JPS61201796A - Manufacture of wall surface of heat exchanger tube - Google Patents

Manufacture of wall surface of heat exchanger tube

Info

Publication number
JPS61201796A
JPS61201796A JP60042227A JP4222785A JPS61201796A JP S61201796 A JPS61201796 A JP S61201796A JP 60042227 A JP60042227 A JP 60042227A JP 4222785 A JP4222785 A JP 4222785A JP S61201796 A JPS61201796 A JP S61201796A
Authority
JP
Japan
Prior art keywords
heat exchanger
plating
wall surface
exchanger tube
counter electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60042227A
Other languages
Japanese (ja)
Other versions
JP2645425B2 (en
Inventor
Masatoshi Inatani
正敏 稲谷
Hiroto Nakama
啓人 中間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP60042227A priority Critical patent/JP2645425B2/en
Publication of JPS61201796A publication Critical patent/JPS61201796A/en
Application granted granted Critical
Publication of JP2645425B2 publication Critical patent/JP2645425B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/623Porosity of the layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

PURPOSE:To accelerate boiling heat transfer by a heat exchanger tube by forming an uneven metallic layer on the wall surface of the tube by plating so as to increase the surface area. CONSTITUTION:An uneven metallic layer is formed on the wall surface of a heat exchanger tube by plating with a plating soln. contg. an oxyethylene surfactant and low concn. chloride ions as additives. At this time, a counter electrode put in the plating soln. along the inner wall of the heat exchanger tube is made of a metal nobler than the metal for plating. In the 1st stage, the metal for plating is deposited on the counter electrode by using the wall surface of the heat exchanger tube as the anode and the counter electrode as the cathode. In the 2nd stage, the wall surface of the heat exchanger tube is plated by using the wall surface as the cathode and the counter electrode as the anode. The electric capacity in the 2nd stage is made larger than the electric capacity in the 1st stage.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は熱交換器や、ヒートパイプに利用される、特に
液媒体を流動させる伝熱管に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to heat exchanger tubes for use in heat exchangers and heat pipes, in particular for flowing liquid media.

従来の技術 熱交換部材に多孔質層を形成し、表面積の増大、沸騰伝
熱の促進効果をはかることは一般に知られているが、伝
熱管内に多孔質層を形成することは焼結、溶射法では困
難であるから通常はメッキ法を利用する。しかしこの様
な表面積を増大し沸騰伝熱の促進効果をはかるために行
うメッキ層は、平滑メッキと違った条件で加工し、適度
なポーラス性と突起を有するメッキ層に仕上げる必要が
ある。この様なメッキ層を形成する方法としては、通常
の平滑メッキを得るために必要な錯塩や、にかわ状物質
、光沢剤、結晶微粒子化のための添加剤などはメッキ液
中に配合しないか、極く微量としたメッキ液を使用し、
メッキ条件としては一般的に高温で高電流密度で行ない
、メッキ液は高速の流動攪拌を行うことにより形成され
る。
Conventional Technology It is generally known that a porous layer is formed in a heat exchanger member to increase the surface area and promote boiling heat transfer, but forming a porous layer in a heat exchanger tube is difficult due to sintering, Since thermal spraying is difficult, plating is usually used. However, the plating layer that is used to increase the surface area and promote boiling heat transfer needs to be processed under conditions different from those for smooth plating to create a plating layer with appropriate porousness and protrusions. The method for forming such a plating layer is to avoid adding complex salts, glue-like substances, brighteners, additives for making crystal fine particles, etc. to the plating solution, which are necessary to obtain normal smooth plating. Using a very small amount of plating solution,
The plating conditions are generally high temperature and high current density, and the plating solution is formed by high-speed fluid stirring.

発明が解決しようとする問題点 しかしながら、この様な条件で伝熱管内壁面等にメッキ
液を導入しても仲々内部まで均一に多孔質状のメッキを
することができず、錯塩の少ない不安定なメッキ液条件
となっているため短時間にて分解を起こし、量産性に向
かないばかりか、伝熱管パイプ壁面とメッキ層との密着
も不充分であり、液媒体の流動時および振動や衝撃にて
メッキ層が剥離してしまうなどの欠陥があった。
Problems to be Solved by the Invention However, even if the plating solution is introduced onto the inner wall surface of the heat transfer tube under these conditions, it is not possible to uniformly form porous plating all the way to the inside, and the plating solution is unstable due to the presence of complex salts. Because the plating solution conditions are such that it decomposes in a short time and is not suitable for mass production, the adhesion between the heat exchanger tube wall and the plating layer is also insufficient, and it is susceptible to vibrations and shocks when the liquid medium flows. There were defects such as the plating layer peeling off.

