (see angle α in Figure 1). All of the cooling water nozzles were flat spray nozzles in which the sprayed water spreads in a fan shape. The amount of cooling water (total amount of cooling water injected from 12 cooling water nozzles) F was set to 250 kg/min, and the injection pressure of cooling water injected from each cooling water nozzle was set to 15 MPa.
 発明例および比較例の製造方法を実施するにあたり、以下の成分系となるように調整した原料(溶鋼)を準備した。 In carrying out the manufacturing methods of invention examples and comparative examples, raw materials (molten steel) adjusted to have the following composition system were prepared.
 具体的には、以下の組成の軟磁性材料を準備した。なお「%」は、「at%」(原子分率)を意味する。(i)~(v)はFe系軟磁性原料、(vi)はFe+Co系軟磁性材料、(vii)はFe+Co+Ni系軟磁性材料である。
(i)  Fe76.0%-Si9.0%-B10.0%-P5.0%
(ii) Fe78.0%-Si9.0%-B9.0%-P4.0%
(iii)Fe80.0%-Si8.0%-B8.0%-P4.0%
(iv) Fe82.8%-B11.0%-P5.0%-Cu1.2%
(v)  Fe84.8%-Si4.0%-B10.0%-Cu1.2%
(vi) Fe69.8%-Co15.0%-B10.0%-P4.0%-Cu1.2%
(vii)Fe69.8%-Ni1.2%-Co15.0%-B9.4%-P3.4%-Cu1.2%
Specifically, a soft magnetic material having the following composition was prepared. In addition, "%" means "at %" (atomic fraction). (i) to (v) are Fe-based soft magnetic raw materials, (vi) is an Fe+Co-based soft magnetic material, and (vii) is an Fe+Co+Ni-based soft magnetic material.
(i) Fe76.0%-Si9.0%-B10.0%-P5.0%
(ii) Fe78.0%-Si9.0%-B9.0%-P4.0%
(iii) Fe80.0%-Si8.0%-B8.0%-P4.0%
(iv) Fe82.8%-B11.0%-P5.0%-Cu1.2%
(v) Fe84.8%-Si4.0%-B10.0%-Cu1.2%
(vi) Fe69.8%-Co15.0%-B10.0%-P4.0%-Cu1.2%
(vii) Fe69.8%-Ni1.2%-Co15.0%-B9.4%-P3.4%-Cu1.2%
 表1および表2に、発明例と比較例の原料条件、アトマイズ条件、および製造した金属粉末の評価結果を示す。 Tables 1 and 2 show raw material conditions, atomization conditions, and evaluation results of the produced metal powders of invention examples and comparative examples.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
 実施例および比較例では、各成分(i)~(vii)について、各成分になるように鉄などの原料を高周波溶解炉に入れて、高周波をかけて溶解した。その際、アトマイズ前の溶解温度は1500~1650℃の範囲とした。鉄成分が高いほど融点が高くなるため、溶解温度は高くなる。目的の溶解温度になったら、高周波溶解炉を傾動させてタンディッシュに溶鋼を注いだ。タンディッシュの底には所定の穴径の溶鋼ノズルが設置されており、溶融金属流の落下量は4~5kg/minの範囲となるように調整した。各例でのアトマイズ条件は表1に示すように、収束角度α、冷却水ノズルの種類及び本数、冷却水の噴射圧(各冷却水ノズルから噴射する冷却水の噴射圧)、冷却水の水量(12本の冷却水ノズルから噴射する冷却水の合計水量)を調整した。なお、ノズルの種類として、扇形15°スプレーとは、噴射した水が扇形状に広がる冷却水ノズル(フラットスプレーノズル)で、かつ、前記扇形の中心角(広がり角度)が15°となるフラットスプレーノズルを用いたことを指す。なお、横に広がるフラットスプレーをノズルに設置する際、ノズルの幅広がり方向は水平になるように設置した。 In the examples and comparative examples, raw materials such as iron were placed in a high-frequency melting furnace and melted by applying high frequency to each component (i) to (vii). At that time, the melting temperature before atomization was in the range of 1500 to 1650°C. The higher the iron content, the higher the melting point and therefore the higher the melting temperature. When the target melting temperature was reached, the high-frequency melting furnace was tilted to pour the molten steel into the tundish. A molten steel nozzle with a predetermined hole diameter was installed at the bottom of the tundish, and the drop amount of the molten metal flow was adjusted to be in the range of 4 to 5 kg/min. As shown in Table 1, the atomization conditions in each example are the convergence angle α, the type and number of cooling water nozzles, the injection pressure of cooling water (injection pressure of cooling water injected from each cooling water nozzle), and the amount of cooling