JPS6024303A - Production of amorphous alloy powder - Google Patents

Production of amorphous alloy powder

Info

Publication number
JPS6024303A
JPS6024303A JP13138283A JP13138283A JPS6024303A JP S6024303 A JPS6024303 A JP S6024303A JP 13138283 A JP13138283 A JP 13138283A JP 13138283 A JP13138283 A JP 13138283A JP S6024303 A JPS6024303 A JP S6024303A
Authority
JP
Japan
Prior art keywords
powder
alloy
amorphous
cooling
cooling block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13138283A
Other languages
Japanese (ja)
Other versions
JPS61401B2 (en
Inventor
Hiroshi Kumai
浩 熊井
Tatsuhiko Noda
野田 龍彦
Tadashi Ichiyama
市山 正
Takashi Sato
隆 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kinzoku Co Ltd
Original Assignee
Nippon Kinzoku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kinzoku Co Ltd filed Critical Nippon Kinzoku Co Ltd
Priority to JP13138283A priority Critical patent/JPS6024303A/en
Priority to US06/630,257 priority patent/US4647305A/en
Priority to EP84108503A priority patent/EP0131969B1/en
Priority to DE8484108503T priority patent/DE3467984D1/en
Publication of JPS6024303A publication Critical patent/JPS6024303A/en
Publication of JPS61401B2 publication Critical patent/JPS61401B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To produce efficiently alloy powder which has irregular shapes and is made thoroughly amorphous by letting a molten alloy flow down through a fine hole, blowing high-velocity fluid to the molten alloy to pulverize the same and cooling quickly and solidifying the pulverized alloy by allowing to collide the powder against a cooling block. CONSTITUTION:The molten alloy to be made amorphous in a crucible 2 is let to flow down through a fine hole in the lower part of the crucible into a spraying tank 1 where a high-velocity fluid is ejected from a spraying nozzle 3 is blown to pulverize the molten alloy. The pulverized powder is allowed to collide against a cooling body 4 which is provided right under the pulverizing point (a) for the molten alloy and has a circular conical shape at the upper part to solidify quickly the powder. The solidified powder is taken out of a discharge tank 7 through an overflow pipe 6 in the form of the amoprhous alloy powder. A circular cylindrical wall 5 for preventing scattering is further provided around a cooling block 4 to prevent scattering of the formed powder and to accelerate the quick cooling by the additional suction of the powder. The amorphous alloy powder is thus efficiently obtd.

Description

【発明の詳細な説明】 本発明は、流下する合金溶湯に尚速流体を吹き、つけて
非晶質合金粉末を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing amorphous alloy powder by blowing and impregnating a flowing molten alloy with a flowing fluid.

従来非晶質合金は、その形状にょシ樵々の方法で製造さ
れている。例えば薄片の非晶質合金を製造する場合、ガ
ン法、ピストン・アノビル法、トーション・カタノぐル
ト法などが使用される。また薄帯を連続的に製造する場
合、遠心法、単ロール法、双ロール法などが使用される
。更に細線を製造する場合、水流中紡糸法、回転液中紡
糸法などが使用されている。しかしこれらの方法で得ら
れる非晶質合金は、形状が物足され、任意形状の部品等
を作製することが大変困難である。
Conventionally, amorphous alloys have been manufactured by various methods depending on their shape. For example, when manufacturing amorphous alloys in the form of flakes, the Gunn method, the piston-Anovil method, the torsion-Katanogult method, etc. are used. In addition, when manufacturing ribbons continuously, a centrifugal method, a single roll method, a twin roll method, etc. are used. Furthermore, when producing fine wires, methods such as water spinning and rotating liquid spinning are used. However, the amorphous alloys obtained by these methods have limited shapes, and it is very difficult to manufacture parts with arbitrary shapes.

これに対し複雑な形状の部品を製造する方法として、粉
末をプレスなどを用いて圧粉成形する粉末冶金法が知ら
れている。また非晶質の合金粉末全製造する方法として
、スプレー法、キャビテーション法、回転液中噴出法、
アトマイズ法などが知られている。
On the other hand, a powder metallurgy method in which powder is compacted using a press or the like is known as a method for manufacturing parts with complex shapes. In addition, methods for producing amorphous alloy powder include spray method, cavitation method, injection method in rotating liquid,
The atomization method is known.