本発明は上記問題点に鑑み、均一にかつ密着性の優れた
凹凸状のメッキ層を形成し、表面積の増大した、沸騰伝
熱の促進効果がはかれる伝熱壁面をもつ伝熱管を提供す
るものである。
In view of the above-mentioned problems, the present invention provides a heat transfer tube having a heat transfer wall surface that forms a uniform and highly adhesive uneven plating layer, has an increased surface area, and is effective in promoting boiling heat transfer. It is.

問題点を解決するための手段 上記問題点を解決するために、本発明の伝熱管は、オキ
シエチレン系界面活性剤と、低濃度の塩化物イオンを添
加剤として加えたメッキ液によって、伝熱管壁面に凹凸
の金属メッキ層を形成させるもので、伝熱管内壁に沿っ
て挿入された対極に、メッキ金属よりも貴な金属を使用
し、第1工程で伝熱管壁面をアノード側、対極をカソー
ド側とし、対極にメッキ金属を析出させ、第2工程にて
伝熱管壁面をカソード側、対極をアノード側に切り替え
、さらに、第2工程時間を、第1工程時間よりも長くし
た伝熱管壁面の製造方法である。
Means for Solving the Problems In order to solve the above problems, the heat exchanger tube of the present invention is manufactured using a plating solution containing an oxyethylene surfactant and a low concentration of chloride ions as additives. This method forms an uneven metal plating layer on the wall surface.The counter electrode inserted along the inner wall of the heat transfer tube is made of a metal more noble than the plating metal.In the first step, the heat transfer tube wall surface is placed on the anode side and the counter electrode is placed on the cathode side. side, plated metal is deposited on the counter electrode, and in the second step, the heat transfer tube wall surface is switched to the cathode side and the counter electrode to the anode side, and the second process time is longer than the first process time. This is the manufacturing method.

作  用 本発明は上記した構成によって、メッキ液中のオキシエ
チレン系界面活性剤が、金属イオンと錯体を作り、塩化
物イオンが適度な凹凸状を形成するのに働く。さらに、
伝熱管壁面をあらかじめアノード側とし、伝熱管壁面を
電解することで、伝熱管壁面は清浄化されるばかりか、
凹凸状態が促進されるので、密着性が良好となり、伝熱
管として適切なる凹凸状態となる。
Function According to the present invention, the oxyethylene surfactant in the plating solution forms a complex with metal ions, and the chloride ions work to form an appropriate unevenness. moreover,
By making the wall surface of the heat transfer tube the anode side in advance and electrolyzing the wall surface of the heat transfer tube, the wall surface of the heat transfer tube is not only cleaned, but also
Since the uneven state is promoted, the adhesion becomes good and the uneven state becomes suitable for a heat exchanger tube.

さらに、第2工程を第1工程より時間を長くすることに
より、対極の貴金属の表面が露出し、貴金属の表面から
多量の酸素が発生するので、比較的、やわらかい凹凸の
金属メッキ層の上に、平滑な密着性のある硬いメッキ層
がオーバーメッキされることになる。すなわち錯塩の少
ない不安定なメッキ液や過度な条件でのメッキ工法を必
要としまたはざらつきをもつ凹凸の金属メッキ層が表面
積の増大と沸騰伝熱の促進効果を計ることができること
となる。
Furthermore, by making the second step longer than the first step, the surface of the noble metal of the counter electrode is exposed, and a large amount of oxygen is generated from the surface of the noble metal. , a smooth, adhesive and hard plating layer will be overplated. In other words, a metal plating layer with an uneven surface area that requires an unstable plating solution containing few complex salts, a plating method under excessive conditions, or has roughness can increase the surface area and promote boiling heat transfer.

実施例 以下本発明の一実施例について、第1図から第4図を参
考にしながら説明する。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to FIGS. 1 to 4.

1は銅バイブの伝熱管2とアルミニウムの薄片加工した
放熱フィン3とからなる熱交換器である。
Reference numeral 1 denotes a heat exchanger consisting of a heat exchanger tube 2 made of a copper vibrator and a heat radiation fin 3 made of a thin piece of aluminum.