water. (Total amount of cooling water injected from 12 cooling water nozzles) was adjusted. As a type of nozzle, a fan-shaped 15° spray is a cooling water nozzle (flat spray nozzle) in which the sprayed water spreads in a fan shape, and a flat spray in which the central angle (spread angle) of the fan shape is 15 °. It refers to using a nozzle. In addition, when the horizontally spreading flat spray was installed in the nozzle, the nozzle was installed so that the width spreading direction of the nozzle was horizontal.
 本発明においては、通常、下向き円錐状に噴射しているアトマイズ水の中心(すなわち前記円錐の頂点)に向かって溶鋼を落下させるところ、中心から偏心(ずらして)溶鋼を落下させた。 In the present invention, the molten steel is dropped eccentrically (shifted) from the center of the atomized water sprayed in a downward cone (that is, the apex of the cone).
 発明例では、溶融金属流と冷却水との接触する位置と、冷却水が集中する中心点との水平距離である偏心量E(mm)は、冷却水の噴射距離の垂直成分(冷却水ノズルの先端から、中心点までの垂直距離)L(mm)との関係において、E/Lが0.05~0.20の範囲になるように偏心させた。発明例1~4においては、溶鋼ノズルを図1に示すように垂直に配置し、発明例5~6においては、偏心量Eが大きいので、溶鋼ノズルを図2に示すように斜めに配置した。 In the invention example, the eccentricity E (mm), which is the horizontal distance between the contact position of the molten metal flow and the cooling water and the center point where the cooling water concentrates, is the vertical component of the cooling water injection distance (cooling water nozzle In relation to the vertical distance L (mm) from the tip to the center point, the eccentricity was set so that E/L was in the range of 0.05 to 0.20. In invention examples 1 to 4, the molten steel nozzle was arranged vertically as shown in FIG. 1. In invention examples 5 and 6, since the amount of eccentricity E was large, the molten steel nozzle was arranged obliquely as shown in FIG. .
 これに対し、比較例1は、溶融金属流と冷却水の接触する位置を冷却水が集中する中心点から偏心させない場合(偏心量E=0、E/L=0)である。また、比較例2は、偏心量を大きくして、偏心量Eと冷却水の噴射距離の垂直成分Lとの関係をE/L=0.25とした場合である。 On the other hand, in Comparative Example 1, the contact position between the molten metal flow and the cooling water is not eccentric from the center point where the cooling water concentrates (eccentricity E=0, E/L=0). In Comparative Example 2, the amount of eccentricity was increased, and the relationship between the amount of eccentricity E and the vertical component L of the cooling water injection distance was set to E/L=0.25.
 製造した金属粉末の評価において、円形度(C50)、平均粒子径(D50)、見掛密度、非晶質化度については、以下の方法(詳細については上述したとおり)で測定した。 In the evaluation of the produced metal powder, circularity ( C50 ), average particle size ( D50 ), apparent density, and degree of amorphization were measured by the following methods (details are as described above).
 見掛密度は、JIS Z 2504:2012に準拠して測定した。 The apparent density was measured according to JIS Z 2504:2012.
 円形度は、モフォロギ社製の粒子画像分析装置(G3SE)を使用し、プレパラート上に分散させた粉末粒子の投影画像を約5000個撮影し、投影画像の各金属粉末データを二値化することによって、画像解析を行って求めた体積平均値(C50)の値を用いた。 Circularity is obtained by taking approximately 5,000 projection images of powder particles dispersed on a slide using a particle image analyzer (G3SE) manufactured by Morphologi, and binarizing each metal powder data of the projection images. The value of the volume average value (C 50 ) obtained by image analysis was used.