しかしこの方法は、冷却速反が十分でなく、細かい粒子
のものしか非晶質化せず、歩留シが悪いとともに、非晶
質化の程度も不均一である。
However, in this method, the cooling speed is not sufficient, only fine particles become amorphous, the yield is poor, and the degree of amorphization is uneven.

しかも得られた非晶質合金粉末の形状が球状あるいはフ
レーク状であるため圧粉成形しても粉末相互のからみ合
いが少なく、結会剤を用いなけれは半成素材、部品等を
製作することができない。従ってこれらの方法で得られ
た粉末を工業的に粉末冶金法にオリ用することは困難で
ある。
Moreover, since the shape of the obtained amorphous alloy powder is spherical or flake-like, there is little entanglement between the powders even when compacted, making it difficult to manufacture semi-finished materials, parts, etc. without using a binder. I can't. Therefore, it is difficult to industrially use powders obtained by these methods in powder metallurgy.

本発明者は、この問題を解消すべく研究を重ねた結果、
以下の知見を得た。
As a result of repeated research to solve this problem, the inventor found that
The following findings were obtained.

溶湯を粉化して得られる粉末の形状は、溶湯派に対する
尚速流体の剪断力などによって決まる粉化特性と、粉化
後の凝固、冷却に至る過程とに大きく影響される。とく
に凝固、冷却に至るまでの過程は、溶鍛の物理的性質と
密接な関係があシ、冷却過程における粘性表面張力など
によって粉末の形状が影響を受ける。またこれら物理的
性質と冷却速度との相対的な諸因子が粉末の非晶質化に
も大きな影響を与える。
The shape of the powder obtained by pulverizing molten metal is greatly influenced by the pulverization characteristics determined by the shearing force of the still-velocating fluid on the molten metal, and the processes leading to solidification and cooling after pulverization. In particular, the processes leading up to solidification and cooling are closely related to the physical properties of molten forging, and the shape of the powder is affected by viscous surface tension and other factors during the cooling process. Moreover, the relative factors between these physical properties and the cooling rate have a great influence on the amorphization of the powder.

本発明は、この知見にもとづいてなされたもので、その
目的とするところは、浴湯粉化後の粉末を冷却ブロック
に当てて粉末周囲の蒸気膜を破壊し、更に冷却速度を嶋
め、完全に非晶質化するとともに粉末の形状を不規則化
した圧粉成形可能な粉末を効率よく得ることができる方
法を得んとするものである。
The present invention was made based on this knowledge, and its purpose is to destroy the vapor film around the powder by applying the powder after powdering in a hot water bath to a cooling block, and to further reduce the cooling rate. The object of the present invention is to provide a method that can efficiently obtain a compactable powder that is completely amorphous and has an irregular powder shape.

すなわち第1の発明は、非晶質化する合金の#湯を細孔
〃・ら流下して高速流体を吹きつけ、浴湯を粉化すると
ともに急冷凝固して非晶質合金粉末を製造する方法にお
いて溶湯を粉化する個所の直下に冷却ブロックを配置し
てここに粉化後の粒子を当てることを%仏とする。又第
2の発明は、冷却ブロックの周囲に飛散防止壁を設ける
ことを特徴とする。
That is, the first invention is to flow down the hot water of the alloy to be amorphous through the pores and spray a high-velocity fluid to powder the hot water and rapidly solidify it to produce an amorphous alloy powder. In this method, a cooling block is placed directly below the point where the molten metal is pulverized, and the pulverized particles are applied to the cooling block. Further, the second invention is characterized in that a scattering prevention wall is provided around the cooling block.

以下本発明を図面を参照して説明する。The present invention will be explained below with reference to the drawings.

図面は、非晶質合金の製造装置の一例を示す。The drawing shows an example of an amorphous alloy manufacturing apparatus.