この伝熱管2の内壁面4には凹凸の銅メッキ層5が形成
され、さらにその上にオーバーメッキ5′が形成されて
いる。また、この伝熱管2の両端6a。
An uneven copper plating layer 5 is formed on the inner wall surface 4 of the heat exchanger tube 2, and an overplating layer 5' is further formed thereon. Moreover, both ends 6a of this heat exchanger tube 2.

6bはかしめ加工と溶接により完全にシールされ、内部
にはフロンガスが封入されている07はヒーター8によ
り温調可能なメッキ槽であり、メッキ液9が入れられで
ある。このメッキ液9としては150 t/1. Cu
5O4−sH20,とsot/1H2So4. O,0
15f/jlポリオキシエチレンオレイルエーテル、お
よび0.3ミIJモルの塩酸を加えた酸性硫酸銅メッキ
液を使用する。
6b is completely sealed by caulking and welding, and fluorocarbon gas is sealed inside. 07 is a plating bath whose temperature can be controlled by a heater 8, into which a plating solution 9 is placed. The plating solution 9 was 150 t/1. Cu
5O4-sH20, and sot/1H2So4. O,0
An acidic copper sulfate plating solution containing 15 f/jl polyoxyethylene oleyl ether and 0.3 mmol of hydrochloric acid is used.

また1oは両端ea、ebを封止する前の銅パイプの伝
熱管であり、連結管11と循環ポンプ12とを組み合わ
せることにより、メッキ液9を伝熱管10の内部に循環
させる様にしている。尚、すでに放熱フィン3は伝熱管
1oを拡管することにより伝熱管10の外周に固定され
ている。さらに連結管11には、切替えスイッチ13を
介在して直流電源14に直結されているチタン棒に白金
メッキした対極15と、対極16と逆の電荷を与えられ
る接続端子16とが固定されている。伝熱管10と連結
管11とを接続端子16で結合させた時、接続端子16
と伝熱管10とが導電することとなる。また対極15に
は伝熱管1oとの接触を防止するためにポリプロピレン
でできた不電導体のスペー7サー17が挿入されている
。また18はメッキ液9に空気をふき込むエアーポンプ
である。
Further, 1o is a heat transfer tube made of a copper pipe before both ends ea and eb are sealed, and by combining a connecting tube 11 and a circulation pump 12, the plating solution 9 is circulated inside the heat transfer tube 10. . Note that the heat radiation fins 3 have already been fixed to the outer periphery of the heat exchanger tube 10 by expanding the heat exchanger tube 1o. Further, fixed to the connecting tube 11 are a counter electrode 15 made of platinum-plated titanium rod, which is directly connected to a DC power supply 14 via a changeover switch 13, and a connecting terminal 16 that is given an opposite charge to the counter electrode 16. . When the heat exchanger tube 10 and the connecting tube 11 are connected by the connecting terminal 16, the connecting terminal 16
and the heat exchanger tube 10 become electrically conductive. Further, a spacer 7 17 made of polypropylene and a non-conductor is inserted into the counter electrode 15 to prevent contact with the heat exchanger tube 1o. Further, 18 is an air pump for blowing air into the plating solution 9.

次にかかる構成での熱交換器の製造方法について説明す
る。
Next, a method for manufacturing a heat exchanger with such a configuration will be described.

まず、伝熱管10と放熱フィン3とを定位置にて仮嵌合
しておき、伝熱管1oを所定の拡管機で拡青し、伝熱管
10と放熱フィン3とを圧着させておく。次に、この伝
熱管1oと連結管11と循環ポンプ12とを組み合わせ
、メッキ槽γ中のメツキ液9を伝熱管10の内部に循環
させる。この時、メッキ液9としては150グ/X C
u SO4・5 H20。
First, the heat exchanger tube 10 and the heat radiation fin 3 are temporarily fitted in a fixed position, the heat exchanger tube 1o is expanded using a predetermined tube expanding machine, and the heat exchanger tube 10 and the heat radiation fin 3 are crimped together. Next, the heat exchanger tube 1o, the connecting tube 11, and the circulation pump 12 are combined, and the plating liquid 9 in the plating bath γ is circulated inside the heat exchanger tube 10. At this time, the plating solution 9 is 150 g/X C.
u SO4・5 H20.