 非晶質化度は、得られた金属粉末について、金属粉末以外のゴミを除去したのち、X線回折法により、非晶質相からのハローピークおよび結晶からの回折ピークを測定し、WPPD法により算出した。 For the degree of amorphization, after removing dust other than the metal powder from the obtained metal powder, the halo peak from the amorphous phase and the diffraction peak from the crystal are measured by the X-ray diffraction method, and the WPPD method is used. Calculated by
 平均粒子径は、積算法によって平均粒子径(D50)を算出した。レーザー回折/散乱式粒度分布測定を用いた。 As for the average particle size, the average particle size (D 50 ) was calculated by the integration method. Laser diffraction/scattering particle size distribution measurements were used.
 見掛密度は3.5g/cm以上、円形度(C50)は0.90以上、平均粒子径(D50)は50μm以下、非晶質化度は95%以上を目標値とし、見掛密度、円形度、平均粒子径および非晶質化度の全てが目標値に達していれば合格(○)とし、見掛密度、円形度、平均粒子径および非晶質化度のいずれかが目標値に達していなければ不合格(×)とした。 The target values are an apparent density of 3.5 g/cm 3 or more, a circularity (C 50 ) of 0.90 or more, an average particle diameter (D 50 ) of 50 μm or less, and an amorphization degree of 95% or more. If all of the bulk density, circularity, average particle size and degree of amorphization reach the target values, it will be passed (○), and any of the apparent density, circularity, average particle size and degree of amorphization failed (x) if the target value was not reached.
 発明例1~6はすべて、E/Lが0.05~0.20の範囲であり、この条件で製造した金属粉末は、見掛密度、円形度、平均粒子径、非晶質化度がすべて目標値を上回って合格となった。 All of Invention Examples 1 to 6 have an E/L in the range of 0.05 to 0.20, and the metal powder produced under these conditions has an apparent density, circularity, average particle size, and amorphization degree. All targets were exceeded and passed.
 比較例1は、溶融金属流と冷却水の接触する位置を冷却水が集中する中心点から偏心させなかった場合(偏心量E=0、E/L=0)であるが、見掛密度、円形度がすべての組成において目標値に達しなかった。 Comparative Example 1 is a case where the contact position of the molten metal flow and cooling water is not eccentric from the center point where the cooling water concentrates (eccentricity E = 0, E / L = 0), but the apparent density, Circularity did not reach the target value for all compositions.
 比較例2は、E/Lが0.20を超えて0.25とした場合であるが、見掛密度がすべての組成において目標値に達しなかった。さらに、一部の組成において円形度が目標値に達しなかった。 In Comparative Example 2, E/L exceeded 0.20 and was set to 0.25, but the apparent density did not reach the target value for all compositions. Furthermore, the circularity did not reach the target value in some compositions.
 以上のように本発明の範囲内の条件である発明例1~6で製造した金属粉末はすべて合格となった。一方、本発明の範囲外の条件である比較例1~2で製造した金属粉末はすべて不合格となった。 As described above, all the metal powders produced in Invention Examples 1 to 6, which are conditions within the scope of the present invention, passed the test. On the other hand, all of the metal powders produced in Comparative Examples 1 and 2 under conditions outside the scope of the present invention were rejected.
 以上より、E/Lが0.05~0.20の範囲で、Fe、Ni及びCoの合計含有量が原子分率で76.0at%以上86.0at%以下であり、見掛密度が3.5g/cm以上であり、円形度が0.90以上であり、平均粒子径(D50)が50μm以下であり、非晶質化度が95%以上である水アトマイズ金属粉末を製造できた。 From the above, E / L is in the range of 0.05 to 0.20, the total content of Fe, Ni and Co is 76.0 at% or more and 86.0 at% or less in atomic fraction, and the apparent density is 3 .5 g/cm 3 or more, a circularity of 0.90 or more, an average particle diameter (D 50 ) of 50 μm or less, and an amorphization degree of 95% or more. rice field.
 1 タンディッシュ
 2 溶鋼
 3 溶鋼ノズル
 4 ノズルヘッダー
 5、5A、5B 冷却水ノズル(スプレーノズル)
 6 溶融金属流
 7 冷却水
 9 金属粉末
 10 収束角度(向かい合う2本のノズルの取付角度:頂角)α
 11 冷却水が集中する位置(中心点)
 14 アトマイズ装置
 15 冷却水タンク
 16 冷却水用温度調節機
 17 冷却水用高圧ポンプ
 18 冷却水用配管(高圧ポンプからの送水管)
 19 チャンバー