この装置は、噴霧タンクl上にルツボ2全配置し、ルツ
ボ2の下方に噴霧ノズル3、冷却ブロック4を配置し、
冷却ブロック4の周囲に飛散防止壁5を設け、更に噴霧
タンクII/C取付けたオーバーフロー管6を排出タン
ク7に接続している。
In this device, a crucible 2 is entirely placed on a spray tank 1, a spray nozzle 3 and a cooling block 4 are placed below the crucible 2,
A scattering prevention wall 5 is provided around the cooling block 4, and an overflow pipe 6 to which a spray tank II/C is attached is connected to a discharge tank 7.

ルツボ2は、非晶質化する合金の溶湯を入れるもので、
下部に細孔を形成している。この合金としては、生とし
て遷移金属元素に約15〜35原子チの半金鵜元素(B
、C,Si+P、Ge & ト) ’e加えた共晶合金
型及び遷移金網−遷移金属系、遷移金属−金属系、金属
−金属系、金楓−希土類系の金属間化合物合金型などが
挙げられる。
Crucible 2 is for containing the molten alloy that will become amorphous.
Pores are formed at the bottom. As a raw material, this alloy contains about 15 to 35 atoms of a transition metal element (B).
, C, Si+P, Ge & G) 'e added eutectic alloy type and intermetallic compound alloy type such as transition wire mesh-transition metal system, transition metal-metal system, metal-metal system, gold maple-rare earth system, etc. It will be done.

噴霧ノズル3は、高速流体(例えば水等の液体あるいは
ガ゛ス)を噴出する例えは現状リングノズルで、a点で
高速Mt体の焦点を結ぶようになっている。この高速流
体の交角は、吹精ノズル開口径、高速流体の速さ、冷却
ブロック4の大きさとその位置によって異なるが30’
〜100’が好適である。また高速流体の速さは、噴霧
圧pに依存し、その値は液体の場合80 kgf/cm
2以上、ガスの場合6に9f/cnr2以上が望ましい
The spray nozzle 3 is currently a ring nozzle that spouts a high-speed fluid (for example, liquid such as water or gas), and is designed to focus the high-speed Mt body at point a. The intersection angle of this high-speed fluid varies depending on the opening diameter of the ejaculation nozzle, the speed of the high-speed fluid, and the size and position of the cooling block 4, but is 30'
-100' is suitable. In addition, the speed of high-speed fluid depends on the spray pressure p, which is 80 kgf/cm for liquid.
2 or more, preferably 6 to 9 f/cnr2 or more in the case of gas.

更に冷却ブロック4は、溶湯が粉化する個P3ra点の
直下に設けられて、いる。この冷却ブロック4は上部が
円錐形状をなし、その斜面に溶湯粉化した粉末に尚たる
ようになっている。この冷却ブロック4の頂部の角度θ
は、任意であるが粉末をスムーズに下方に流下させるこ
とを考慮して30−150’が望ましい。また冷却ブロ
ック4の材質は鋼にクロムメッキ等が好ましく、内部を
水冷構造としてもよい。
Further, the cooling block 4 is provided directly below the point P3ra where the molten metal is powdered. The cooling block 4 has a conical upper part, and the molten metal powder is formed on the slope thereof. The angle θ of the top of this cooling block 4
is optional, but is preferably 30-150' in order to allow the powder to flow downward smoothly. The material of the cooling block 4 is preferably steel plated with chrome, and the inside may have a water-cooled structure.

この冷却プロ、り4の周囲に設けた飛散防止壁5は例え
ば円筒状をなし粒子の飛散を防ぐ構造となっている。飛
散防止壁5は、内径があまシ小さいと粒化の継続が困難
になる。このため、その直径が冷却ブロック4の直径工
plO〜100簡大きい程度が好ましい。
The anti-scattering wall 5 provided around the cooling plate 4 has a cylindrical shape, for example, and has a structure to prevent particles from scattering. If the inner diameter of the scattering prevention wall 5 is too small, it will be difficult to continue granulation. For this reason, it is preferable that the diameter is larger than the diameter of the cooling block 4 by 100 mm.