50 f/fl H,、SO4,0,06t7Q1. 
 ポリオキシエチレンオレイルエーテル、および0.3
ミリモルの塩酸を加えた酸性硫酸銅メッキ液を使用する
。そこで、まず第1工程としては、直流電源14よジチ
タン棒に白金メッキを施した対極15に負の電荷をかけ
、カソード側とし、片や、接続端子16には正の電荷を
かけ、アノードとする。この時の電流値は約1oomA
/dとし約2o分間通電する。すなわち接続端子1θと
伝熱管10とが導電しているので、伝熱管1oが正の電
荷をもつことになり、メッキ液s中の陽イオンである銅
イオンが、対極16に析出し、伝熱管10の内壁面の銅
が電解により溶出してい〈0次に、第2工程として切替
スイッチ13により、正と負の電荷を逆に切替える。
50 f/fl H,,SO4,0,06t7Q1.
polyoxyethylene oleyl ether, and 0.3
Use an acidic copper sulfate plating solution containing millimoles of hydrochloric acid. Therefore, in the first step, a negative charge is applied to the DC power supply 14 and the counter electrode 15, which is made of a dititanium bar plated with platinum, to make it the cathode side, and a positive charge is applied to the other side and the connecting terminal 16, and it becomes the anode. do. The current value at this time is approximately 1oomA
/d and energize for about 20 minutes. That is, since the connection terminal 1θ and the heat exchanger tube 10 are electrically conductive, the heat exchanger tube 1o has a positive charge, and copper ions, which are cations in the plating solution s, are deposited on the counter electrode 16, and the heat exchanger tube 1o is electrically conductive. Copper on the inner wall surface of 10 is eluted by electrolysis.Next, as a second step, the changeover switch 13 is used to reverse the positive and negative charges.

すなわち、対極16側をアノードとし、接続端子16及
び伝熱管10側をカソードとする。よって、前記工程に
て対極15側に析出した銅が逆にメッキ液9中に溶解し
、伝熱管10の内壁面にメッキ液9中の銅イオンが銅と
して析出することに々る。
That is, the counter electrode 16 side is used as an anode, and the connection terminal 16 and heat exchanger tube 10 side are used as a cathode. Therefore, the copper deposited on the counter electrode 15 side in the step is instead dissolved in the plating solution 9, and the copper ions in the plating solution 9 are deposited as copper on the inner wall surface of the heat exchanger tube 10.

この時の電流値も約1oomA/−で、時間は約30分
間とした。またメッキ液9の温度はメッキ槽7のヒータ
ー8により加熱され、約60℃とした。
The current value at this time was also about 1 oomA/-, and the time was about 30 minutes. Further, the temperature of the plating solution 9 was heated by the heater 8 of the plating tank 7 to about 60°C.

ここで通常のメッキ液であれば、伝熱管10内壁面全体
に均一な厚みで銅が析出するが、メッキ液9には、オキ
シエチレン系の界面活性剤であるポリオキシエチレンオ
レイルエーテルと、0.3ミリモルという低濃度の塩酸
により生じる塩素イオンとを有するため、全体に均一な
厚みの銅メッキ層とはならず、凹凸の銅メッキ層6が形
成されることになる。この理由は、低濃度の塩素イオン
が錯体化している銅イオンと不安定に結合するためであ
る。また、この様にして得られた銅メッキ層5は凹凸の
高さの差が約100μmのものとなる。
If a normal plating solution is used, copper will be deposited with a uniform thickness on the entire inner wall surface of the heat exchanger tube 10, but the plating solution 9 contains polyoxyethylene oleyl ether, an oxyethylene surfactant, and Since the copper plating layer 6 contains chlorine ions generated by hydrochloric acid at a low concentration of .3 mmol, the copper plating layer 6 does not have a uniform thickness over the entire surface, and the copper plating layer 6 is uneven. The reason for this is that low concentrations of chlorine ions bond unstablely with complexed copper ions. Further, the copper plating layer 5 obtained in this manner has a height difference of about 100 μm between the unevenness.

しかし、管内でのメッキであるために、1価の銅イオン
が大量に生成し、不安定な状態となるため、凹凸の銅メ
ッキ層6は比較的やわらかいものとなる可能性がある。
However, since the plating is performed inside the tube, a large amount of monovalent copper ions are generated, resulting in an unstable state, so the uneven copper plating layer 6 may become relatively soft.