 
1 tundish 2 molten steel 3 molten steel nozzle 4 nozzle header 5, 5A, 5B cooling water nozzle (spray nozzle)
6 Molten metal flow 7 Cooling water 9 Metal powder 10 Convergence angle (mounting angle of two nozzles facing each other: vertical angle) α
11 Position where cooling water concentrates (central point)
14 Atomizing device 15 Cooling water tank 16 Cooling water temperature controller 17 Cooling water high pressure pump 18 Cooling water pipe (water pipe from high pressure pump)
19 Chamber

Claims (4)

  1.  落下する溶融金属流に対して冷却水を噴射し、前記溶融金属流と前記冷却水を衝突させて前記溶融金属流を分断して金属粉末とする水アトマイズ金属粉末の製造方法であって、
     前記冷却水は、前記溶融金属流に向かって、前記溶融金属流の周囲から下向きに、中心点に集まるように噴射され、
     前記溶融金属流は、前記中心点から水平距離において偏心量Eだけ離れた位置で前記冷却水に接触し、
     前記偏心量Eは、前記冷却水を噴射する冷却水ノズルの先端から前記中心点までの垂直距離Lとの関係において、E/Lの値が0.05~0.20の範囲である、水アトマイズ金属粉末の製造方法。
    A method for producing water-atomized metal powder, in which cooling water is jetted against a falling molten metal flow, and the molten metal flow collides with the cooling water to divide the molten metal flow into metal powder,
    the cooling water is jetted downward from the perimeter of the molten metal flow toward the molten metal flow so as to converge at a central point;
    The molten metal flow contacts the cooling water at a position separated by an eccentricity E in the horizontal distance from the center point,
    The amount of eccentricity E is in the relationship between the vertical distance L from the tip of the cooling water nozzle that injects the cooling water to the center point, and the value of E/L is in the range of 0.05 to 0.20. A method for producing atomized metal powder.
  2.  前記冷却水の噴射圧が10MPa以上で、かつ、前記溶融金属流の落下量M(kg/min)に対する前記冷却水の水量F(kg/min)の比であるF/Mが50以上である、請求項1に記載の水アトマイズ金属粉末の製造方法。 The injection pressure of the cooling water is 10 MPa or more, and F/M, which is a ratio of the amount F (kg/min) of the cooling water to the falling amount M (kg/min) of the molten metal flow, is 50 or more. A method for producing a water-atomized metal powder according to claim 1.
  3.  前記金属粉末は、Fe、Ni及びCoの合計含有量が原子分率で76.0at%以上86.0at%以下であり、見掛密度が3.5g/cm以上であり、円形度が0.90以上であり、平均粒子径(D50)が50μm以下であり、非晶質化度が95%以上である、請求項1または2に記載の水アトマイズ金属粉末の製造方法。 The metal powder has a total content of Fe, Ni and Co in an atomic fraction of 76.0 at% or more and 86.0 at% or less, an apparent density of 3.5 g/cm 3 or more, and a circularity of 0. 90 or more, an average particle diameter (D 50 ) of 50 μm or less, and an amorphization degree of 95% or more.
  4.  落下する溶融金属流に対して冷却水を噴射し、前記溶融金属流と前記冷却水を衝突させて前記溶融金属流を分断して金属粉末とする水アトマイズ金属粉末の製造装置であって、
     前記冷却水を、前記溶融金属流に向かって、前記溶融金属流の周囲から下向きに、中心点に集まるように噴射する複数の冷却水ノズルと、
     前記溶融金属流を、前記中心点から水平距離において偏心量Eだけ離れた位置で前記冷却水に接触させるように供給する溶鋼ノズルとを備え、
     前記偏心量Eは、前記冷却水ノズルの先端から前記中心点までの垂直距離Lとの関係において、E/Lの値が0.05~0.20の範囲である、水アトマイズ金属粉末の製造装置。
    An apparatus for producing water-atomized metal powder in which cooling water is jetted against a falling molten metal flow, and the molten metal flow collides with the cooling water to divide the molten metal flow into metal powder,
    a plurality of cooling water nozzles for injecting the cooling water toward the molten metal flow downward from the periphery of the molten metal flow so as to converge at a central point;
    a molten steel nozzle that supplies the molten metal flow so as to contact the cooling water at a position separated by an eccentricity E in the horizontal distance from the center point,
    Manufacture of water-atomized metal powder, wherein the eccentricity E is in a relationship between the vertical distance L from the tip of the cooling water nozzle to the center point, and the value of E/L is in the range of 0.05 to 0.20. Device.
PCT/JP2022/040910 2021-12-21 2022-11-01 Production method for water-atomized metal powder, and production device for water-atomized metal powder WO2023119896A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023505679A JP7276637B1 (en) 2021-12-21 2022-11-01 Method for producing water-atomized metal powder and apparatus for producing water-atomized metal powder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-206705 2021-12-21
JP2021206705 2021-12-21