しかして本発明方法は、ルツボ2の細孔がら溶湯を流下
し、流下する溶湯を噴霧ノズル3から噴出する茜速流体
にLシ粉化する。この時粉化した合金粉末を冷却ブロッ
ク4に当てることに↓り冷却速度を高めるとともに粉末
周囲に発生する蒸気膜を破壊して粉末の冷却速度を著し
く上昇する。この際飛、散防止壁5にょシ粉末の飛散を
防止している。また飛散防止壁5は付加的に粉末の吸引
による急冷効果がある。
Thus, in the method of the present invention, the molten metal flows down through the pores of the crucible 2, and the flowing molten metal is pulverized into a madder fluid that is ejected from the spray nozzle 3. At this time, by applying the powdered alloy powder to the cooling block 4, the cooling rate is increased, and the vapor film generated around the powder is destroyed, thereby significantly increasing the cooling rate of the powder. At this time, the scattering prevention wall 5 prevents the powder from scattering. Additionally, the anti-scattering wall 5 additionally has a quenching effect by suctioning the powder.

そして粉末を噴霧タンク1又は排出タンク7で捕捉し、
その後付NdM体の除去という工程を経て、非晶質合金
粉末を得る。
The powder is then captured in the spray tank 1 or the discharge tank 7,
After a step of removing the attached NdM body, an amorphous alloy powder is obtained.

次に本発明の実施例につき説明する。Next, examples of the present invention will be described.

実施例1 Fe 80原子%、P13原子%、07原子チの組成の
合金5kgを溶解し、溶湯温度1400℃でノズルから
流下せしめた。この流下溶湯に噴霧圧力105kli+
、fi折280.4/rrI+n−、噴霧交角40°で
水を噴出し、更に冷却ブロックに当てて非晶質合金粉末
(Nllυを得た。この場合冷却ブロックは上部を円錐
状とし、頂角θを120°、直径d150mφとした。
Example 1 5 kg of an alloy having a composition of 80 atomic % Fe, 13 atomic % P, and 0.7 atomic % was melted and allowed to flow down from a nozzle at a molten metal temperature of 1400°C. Spray pressure 105kli+ on this flowing molten metal
, fi fold 280.4/rrI+n-, water was ejected at a spray intersection angle of 40°, and the amorphous alloy powder (Nllυ was obtained by applying it to a cooling block. In this case, the cooling block had a conical upper part, and the apex angle was The angle θ was set to 120°, and the diameter d was set to 150 mφ.

また冷却ブロックの周囲の飛散防止壁は、内径200a
φ、長さ200mの円筒状である。
In addition, the anti-scattering wall around the cooling block has an inner diameter of 200 mm.
It has a cylindrical shape with a diameter of φ and a length of 200 m.

このようにして得られた非晶質合金粉末の粒度分布を調
べ、その結果を第1表に示す。また比較のため冷却ブロ
ック、飛散防止壁を用いす他の条件を同じとして非晶質
合金粉末(隘2)を製造し、その粒度分布を調べたその
結果を第1表に併記する。
The particle size distribution of the amorphous alloy powder thus obtained was examined, and the results are shown in Table 1. For comparison, an amorphous alloy powder (Number 2) was produced under the same conditions except that a cooling block and anti-scattering wall were used, and its particle size distribution was investigated. The results are also shown in Table 1.

次に本発明に係る粉末(Nal)のうち+100メツシ
ユ、−350メツシユのものをX線回折して非晶質化し
ているか否かを調べた。その結果を第2図(イ)(+1
00メツシユン及び同図(ロ)(−350メツシユ)に
示す。また従来の粉末(蝿2)についても同様にX線回
折して非晶質化しているか否かを調べた。その結果を第
3図(イ)(+100メツシユン及び同図(ロ)(−3
50メツシユ)に示すO 第2図及び第3図から本発明のものは、結晶質の回折・
やターンが見られずブロードになっておシ、非晶質化し
ていることがわかる。
Next, among the powders (Nal) according to the present invention, +100 mesh and -350 mesh were subjected to X-ray diffraction to examine whether or not they had become amorphous. The results are shown in Figure 2 (a) (+1
00 mesh and the same figure (b) (-350 mesh). Furthermore, the conventional powder (Fly 2) was similarly subjected to X-ray diffraction to determine whether it had become amorphous or not. The results are shown in Figure 3 (A) (+100 meters) and Figure 3 (B) (-3
From FIGS. 2 and 3, the crystalline diffraction and
It can be seen that there is no visible turn and it becomes broad, indicating that it has become amorphous.