そこで、第2工程を第1工程より時間を長くしているの
で、対極16の貴金属面が露出し、対極16表面から多
量の酸素が発生することによる。この多量の酸素は、1
価の銅イオンを酸化し、安定な2価の銅イオンに酸化す
るため、本発明の特徴である、塩素イオンとの不安定な
結合を解除し、凹凸状の金属メッキ層を作ることを中止
し、比較的硬い、密着性の良い安定したオーバーメッキ
層5′を形成する。
Therefore, since the time of the second step is longer than that of the first step, the noble metal surface of the counter electrode 16 is exposed, and a large amount of oxygen is generated from the surface of the counter electrode 16. This large amount of oxygen is 1
In order to oxidize valent copper ions to stable divalent copper ions, the unstable bond with chlorine ions, which is a feature of the present invention, is canceled and the uneven metal plating layer is no longer created. Then, a stable overplating layer 5' which is relatively hard and has good adhesion is formed.

次に、伝熱管10の内壁を湯洗により洗浄し、乾燥した
のち、フロンガスを内部に封入し、両端6a、8bをか
しめ溶接することにより、伝熱管2と放熱フィン3とを
もつ熱交換器1が完成する。
Next, the inner wall of the heat exchanger tube 10 is washed with hot water and dried, after which a fluorocarbon gas is sealed inside and both ends 6a and 8b are caulked and welded to form a heat exchanger having the heat exchanger tube 2 and the heat radiation fins 3. 1 is completed.

この様にして得られた熱交換器1は伝熱管2の内壁面4
の凹凸のメッキ層6が、表面積を増大させる効果と共に
、沸騰伝熱の促進効果を計るだけではなく、内壁面4で
フロンガスが液化した時、液体層が、メッキ層5の凸部
にて粒滴となり、内ロン液化ガスを封入し、気化、凝縮
を繰り返すヒートパイプの様な熱交換器1の伝熱効率を
著しく良くしたものが得られる。
The heat exchanger 1 obtained in this way has the inner wall surface 4 of the heat exchanger tube 2.
The uneven plating layer 6 has the effect of increasing the surface area and promoting boiling heat transfer, and when the fluorocarbon gas liquefies on the inner wall surface 4, the liquid layer forms particles on the convex parts of the plating layer 5. The heat exchanger 1, which is like a heat pipe and which is filled with liquefied gas and repeats vaporization and condensation, has a significantly improved heat transfer efficiency.

尚、本発明の実施例では凹凸のメッキ層を形成させる手
段として酸性硫酸銅メッキ液を使用したが、熱伝導性の
面で銅系が有利であるものの、他の金属メッキ液でも可
能であり、銅メッキに限定するものではない。また界面
活性剤としてポリオキシエチレンオレイルエーテルを使
用したが、ポリエチレングリコールやポリオキシエチレ
ンノリルフェニルエーテル等のオキシエチレン系界面活
性剤をすべて含むものである。また塩酸についてもNa
Cl2の様な塩化物でも可能であり、メッキ液中で塩素
イオンとして遊離する塩化物イオンをすべて含むもので
ある。ただし塩素イオン濃度が1ミリモル以上になると
、錯体化している銅イオンとの結合が安定化するため、
全体に均一な厚みで銅が析出するため、塩素イオン濃度
は低濃度である1ミリモル以下にしておく必要がある。
In the examples of the present invention, an acidic copper sulfate plating solution was used as a means for forming an uneven plating layer, but although copper-based plating solutions are advantageous in terms of thermal conductivity, other metal plating solutions may also be used. , it is not limited to copper plating. Although polyoxyethylene oleyl ether was used as a surfactant, all oxyethylene surfactants such as polyethylene glycol and polyoxyethylene noryl phenyl ether are included. Also, regarding hydrochloric acid, Na
A chloride such as Cl2 is also possible, and includes all chloride ions released as chloride ions in the plating solution. However, when the chlorine ion concentration exceeds 1 mmol, the bond with the complexed copper ion becomes stable, so
Since copper is deposited with a uniform thickness throughout, the chlorine ion concentration must be kept at a low concentration of 1 mmol or less.

また、本発明の実施例においては、第1工程より第2工
程の時間を長くすることにより、電気容量を変化させた
が、電流密度を第2工程の方が大きくしたものでも、凹
凸の金属メッキ層S上のオーバーメツキロ′の形成は可
能である。
In addition, in the examples of the present invention, the capacitance was changed by making the second step longer than the first step, but even if the current density was larger in the second step, the uneven metal It is possible to form an overmetal layer on the plating layer S.