Publications (1)

Publication Number Publication Date
WO2023119896A1 true WO2023119896A1 (en) 2023-06-29

Family

ID=86901963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040910 WO2023119896A1 (en) 2021-12-21 2022-11-01 Production method for water-atomized metal powder, and production device for water-atomized metal powder

Country Status (1)

Country Link
WO (1) WO2023119896A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01219110A (en) * 1988-02-27 1989-09-01 Sumitomo Metal Ind Ltd Production of metal powder
JP2001226704A (en) * 2000-02-10 2001-08-21 Sumitomo Metal Ind Ltd Manufacturing apparatus and manufacturing method for metallic powder
JP2017509785A (en) * 2013-12-20 2017-04-06 ポスコPosco Powder manufacturing apparatus and powder forming method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01219110A (en) * 1988-02-27 1989-09-01 Sumitomo Metal Ind Ltd Production of metal powder
JP2001226704A (en) * 2000-02-10 2001-08-21 Sumitomo Metal Ind Ltd Manufacturing apparatus and manufacturing method for metallic powder
JP2017509785A (en) * 2013-12-20 2017-04-06 ポスコPosco Powder manufacturing apparatus and powder forming method

Similar Documents

Publication Publication Date Title
US4592781A (en) Method for making ultrafine metal powder
JP2017031463A (en) Production method of water atomization metal powder
JP6721138B1 (en) Method for producing water atomized metal powder
US4613371A (en) Method for making ultrafine metal powder
JP2020105593A (en) Method for producing atomized metal powder
JP6372442B2 (en) Method for producing water atomized metal powder
JP4264873B2 (en) Method for producing fine metal powder by gas atomization method
JP2018104787A (en) Production method and production apparatus for atomized metal powder
WO2023119896A1 (en) Production method for water-atomized metal powder, and production device for water-atomized metal powder
JP7276637B1 (en) Method for producing water-atomized metal powder and apparatus for producing water-atomized metal powder
JP6575723B1 (en) Method for producing atomized metal powder
JP6721137B1 (en) Method for producing water atomized metal powder
JP6996673B1 (en) How to make water atomized metal powder
WO2022107411A1 (en) Production method for water-atomized metal powder
JP6881549B2 (en) Manufacturing method of soft magnetic iron powder
JP2002309361A (en) Method for manufacturing powder for thermal spraying, and thermal spray powder
CN113020605A (en) Special in-situ toughening high-performance spherical tungsten powder for laser 3D printing and preparation method thereof
KR102557249B1 (en) Soft magnetic alloy powder, dust core, magnetic parts and electronic devices
JPH06172817A (en) Production of quenched metal powder
KR102295736B1 (en) Method for improving the flow characteristic of powder and the method for preparing the powder with improved flow characteristic
US20220062986A1 (en) Magnetic core, magnetic component and electronic device
JPS6024302A (en) Production of amorphous alloy powder
CN112638561A (en) FeSiCrC alloy powder and magnetic core
CN115083712A (en) Rare earth magnet powder, bonded magnet, sintered magnet, and method for producing these

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023505679

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22910616

Country of ref document: EP

Kind code of ref document: A1