次に各非晶質合金粉末の非晶質化朋を示差熱分析によシ
調べた。その結果を第2表に示す。
Next, the degree of amorphization of each amorphous alloy powder was investigated by differential thermal analysis. The results are shown in Table 2.

第 2 表 第2表から本発明方法で完全に非晶質化できることがわ
かる。
Table 2 It can be seen from Table 2 that complete amorphization can be achieved by the method of the present invention.

また各非晶質合金粉末(随1,1@2.)の形状を顕微
鏡で調べ、その模式図を第4図(() C本発明粉末う
及び同図←)(従来粉末〕に示す。第1図から本発明合
金粉末が不規則形状となっていることがわかる。
In addition, the shape of each amorphous alloy powder (1, 1@2.) was examined using a microscope, and a schematic diagram thereof is shown in FIG. It can be seen from FIG. 1 that the alloy powder of the present invention has an irregular shape.

次に本発明に係る粉末(随1)と従来の粉末(瀧2)と
の見掛誓度(A、D)と流動度(F・R)とを調べたそ
の結果を第3表に示す。
Next, the apparent density (A, D) and fluidity (F・R) of the powder according to the present invention (Part 1) and the conventional powder (Taki 2) were investigated, and the results are shown in Table 3. .

第 3 表 上表から本発明粉末は、見掛音度が従来・′コ比べ著し
く低く、派勤度が悪いため、従来のものに比べて著しく
不規則であることすわかるO実施例2 鉄75原子係、5ilo原子チ、B15原子チの合金5
9を溶解し、実施例1と同様の条件で非晶質合金粉末を
作製した。その非晶質化度を第4表に示す。
Table 3 From the above table, it can be seen that the powder of the present invention has a significantly lower apparent sound intensity than that of the conventional powder, has a poor distribution, and is therefore significantly irregular compared to the conventional powder.O Example 2 Iron Alloy 5 of 75 atoms, 5ilo atoms, B15 atoms
9 was melted to produce an amorphous alloy powder under the same conditions as in Example 1. Table 4 shows the degree of amorphization.

第4表 実施例3 鉄75原子係、5i15原子係、B10原子チの合金5
 Kyを溶解し、実施例1と同様の条件で非晶質合金粉
末を作製した。その非晶質化度を第5表に示す〇 第 5 表 実施例4 鉄80原子チ、ポロン20原子チの合金5.Okgを溶
解し、溶湯温度1400℃、噴霧圧力9Qkj7/cm
2.水の流k 260 A/min l QJ(fJ交
角30匹、冷却ブロック直径130闘φ、頂角100度
、飛散防止壁は内径160aφで粉末を作製した。その
非晶質化度を第6表に示す。
Table 4 Example 3 Alloy 5 of 75 atoms of iron, 15 atoms of 5i, and 10 atoms of B
Ky was dissolved and an amorphous alloy powder was produced under the same conditions as in Example 1. The degree of amorphization is shown in Table 5. Table 5 Example 4 Alloy of 80 atoms of iron and 20 atoms of poron 5. Melt Okg, molten metal temperature 1400℃, spray pressure 9Qkj7/cm
2. Water flow k 260 A/min l QJ (fJ Intersecting angle 30 particles, cooling block diameter 130 mm, apex angle 100 degrees, scattering prevention wall inner diameter 160 a φ) Powder was prepared.The degree of amorphization is shown in Table 6. Shown below.

第 6 表 実施例5 鉄40原子チ、ニッケル40原子%、ハ?ロン、20原
子袋の合金3.0〜を溶解し、溶湯温度1400℃、噴
霧圧力107 kg7cm2.水の流量290石/m 
1 n *噴霧交角40反、冷却ブロックは直径150
6φ、頂角90度、飛散防止壁は内径1701++1φ
で粉末を作製した。その非晶質化度を第7表に示す。
Table 6 Example 5 40 atoms of iron, 40 atom% of nickel, H? Ron, 20 atomic bags of alloy 3.0~ were melted, the molten metal temperature was 1400℃, the spray pressure was 107kg7cm2. Water flow rate 290 koku/m
1 n *Spray intersection angle 40 degrees, cooling block diameter 150 degrees
6φ, apex angle 90 degrees, inner diameter of scattering prevention wall 1701++1φ
A powder was prepared. Table 7 shows the degree of amorphization.