発明の効果 以上の様に本発明は、伝熱管壁面に、オキシエチレン系
界面活性剤と、低濃度の塩化物イオンを添加剤として加
えたメッキ液によって、凹凸の金属メッキ層を形成させ
るもので、伝熱管内壁に沿って挿入された対極に、メッ
キ金属よりも貴な金属を使用し、第1工程で、伝熱管壁
面をアノード側、対極をカソード側とし、対極にメッキ
金属を析出させ、第2工程にて伝熱管壁面をカソード側
Effects of the Invention As described above, the present invention forms an uneven metal plating layer on the wall surface of a heat transfer tube using a plating solution containing an oxyethylene surfactant and a low concentration of chloride ions as additives. , a metal more noble than the plated metal is used for the counter electrode inserted along the inner wall of the heat exchanger tube, and in the first step, the wall surface of the heat exchanger tube is set as the anode side, the counter electrode is set as the cathode side, and the plated metal is deposited on the counter electrode, In the second step, the wall surface of the heat transfer tube is placed on the cathode side.

対極をアノード側に切り替え、さらに、第2工程の電気
容量を、第1工程の電気容量よりも犬きくしたことを特
徴とする伝熱管壁面の製造方法で、安価で、量産可能な
メッキ条件で、塩素イオン濃度とメッキ液温度及び、電
流密度とメッキ時間の管理により凹凸の硬さ、形状を安
定化し、かつ密着性の優れた凹凸のメッキ層を形成させ
、表面積を増大し、沸騰伝熱の促進効果が計られ、さら
に凝縮における伝熱効率を促進させる効果もあり、容易
に高効率の伝熱管壁面を形成することができる0
This method of manufacturing heat transfer tube walls is characterized by switching the counter electrode to the anode side and making the capacitance in the second step much higher than the capacitance in the first step, which is inexpensive and under plating conditions that can be mass-produced. By controlling the chlorine ion concentration, plating solution temperature, current density, and plating time, we can stabilize the hardness and shape of the unevenness, form an uneven plating layer with excellent adhesion, increase the surface area, and improve boiling heat transfer. It also has the effect of promoting heat transfer efficiency in condensation, making it easy to form highly efficient heat transfer tube walls.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す熱交換器A−八へ横断
面図、第2図は同熱交換器の縦断面図、第3図は同熱交
換器の斜視図、第4図は同メッキ装置の概略図である。 1・・・・・・熱交換器、2.10・・・・・・伝熱管
、5・・・・・凹凸の金属メッキ層、9・・・メッキ液
、16・・・・・・対極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名J二 N) i      区 (cQ 城
FIG. 1 is a cross-sectional view of heat exchanger A-8 showing an embodiment of the present invention, FIG. 2 is a vertical cross-sectional view of the heat exchanger, FIG. 3 is a perspective view of the heat exchanger, and FIG. The figure is a schematic diagram of the plating apparatus. 1... Heat exchanger, 2.10... Heat exchanger tube, 5... Uneven metal plating layer, 9... Plating solution, 16... Counter electrode . Name of agent: Patent attorney Toshio Nakao and one other person J2N) i Ward (cQ Castle)

Claims (1)

【特許請求の範囲】[Claims] 伝熱管壁面に、オキシエチレン系界面活性剤と、低濃度
の塩化物イオンを添加剤として加えたメッキ液によって
凹凸の金属メッキ層を形成させるもので、伝熱管内壁に
沿って挿入された対極に、メッキ金属よりも貴な金属を
使用し、第1工程で、伝熱管壁面をアノード側、対極を
カソード側とし、対極にメッキ金属を析出させ、第2工
程にて伝熱管壁面をカソード側、対極をアノード側に切
り替え、さらに、第2工程の電気容量を、第1工程の電
気容量よりも大きくしたことを特徴とした伝熱管壁面の
製造方法。
An uneven metal plating layer is formed on the wall surface of the heat transfer tube using a plating solution containing an oxyethylene surfactant and a low concentration of chloride ions as additives. , a metal nobler than the plating metal is used, and in the first step, the wall surface of the heat transfer tube is made the anode side and the counter electrode is the cathode side, and the plating metal is deposited on the counter electrode, and in the second step, the wall surface of the heat transfer tube is made the cathode side, A method for manufacturing a heat exchanger tube wall surface, characterized in that the counter electrode is switched to the anode side, and the capacitance in the second step is made larger than the capacitance in the first step.
JP60042227A 1985-03-04 1985-03-04 Heat transfer tube wall manufacturing method Expired - Lifetime JP2645425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60042227A JP2645425B2 (en) 1985-03-04 1985-03-04 Heat transfer tube wall manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60042227A JP2645425B2 (en) 1985-03-04 1985-03-04 Heat transfer tube wall manufacturing method