第7表 実施例6 鉄68原子チ、クロムlO原子チ、モリブデン2原子チ
、リン13i子チ、炭素7原子チの合金3. Okgを
溶解し溶湯温度1400℃、噴霧圧力110 kg7c
m2.水の流11250 n/min 、噴霧交角55
度、冷却ブロックは直径180ffllφ。
Table 7 Example 6 Alloy of 68 atoms of iron, 10 atoms of chromium, 2 atoms of molybdenum, 13 atoms of phosphorus, and 7 atoms of carbon 3. Melt Okg, molten metal temperature 1400℃, spray pressure 110kg7c
m2. Water flow 11250 n/min, spray intersection angle 55
The cooling block has a diameter of 180ffllφ.

頂角110度、飛散防止壁は内径200gφで粉末を作
製した。その非晶質化度を第8表に示 −すO 第 8 表 以上説明したようVこ本発明によ!シ(ゲ、粒化後の粉
末全6却ブロツクにぶっつけ冷却速反を上昇させること
により、見金に非晶質化された合金粉末を得ることがで
きるとともに、合金粉末を不規則形状化させることがで
きる。このため、この合金粉末を結合剤を用いることな
く、圧粉成形、ロール間での成形、押出し成形などがで
き、例えば複雑な形状の磁性材料、高耐食性材料など従
来の非晶質合金では作ることができなかった新しい用途
に使用できる顕著な効果を奏する。
The powder was prepared with an apex angle of 110 degrees and a scattering prevention wall with an inner diameter of 200 gφ. The degree of amorphization is shown in Table 8. By bumping the entire powder after granulation into a cooling block to increase the cooling rate, it is possible to obtain an amorphous alloy powder as well as to make the alloy powder into an irregular shape. Therefore, this alloy powder can be compacted, formed between rolls, extruded, etc. without using a binder. It has remarkable effects and can be used in new applications that could not be made with high quality alloys.

しかも従来装置に冷却ブロック及び飛散防止壁を設ける
という簡単な構造で効率よく製造できる。
Moreover, it can be manufactured efficiently with a simple structure in which a conventional device is provided with a cooling block and a scattering prevention wall.

なお本弗明方伝は、超急冷合金粉末の作製に利用するこ
ともできる。
In addition, this method can also be used to produce ultra-quenched alloy powder.

【図面の簡単な説明】[Brief explanation of drawings]

第11は本発明方法に係る非晶質合金粉末の製造装置の
一例を示す説明図、第2図は−及び同図(ロ)は本発明
合金粉末のX線回析和果を示す図、第3図HJ及び同図
(ロ)は従来合金粉末のX線回折結果を示す図、第4図
(インは本発明合金粉末の模式図、同図(ロ)は従来付
金粉末の模式図でるる。 l・・・咲bタンク、2・・・ルツ8イ、3・・・唄粉
ノズル、4°°°冷却プロ、り、5・・・飛散防止壁、
6・・・オー・ぐ−ノロ−管、7・・・排出タンク。 出願人代理人 弁理士 鈴 江 武 彦矛1図 3IP2f!1 (イ) (ロ) 2θ 2θ 3IP3f!1 (イ) (ロ) 矛4 図 (イ) (ロ) 手続補正書 昭和 49.5月25日 特許庁長官 若 杉 本口 夫 殿 ■、事件の表示 特願昭58−131382号 2、発明の名称 非晶質合金粉末の製造方法 3、補正をする渚 事件との関係 特許出願人 日本金属株式会社 4、代理人 5、自発補正 7、補正の内容 (1) 明細書中梁10負第1行目〜第2行目に1+1
00メツシユ、−350メツシユ」とあるを「+100
メツシユ、−100メツシユ〜+350メツシユ、及び
−350メツシユ」と訂正する。 (2) 同第10頁第12行目に「わかる。」とあるを
1わかる。なお−100〜+350メツシユ(二ついて
は、図示していないが、同様のX線回折により、本発明
のものが非晶質化し、従来のものが納品質であることが
わかった。」と訂正する。
11 is an explanatory diagram showing an example of an apparatus for producing amorphous alloy powder according to the method of the present invention, FIG. Figure 3 HJ and figure (b) are diagrams showing the X-ray diffraction results of the conventional alloy powder, and Figure 4 (in is a schematic diagram of the alloy powder of the present invention, and figure (b) is a schematic diagram of the conventional metallized powder. Deluru. l...Saki b tank, 2...Rutsu 8i, 3...Uta powder nozzle, 4°°° cooling pro, 5...Scatter prevention wall,
6...O-guno-no-pipe, 7...Discharge tank. Applicant's agent Patent attorney Takeshi Suzue Hikoyori 1 Figure 3 IP 2f! 1 (a) (b) 2θ 2θ 3IP3f! 1 (a) (b) Spear 4 Diagram (a) (b) Procedural amendments Showa 49. May 25, 1949, Director General of the Patent Office Mr. Wakasugi Motoguchi ■, Indication of Case Patent Application No. 131382 No. 1988 2, Invention Name of the method for manufacturing amorphous alloy powder 3, Relationship with the Nagisa case where the amendment is made Patent applicant Nippon Metal Co., Ltd. 4, agent 5, voluntary amendment 7, content of the amendment (1) Liang 10 negative number in the specification 1+1 for 1st line to 2nd line
00 mesh, -350 mesh” is changed to “+100 mesh”
``Mesh, -100 mesh to +350 mesh, and -350 mesh.'' (2) I understand the phrase "I understand." on page 10, line 12. It should be noted that -100 to +350 meshes (although the two meshes are not shown, similar X-ray diffraction revealed that the one of the present invention became amorphous and the conventional one was of the delivered quality.) .

Claims (2)

【特許請求の範囲】[Claims] (1)非晶質化する合金の溶湯を細孔から流下して高速
流体を吹きつけ、溶湯を粉化するとともに急冷凝固して
非晶質合金粉末を製造する方法において、溶湯を粉化す
る個所の直下に冷却ブロックを配置して粉化後の粒子を
ここに当てることを特徴とする非晶質合金粉末の製造方
法。
(1) In the method of producing amorphous alloy powder by flowing the molten metal of the alloy to be amorphous down through pores and spraying a high-velocity fluid to powder the molten metal and rapidly solidify the molten metal, the molten metal is powdered. A method for producing an amorphous alloy powder, characterized in that a cooling block is placed directly below the point and the powdered particles are applied thereto.
(2)非晶質化する合金の溶湯を細孔から流下して高速
流体を吹きつけ、溶湯を粉化するとともに急冷凝固して
非晶質合金粉末を製造する方法において、溶湯を粉化す
る個所の直下に冷却ブロックを配置し、かつ同冷却ブロ
ックの周面に飛散防止壁を設けて、粉化後の粒子を上記
冷却ブロックに当てることを特徴とする非晶質合金粉末
の製造方法。
(2) In the method of manufacturing an amorphous alloy powder by flowing the molten metal of the alloy to be amorphous down through pores and spraying a high-velocity fluid to powder the molten metal and rapidly solidify the molten metal, the molten metal is powdered. 1. A method for producing amorphous alloy powder, characterized in that a cooling block is placed directly under the cooling block, a scattering prevention wall is provided on the circumferential surface of the cooling block, and the powdered particles are applied to the cooling block.
JP13138283A 1983-07-19 1983-07-19 Production of amorphous alloy powder Granted JPS6024303A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP13138283A JPS6024303A (en) 1983-07-19 1983-07-19 Production of amorphous alloy powder
US06/630,257 US4647305A (en) 1983-07-19 1984-07-12 Process for manufacturing amorphous alloy powders
EP84108503A EP0131969B1 (en) 1983-07-19 1984-07-18 Process for manufacturing amorphous alloy powders
DE8484108503T DE3467984D1 (en) 1983-07-19 1984-07-18 Process for manufacturing amorphous alloy powders

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13138283A JPS6024303A (en) 1983-07-19 1983-07-19 Production of amorphous alloy powder