Publications (2)

Publication Number Publication Date
JPS61201796A true JPS61201796A (en) 1986-09-06
JP2645425B2 JP2645425B2 (en) 1997-08-25

Family

ID=12630144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60042227A Expired - Lifetime JP2645425B2 (en) 1985-03-04 1985-03-04 Heat transfer tube wall manufacturing method

Country Status (1)

Country Link
JP (1) JP2645425B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102296338A (en) * 2011-06-20 2011-12-28 昆山振昆纳米科技有限公司 Pipe fitting surface nanometer processing fixture
CN103841803A (en) * 2012-11-23 2014-06-04 金在珍 Heat sink equipped with thin chamber using thick burnt deposits and boiling

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5659015A (en) * 1979-10-17 1981-05-22 Nippon Tokushu Kento Kk Manufacture of polyvinyl acetal sponge roll
JPS598352Y2 (en) * 1979-05-28 1984-03-15 富士通株式会社 Glass mask cleaning equipment
JPS59170852U (en) * 1983-04-28 1984-11-15 シャープ株式会社 Photomask cleaning equipment
JPS6096825U (en) * 1983-12-07 1985-07-02 株式会社東芝 cleaning brush
JPS618735A (en) * 1984-06-22 1986-01-16 Mitsubishi Chem Ind Ltd Workpiece washing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS598352Y2 (en) * 1979-05-28 1984-03-15 富士通株式会社 Glass mask cleaning equipment
JPS5659015A (en) * 1979-10-17 1981-05-22 Nippon Tokushu Kento Kk Manufacture of polyvinyl acetal sponge roll
JPS59170852U (en) * 1983-04-28 1984-11-15 シャープ株式会社 Photomask cleaning equipment
JPS6096825U (en) * 1983-12-07 1985-07-02 株式会社東芝 cleaning brush
JPS618735A (en) * 1984-06-22 1986-01-16 Mitsubishi Chem Ind Ltd Workpiece washing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102296338A (en) * 2011-06-20 2011-12-28 昆山振昆纳米科技有限公司 Pipe fitting surface nanometer processing fixture
CN103841803A (en) * 2012-11-23 2014-06-04 金在珍 Heat sink equipped with thin chamber using thick burnt deposits and boiling

Also Published As

Publication number Publication date
JP2645425B2 (en) 1997-08-25

Similar Documents

Publication Publication Date Title
US11274376B2 (en) Device for manufacturing hybrid metal foams
CN106906495B (en) Pb-ag alloy composite anode plate of aluminium base and preparation method thereof
MXPA02010706A (en) Cathode for electrochemical regeneration of permanganate etching solutions.
US4482440A (en) Electrochemical cell and process for manufacturing temperature sensitive solutions
JPS61201796A (en) Manufacture of wall surface of heat exchanger tube
JPH10121297A (en) Electrolytic copper plating device using insoluble anode and copper plating method employing the device
JPS5948876B2 (en) Heat sink surface treatment method
JPS61194193A (en) Plating method for inside wall of heat transmission pipe
JP2667146B2 (en) Heat exchanger manufacturing method
JPS6210296A (en) Production of heat-transfer pipe
JPS61190088A (en) Manufacture of heat transfer pipe
JPS6293039A (en) Plating method for heat transfer pipe
JPS61190087A (en) Manufacture of heat transfer pipe
JPS6260890A (en) Device for plating inner wall of heat-transfer pipe
JPS61270394A (en) Production of heat transmission pipe
JPS61217594A (en) Formation of porous layer by plating
JPS61291990A (en) Heat exchanger tube
JPS61291991A (en) Plating method for inside wall of heat transfer pipe
JPS6131891A (en) Heat transfer tube
JPS61270393A (en) Plating method for inside wall of heat transmission pipe
JPS6293394A (en) Method for plating inner wall of heat exchanger tube
JPH0423000B2 (en)
JPH0633500B2 (en) Heat transfer tube manufacturing method
JPS6289891A (en) Production of heat exchanger
JPH04157197A (en) Electrolytic treatment of surface of metallic material and electrode used the same