Publications (2)

Publication Number Publication Date
JPS6024303A true JPS6024303A (en) 1985-02-07
JPS61401B2 JPS61401B2 (en) 1986-01-08

Family

ID=15056640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13138283A Granted JPS6024303A (en) 1983-07-19 1983-07-19 Production of amorphous alloy powder

Country Status (1)

Country Link
JP (1) JPS6024303A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5123937A (en) * 1989-02-03 1992-06-23 Japan Gore-Tex Inc. Deaerating film and deaerating method
US8012408B2 (en) 2006-04-25 2011-09-06 Seiko Epson Corporation Metal powder manufacturing device, metal powder, and molded body
JP2017031463A (en) * 2015-07-31 2017-02-09 Jfeスチール株式会社 Production method of water atomization metal powder
WO2019111951A1 (en) 2017-12-07 2019-06-13 Jfeスチール株式会社 Method for producing atomized metal powder

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004076050A2 (en) * 2003-02-28 2004-09-10 Central Research Institute Of Electric Power Industry Method and apparatus for producing fine particles

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5123937A (en) * 1989-02-03 1992-06-23 Japan Gore-Tex Inc. Deaerating film and deaerating method
US8012408B2 (en) 2006-04-25 2011-09-06 Seiko Epson Corporation Metal powder manufacturing device, metal powder, and molded body
US8118904B2 (en) 2006-04-25 2012-02-21 Seiko Epson Corporation Metal powder manufacturing device, metal powder, and molded body
JP2017031463A (en) * 2015-07-31 2017-02-09 Jfeスチール株式会社 Production method of water atomization metal powder
WO2019111951A1 (en) 2017-12-07 2019-06-13 Jfeスチール株式会社 Method for producing atomized metal powder
KR20200078630A (en) 2017-12-07 2020-07-01 제이에프이 스틸 가부시키가이샤 Method for manufacturing atomized metal powder

Also Published As

Publication number Publication date
JPS61401B2 (en) 1986-01-08

Similar Documents

Publication Publication Date Title
Yolton et al. Conventional titanium powder production
DE3505659A1 (en) MELT SPRAYING WITH REDUCED GAS FLOW AND DEVICE FOR SPRAYING
DE3505660A1 (en) DEVICE AND METHOD FOR SPRAYING UNSTABLE MELTING FLOWS
AU625607B2 (en) Aluminium-strontium master alloy
US4469514A (en) Sintered high speed tool steel alloy composition
CN110640155A (en) Method for improving sphericity of metal powder prepared by gas atomization method
Goudar et al. Effect of atomization parameters on size and morphology of Al-17Si alloy powder produced by free fall atomizer
JP4217997B2 (en) Soft magnetic alloy powder
US4770718A (en) Method of preparing copper-dendritic composite alloys for mechanical reduction
US4576642A (en) Alloy composition and process
EP0131969B1 (en) Process for manufacturing amorphous alloy powders
DE3231045C2 (en)
JPS6024303A (en) Production of amorphous alloy powder
DE3505662A1 (en) METHOD FOR THE PRODUCTION OF FINE POWDER FROM MOLTEN METAL AND A DEVICE FOR SPRAYING
JPH02156003A (en) Manufacture of alloy powder containing titanium-aluminum intermetallic compound
DE3211861A1 (en) METHOD AND DEVICE FOR PRODUCING HIGH-PURITY CERAMIC-FREE METAL POWDERS
DE69224505T2 (en) METHOD AND DEVICE FOR PRODUCING METAL POWDER
JPS6024302A (en) Production of amorphous alloy powder
US3512962A (en) Cobalt-tungsten carbide alloy and process
JP3000610B2 (en) Method for producing hard particle dispersed alloy powder and hard particle dispersed alloy powder
JP6924990B2 (en) Thermal spray coating and thermal spray coating member
JPH0368922B2 (en)
Agrawal et al. Processing of Cu–Al–Ni alloy by spray atomization and deposition process
Kuskov Discrete filler materials for surfacing in current-conducting mould
DE2553076A1 (en) METAL POWDER FOR SINKED PARTS AND METHOD FOR ITS MANUFACTURING